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ABSTRACT: Coarse-grained models are becoming increasingly popular
due to their ability to access time and length scales that are prohibitively
expensive with atomistic models. However, as a result of decreasing the
degrees of freedom, coarse-grained models often have diminished
accuracy, representability, and transferability compared with their finer
grained counterparts. Uncertainty quantification (UQ) can help alleviate
this challenge by providing an efficient and accurate method to evaluate
the effect of model parameters on the properties of the system. This
method is useful in finding parameter sets that fit the model to several
experimental properties simultaneously. In this work we use UQ as a tool
for the evaluation and optimization of a coarse-grained model. We efficiently sample the five-dimensional parameter space of the
coarse-grained monatomic water (mW) model to determine what parameter sets best reproduce experimental thermodynamic,
structural and dynamical properties of water. Generalized polynomial chaos (gPC) was used to reconstruct the analytical surfaces
of density, enthalpy of vaporization, radial and angular distribution functions, and diffusivity of liquid water as a function of the
input parameters. With these surfaces, we evaluated the sensitivity of these properties to perturbations of the model input
parameters and the accuracy and representability of the coarse-grained models. In particular, we investigated what is the optimum
length scale of the water−water interactions needed to reproduce the properties of liquid water with a monatomic model with
two- and three-body interactions. We found that there is an optimum cutoff length of 4.3 Å, barely longer than the size of the first
neighbor shell in water. As cutoffs deviate from this optimum value, the ability of the model to simultaneously reproduce the
structure and thermodynamics is severely diminished.

I. INTRODUCTION

Atomistic simulations represent a powerful set of tools to
understand complex physical and chemical phenomena.
Increasing computational power is giving researchers access
to longer time scales and larger systems. However, methods to
extend molecular simulations to further length and time scales
are still needed. Coarse graining is a popular strategy to address
this problem by reducing the degrees of freedom in a
computational model down to a simple representation that
captures essential quantities of interest (QoI) of the target
system. The challenge remains to parametrize the resulting
coarse-grained models so that they have adequate accuracy,
representability, and transferability. Accuracy refers to faithful-
ness with which the coarse-grained model reproduces the value
of a given experimental property at a thermodynamic state
point, e.g., the density of liquid water at 298 K and 1 bar.
Representability describes the accuracy with which the model is
able to simultaneously reproduce different observables at a
given state point, e.g., the density and diffusion coefficient of
the liquid at 298 K and 1 bar. Transferability describes the
ability of a model to maintain its accuracy at state points that
differ from the conditions at which it was parametrized, e.g., to
describe the temperature dependence of the density and the
locus of the temperature of maximum density of water.

Development of coarse-grained potentials has been accom-
plished by several methods. In a recent perspective, Noid
discussed coarse-graining in terms of “top-down” and “bottom-
up” approaches.1 In the “bottom-up” approach, more detailed
models are used to drive the parametrization of the coarse-
grained model, whereas the “top-down” approach matches
macroscopic, measureable quantities directly. Force-match-
ing,2,3 relative entropy minimization,4−6 Boltzmann inversion,7

and reverse Monte Carlo8 are coarse-graining methods that
typically follow the bottom-up approach, deriving coarse-
grained interaction potentials from configurations produced
from atomistic simulations. Boltzmann inversion and reverse
Monte Carlo have been used to develop isotropic pairwise
water−water interaction potentials directly from the radial
distribution functions calculated from atomistic simulations.9,10

Coarse-graining methods such as force matching (FM)11,12 and
relative entropy minimization (REM)4 are gaining use and have
been employed for the development of water models.2,3,13,14
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The primary limitation of REM and FM methods is that
although they are grounded in well-established statistical
mechanical formalisms, they are not trivial to implement in
practice and do not necessarily produce properties in good
agreement with the target finer-grained model from which they
are derived.1 Our approach in this paper is to use the “top-
down” approach to choose parameters of a coarse-grained
model of water that produce output properties that minimize
the residuals with experimentally determined values. A main
challenge is how to efficiently sample the parameter space.
Uncertainty quantification (UQ) describes the process of

quantifying uncertainties and how they are propagated in a
model system of interest, such as a molecular simulation.15 The
uncertainties include parametric uncertainty that results from
not knowing the “true” input parameters of a model that best
represent the properties of interest. UQ can be used to evaluate
the impact of the parameter space on system properties and
assess the sensitivity and accuracy of various parametrizations.
This has traditionally been conducted using Monte Carlo
(MC) sampling and its variants. In systems of large size or high
dimensions, a MC simulation requires drawing a prohibitively
large number of samples from probability distributions of
model inputs. Numerous techniques have been proposed to
reduce the computational burden associated with MC
simulations, mainly by introducing more effective sampling
recipes (e.g., Latin hypercube, etc.).16−19 Although these
developments significantly improve the tractability of MC
approaches, there is still a need for more efficient approaches.
Among the methods developed as alternatives to MC

simulation, the generalized polynomial chaos (gPC) method-
ology has been proposed as a more efficient way to address
many UQ questions.20−22 It consists of a spectral approx-
imation of random variables in the stochastic domain, where
random variables are expressed as series expansions involving
orthogonal polynomials. The quantities of interest are also
represented using a truncated expansion based on orthogonal
polynomials, effectively constituting a finite-dimensional
approximation of the infinite-dimensional stochastic space.
Because polynomial basis functions are used, random QoI can
be effectively interpolated on the basis of the tensor product of
a few samples drawn from each input random variable. This
leads to significant computational savings. Given the resulting
functional forms for QoI, one can then readily use the analytical
expressions derived for quantities such as statistical moments
and sensitivity indices.23

Sampling based on the tensor product of one-dimensional
sample points is only tractable for problems of low dimensions,
i.e., problems having at most around five random parameters.
That is because the number of required samples to reliably
compute the QoI grows exponentially with the dimension,
unless more efficient sampling techniques are exploited. To this
end, high-order stochastic collocation approaches have been
introduced.24−26 It is still an open area of research to further
enhance the convergence behavior of the stochastic collocation
method to high dimensional problems where a large number of
random parameters, e.g., on the order of 100, are involved,
although there are some proposed methodologies within the
literature. Another challenge associated with the classical form
of the gPC expansion is their limited applicability to smooth
behaviors. To expand its applicability, in addition to original
smooth polynomials, e.g., Hermite or Legendre polynomials,
chaos expansions based on generalized basis functions have
been developed. Examples of this generalization include wavelet

basis functions,27,28 piecewise polynomial functions,29 and
multielement gPC expansions.30

UQ with gPC is a powerful tool to guide and refine force
field development and evaluate the representability of atomistic
and coarse-grained models. Rizzi et al. have used UQ to
evaluate the impact of parameter space on the density,
enthalpy, and diffusivity of the TIP4P water model31,32 as
well as to investigate the interplay of parametric uncertainty and
intrinsic noise on the flux of ions through silica nanopores.33,34

They showed that the thermal noise present in molecular
dynamics simulations is small in comparison to the parametric
uncertainty of the model and that, once the fluctuations are
averaged over, there is a smooth dependence on the input
parameters. These findings support the use of a polynomial
chaos expansion to deterministically represent the macroscopic
observables as a function of model parameters. This is the
approach that we follow in this work. Rizzi et al. presented a
proof of concept use of UQ to determine the “true” input
parameters for the TIP4P water model from the results of
simulations from those very same input parameters as a way to
validate the use of UQ to parametrize a model. Here we use
UQ to determine parameters that reproduce multiple
experimental properties of interest simultaneously in a coarse-
grained model of water, and to assess the effect of the length of
the interaction potential on the accuracy and representability of
the water models.
Several paradigms for coarse-grained water models have been

proposed in the literature. The standard rigid atomistic water
models with electrostatic interactions remain the most popular
class of water models and can be considered coarse-grained
representations of more detailed flexible or quantum
mechanical models of water. Models that keep the full atomistic
representation of water but reduce the length scale of the
effective interactions35,36 represent the next level of coarse-
graining. Further coarsening can be attained by representing the
water molecule as a single particle.37 Within this paradigm there
are two main classes of potentials: those that are
isotropic,2,38−41 and those that introduce anisotropic terms to
represent the directionality of hydrogen bonding interactions
between water molecules.3,13,42,43 Isotropic coarse-grained
water models have been mostly parametrized from atomistic
simulations. Izvekov and Voth used force-matching to create a
multiscale coarse-grained representation of water as a single site
that was able to reproduce the radial distribution function and
density of liquid water.2 Johnson et al. derived coarse-grained
effective pair potentials from TIP4P-Ew and demonstrated that
isotropic pair potentials are unable to simultaneously reproduce
the structure and equilibrium thermodynamic properties.39,40

Chaimovich and Shell developed spherically symmetric coarse-
grained potentials of water at various state points using relative
entropy minimization.38 A limitation of monatomic isotropic
water models is their lack of transferability to state points
beyond those used in their parametrization.38 Among the single
particle models with anisotropic interactions, there are models
that explicitly include three-body interactions, such as the
monatomic water (mW) model42 and the models of Larini et
al.,3,13 and models such as the 3D Mercedez Benz model,43

which consider pair interactions between particles that have
hydrogen bonding “arms” at fixed orientations. Models that
represent multiple water molecules as a single particle, with or
without anisotropic interactions, represent a further notch up in
coarsening.44−46
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The first aim of this work is to use UQ for the evaluation and
optimization of parameters for the monatomic water (mW)
model using various metrics to account for the representability
and transferability of the resulting potentials. mW represents
each water molecule as a single site that interacts with its
neighbors through two- and three-body interactions with the
form of the Stillinger−Weber potential.42 The three-body terms
favor the tetrahedral configurations that are characteristic of
water. This results in “hydrogen-bonded” configurations
without the computational cost of long-range electrostatics or
the need to integrate the very fast rotational dynamics of the
water molecules in the liquid. The incorporation in mW of
three-body potentials that mimic hydrogen bonds resulted in
significant increases in representability and transferability
compared with the cases of isotropic monatomic potentials
and opened the possibility of using coarse-grained models to
study hydrophobic interactions, liquid anomalies, and crystal-
lization of water.42,47−53

The original “top-down” parametrization of mW privileged
the reproduction of the experimental melting temperature Tm
of ice I at 1 bar, and the enthalpy of vaporization and density of
liquid water at 1 bar and 298 K. In this work, in addition to
evaluating the thermodynamic properties that were used as
metrics in the original mW model, we consider structural
properties (radial and angular distribution functions) as
benchmarks for the parametrization of the coarse-grained
water model. We find that optimizing the density and enthalpy
of vaporization with the radial distribution function instead of
the temperature of melting results on a coarse-grained water
model that is very close to mW and with similar overall
agreement in reproducing water properties.
The second aim of this work is to investigate what is the

effect of decreasing the length scale of the interactions of the
water model on its accuracy and representability. A strong
motivation to minimize the interaction length of coarse-grained
water models is to further decrease their computational costs.
Bernal and Fowler recognized over 80 years ago that most of
the intermolecular potential energy of water in condensed
phases is accounted for by interactions within the first neighbor
shell.54 They estimated that electrostatic interactions beyond
the first neighbor shell contributed only about 10% of the
enthalpy of sublimation of ice. Coarse-grained models of water
exploit the effective short range of water−water interactions for
performance gains by using a relatively short interaction length
compared to fully atomistic models based on long-range
electrostatics. Weeks and co-workers developed fully atomistic
“short water” SPC/E models replacing the long-range coulomb
interaction of the atomic sites by short-range potentials,
corresponding to the screened electrostatic potential that
represents a point charge surrounded by neutralizing Gaussian
charge distribution of width σC = 4.5 Å and either keeping the
full Lennard-Jones interaction (σLJ = 3.16 Å) or replacing it by a
purely repulsive WCA potential.35,55 They showed that both
types of short water models were able to model a hydrogen
bond network, but the attractive Lennard-Jones potential was
needed to observe the density anomaly that is a hallmark of
liquid water. Interactions in the monatomic water model mW
have a cutoff length of 4.31 Å, extending just beyond the first
neighbor shell (3.5 Å). The short-ranged nature of the potential
along with the lack of hydrogen atoms results in simulations
over 100 times computationally more efficient than for
atomistic models with electrostatics. Following the same
modeling paradigm of mW, Larini et al. used force matching

to derive water potentials from SPC/E water using the three-
body term of the Stillinger−Weber potential and spline
functions for the pairwise interactions.3,13 Those models have
even shorter water−water interaction lengths than mW, 3.7−
3.9 Å, and successfully reproduce the radial distribution
function (rdf) and angular distribution function (adf) of the
atomistic SPC/E model, but they severely underestimate
ΔHvap, which was about 60% lower than the target value,3

and does not display a density maximum.14 Water models
similar in quality were derived using relative entropy
minimization.14 The striking difference in performance and
properties between mW and the slightly shorter monatomic
anisotropic models derived with force matching and relative
entropy minimization poses the questions of what is the role of
the length of the interaction potential on the representability of
the coarse-grained water models. How short can a water model
be? We find that for models that follow the mW paradigm there
is a very narrow region of interaction length that allows for a
good reproduction of the structure and energetics of water.
That optimum length scale is 4.29 Å, only slightly larger than
the first neighbor shell in liquid water.

II. MODEL AND SIMULATION METHODS
A. mW Water Model. In this work we explore the

parameter space of the mW water model,42 which has the form
of the Stillinger−Weber (SW) potential originally developed
for silicon:56
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The constants A and B define the form of the potential and are
kept fixed to the original SW values A = 7.049556277, and B =
0.6022245584. The parameter θ0 was maintained at the
preferred tetrahedral angle, 109.47°, for all simulations. The
parameter space is defined by the five parameters ε, σ, a, λ, and
γ. Section III details the strategy and procedure for sampling
the parameter space around the values of mW: ε = 6.189 kcal/
mol, σ = 2.3925 Å, a = 1.8, λ = 23.15, γ = 1.2.

B. Simulation Details. Molecular dynamics simulations of
systems modeled with more than a thousand distinct set of
parameters were performed using LAMMPS.57 Each simulation
system consisted of a periodic cell with 4096 water molecules
and was performed in the isothermal, isobaric ensemble at a
temperature of 298 K and pressure 1 atm using the Nose−
Hoover thermostat and barostat with damping parameters of 5
and 25 ps, respectively. Each simulation had a time step of 10 fs
and was performed for 10 ns, with properties averaged over the
last 9 ns. Additional simulations employed to compute melting
temperatures and the surface tensions and widths of the liquid−
vapor interface are described in next section.

C. Calculation of Properties. We calculated the enthalpy
of vaporization, density, diffusion coefficient, radial distribution
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function and angular distribution function for each simulation
and compared them with experimental values. The enthalpy of
vaporization ΔHvap of water was calculated as ΔHvap = 2.5RT −
⟨E + pV⟩, where R is the gas constant, E is the total internal
molar energy, p is the pressure, and V is the molar volume. The
2.5RT term results because we assume the gas phase has the
same enthalpy as an ideal gas with zero internal energy.
Density ρ was calculated as ρ = NM/(NA⟨V⟩), where N is the

number of water molecules and M is the molecular mass of
water 18.015 g/mol. Values were compared to the experimental
density of liquid water of 0.997 g/mL at 298 K and 1 atm.
The self-diffusion coefficient D was determined using

Einstein’s relation
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where t is the time of the simulation and ⟨|r(t) − r(0)|2⟩ is the
root-mean-square displacement.
The radial distribution function, or rdf, is a measure of the

liquid structure and was calculated as
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The rdf was compared to experimental determinations by
Skinner et al.58 The residual of the rdf with respect to the
experimental measurement is calculated as the square of the
difference between the simulation rdf and the experimental rdf
as
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where rdfexp and rdfsim are the values of the radial distribution
functions from experiment and simulation, respectively. Here,
N = rc/Δr, where rc is the cutoff distance and Δr is the distance
between points sampled from the rdf. In this work, we used a
cutoff rc = 10 Å and sampled using Δr = 0.06 Å.
The angular distribution function, or adf, was calculated as
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where nθ is the number of angles, nc is the number of neighbors,
and N is the number of particles. The calculated adf was
compared to the adf determined from the experimental results
of Stras̈sle et al.59 The residual of the adf with respect to the
experimental measurement is calculated as the square of the
difference between the simulation adf and the experimental adf.
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where adfexp and adfsim are the values of the angular distribution
functions from experiment and simulation, respectively. In this
work, we sampled the adf every 1 degree between 1 and 180.
The liquid−vapor surface tension γlv for each set of

parameters was determined from simulations of a liquid slab
as described in ref 60 from the pressure tensor components
normal (pn) and tangential (pt) to the slab surface averaged
over equilibrium trajectories:

γ = ⟨ ⟩ − ⟨ ⟩
L

p p
2

[ ]z
lv n t (7)

where Lz is the length of the simulation cell in the direction
perpendicular to the surface.
The width of the liquid−vapor interface t90−10 is defined as

the width over which the density of liquid water decays from
90% to 10% of the bulk density, computed from density profiles
in the direction perpendicular to the interface and averaged
over simulations of the water slab.
The temperature of maximum density TMD was calculated by

performing an isobaric cooling of the liquid from 320 to 205 K
at a cooling rate of 0.5 K/ns. A running average of densities was
taken as a function of temperature and the temperature with
the maximum density was identified. We also determined TMD
using the interpolation methods described in section III.
The melting temperature Tm of hexagonal ice Ih was

determined using the method of direct coexistence in the
NPH ensemble as described by Wang et al.61 The simulation
consisted of 9216 atoms, half Ih lattice and half liquid. The time
step for the melting temperature simulations was 5 fs.

III. INTERPOLATION METHODS
To construct the response surfaces of the output properties, we
use a generalized polynomial chaos collocation approach. For
simplicity, we use tensor products of one-dimensional
interpolatory functions to build our multidimensional surfaces.
Chebyshev nodes reduce the error of the interpolation
compared to equidistant nodes. They are nested and
geometrically hierarchical for odd numbers of points, so points
can be reused in subsequent interpolations, requiring fewer
simulations. In addition, with appropriate weights, Chebyshev
points can be used to form quadrature rules (i.e., Clenshaw−
Curtis quadrature), hence allowing us to compute statistical
moments (e.g., expectation, etc.). Simulations were run using
parameters defined by Chebyshev nodes in each dimension that
are generated over the interval [a, b] using eq 8,
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The nodes are located at roots of Chebyshev polynomials, and
each node represents a simulation using that parameter.
Lagrange interpolation was performed using polynomials

generated from eqs 9 and 10,
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where xk represent the points in parameter space, and f k
represent the measured values of the observable from the
simulation using that particular value parameter. The resulting
polynomial p(x) is a response function that can be used to
determine the value of the observable from a molecular
dynamics simulation as a function of the parameter x. Figure 1
shows Chebyshev nodes generated from eq 8 for n = 0, 1, and 3
as well as response curves p(x) constructed using eqs 9 and 10
representing the density of liquid water as a function of
temperature.
This method can be extended to higher dimensions using a

tensor product approach. The following equation is used to
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reconstruct the response surfaces on the basis of the parameters
σ and ε

∑ ∑σ ε σ ε=
= =
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This method can be further extended to additional dimensions
as
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The mW model has five parameters, so building a response
surface for all parameters simultaneously would be prohibitively
expensive, requiring at least n5 simulations, with n being the
number of points in each dimension required to accurately
construct the response (i.e., physical property) surface. To
overcome this challenge to the parametrization, we prioritize
specific parameters (ε, σ, a, λ, and γ) using a physical basis. For
each parameter, we sampled 3, 5, or 9 points in a range 20%
above and below the parameter values for the standard mW
water model. For parameters ε, σ, and λ, we constructed a 9 × 9
× 9 tensor product grid consisting of 729 simulations. For
parameters a and γ, we constructed a 9 × 9 tensor product grid
consisting of 81 simulations. For parameters a, σ, and λ, we
constructed a 5 × 5 × 5 tensor product grid consisting of 125
simulations. As noted earlier, a tensor product construction of
our response surfaces suffers from the “curse of dimension-
ality”; this approach can become intractable as the number of
parameters (and hence dimension) increases. In an attempt to
overcome these challenges, sparse grid and adaptive high-order
stochastic collocation approaches have been introduced.24−26

The hierarchical nature of the Lagrange interpolation allows
for efficient sampling. The precision of the interpolation
increases with the number of points, but the number of points
increases exponentially as we go from one level of interpolation
to the next. Hence, the nested nature of this method benefits
from an iterative approach. To address some of the challenges
posed by the high dimensionality of parameter space of the
coarse-grained mW potential, we evaluated the level of
precision needed to reconstruct the response surfaces for the
parameter space of the mW water model. Each response surface
that is used as a proxy for the parameter search requires a
different level of precision. Surfaces that are smooth and vary
linearly with parameter perturbations gain little with additional
resolution. For instance, changing the density of points in the
tensor grid for ΔHvap from 3 × 3 to 5 × 5 yields a difference of
only 0.4%, and increasing the grid density from 5 × 5 to 9 × 9
yields a difference of 0.3%. Clearly, the additional computation
of the higher precision surface is not worth the additional
resources. However, for a response surface that is rough, i.e.,
more sensitive to input parameters, such as the residual of the
rdf (eq 4) as a function of ε and σ for a single value of λ, as
shown in Figure 2, going from 3 × 3 to 5 × 5 yields a difference
of 37%, and going from 5 × 5 to 9 × 9 yields a difference of 5%.
The accuracy of this surface certainly benefits from the
additional simulations. The accuracy of the interpolating
polynomial also depends on the size of the interpolation
interval. A smaller interval may require fewer points to
accurately reproduce the response surface, but too small an
interval could potentially leave out a region of interest. This
underscores the utility of an iterative approach using Cheby-
shev points. Initial simulations can cover a wide range of
parameter space, and additional resolution can be focused on
narrower regions of interest while some of the previous
interpolation points are reused. These methods can be
extended for the parametrization of new force fields by limiting
the amount of computational resources expended to only what
is necessary to understand the impact of the parameter space.
In addition to understanding the effect of changing the

model parameters of the interaction potential, these methods
can be used to determine the impact of the state space on the
output properties of the simulation. UQ can be used evaluate
the transferability of a model over a wide variety of state points.
The higher sampling efficiency of Lagrange interpolation can be
used to construct response functions such as the dependence of
density on temperature with fewer computational resources as
shown in Figure 1. The determination of TMD from an isobaric
quench that is slow enough to relax to a local equilibrium at
each temperature (0.5 K/ns) required more than 28 times as
much computational resources as constructing the response
surface from 9 simulations with the state points defined by
Chebyshev nodes.

IV. SENSITIVITY OF THE PROPERTIES OF THE WATER
MODEL TO INPUT PARAMETERS

We investigated the effect of changing input model parameters
on the output properties of coarse-grained models of the family
of mW water. Water models with a common functional form,
but different parametrizations designed to meet different
benchmarks have been previously established (e.g., the TIP4P
family of four-point water models or the family of three-point
models encompassing SPC, SPC/E and TIP3P). TIP4P, for
example, was originally parametrized to reproduce the enthalpy
of vaporization and density of liquid water at ambient

Figure 1. Lagrange interpolation for the response function describing
density of liquid water as a function of temperature using Chebyshev
points defined in eq 8 (a = 205 and b = 325) for n = 0 (black points),
1 (red and black points), and 3 (blue, red and black points). The
response functions p(x) are constructed using eqs 9 and 10, where xk
represent the temperatures and f k represent the density from a
simulation using that particular temperature. The accuracy of the
response function increases with the number of points used to
construct the interpolating polynomial (3, 5, and 9 points in the black,
red, and blue curves, respectively). The temperature of maximum
density TMD for the mW water model is determined from a slow rate
cooling simulation of liquid water from 325 to 205 K (gray points).
The nine short simulations used to construct the response function
require only a fraction of the computational resources compared to the
isobaric quench.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp5012928 | J. Phys. Chem. B XXXX, XXX, XXX−XXXE



conditions.62 It was later refined to match the temperature of
maximum density and work with Ewald sums, resulting in
TIP4P-Ew.63 It was further reparametrized as TIP4P-Ice to
reproduce the Tm of ice, but sacrificing the accuracy in the
enthalpy of vaporization for better agreement with global
properties.64 Vega and Abascal provided a comprehensive
summary of properties of rigid nonpolarizable atomistic models
of water and demonstrated that trade off in the accuracy in
certain properties results in dramatic changes in the global
representability of the models.62

Due to the effect of averaging over degrees of freedom,
coarse-grained models are not capable of reproducing all
properties of interest of the finer resolution model (or the

experimental system) simultaneously. Therefore, when a
coarse-grained model is parametrized, some properties must
be prioritized and it must be ensured that the model derived
has adequate fidelity for those properties. The parametrization
of the mW model privileged Tm of ice, and the enthalpy of
vaporization and density of liquid water at 298 K. The
development of mW followed a noniterative procedure to
determine the value of three parameters (ε, σ, and λ) from
these three experimental properties.42 First, Tm was calculated
in reduced units as a function of λ and ε was scaled such that
for each value of λ Tm was 273.15 K. Then, the enthalpies of
melting, vaporization, and sublimation were determined as a
function of λ, and the λ that resulted in enthalpies that most
closely matched experiment was chosen. Finally, σ was scaled
so that the density of the simulation matched the experimental
density. In this work we take a different approach, we construct
surfaces for properties describing the thermodynamics,
structure, and diffusivity of liquid water as a function of the
ε, σ, a, λ, γ parameters of the Stillinger−Weber potential to
explore alternate parametrizations of the coarse-grained water
model using as benchmarks experimental properties that
account not only for the energetics but also for the structure
of liquid water.
The properties used in the parametrization of this work

describe the thermodynamics, structure, and diffusivity of liquid
water. Two properties were considered as metrics of water
structure: the radial distribution function (rdf) of liquid water
determined from recent X-ray diffraction measurements, which
improve upon previous determinations and reduce the
associated truncation error,58 and the angular distribution
function (adf) for the closest eight neighbors.59 The density ρ
of liquid water is a thermodynamic property that provides an
additional measure of the faithfulness of the model in
reproducing the structure and characteristic intermolecular
distances in liquid water. The enthalpy of vaporization ΔHvap
serves as our benchmark for the energetics of liquid water.
Other energetic observables such as the enthalpy of melting
were computed and could be used as well but, as we discuss
below, each of these various properties results in a different set
of optimum parameters, because not all these properties can be
simultaneously reproduced by the model. The dynamics of
water was measured through the self-diffusion coefficient D.
Because coarse-grained models average out some of the

degrees of freedom of a fully atomistic system, not all the
entropy of water is accounted for in the monatomic water
model. Coarse-grained models also have a smoother potential
energy surface with lower kinetic barriers. These factors, and
the known scaling between entropy and diffusivity,47,65−68

preclude the ability of the coarse-grained model to simulta-
neously reproduce the energetics and dynamics of water.
Therefore, we focus on maximizing the accuracy of properties
that describe the energetics and the structure of liquid water.
To optimize the model, we find the parameters that

minimize the difference between the calculated output
properties and those measured in experiments. Ideally, the
properties used as benchmarks for the parametrization must be
calculable from a simulation at a single state point. Such is the
case for density, enthalpy of vaporization, diffusion coefficient,
rdf, and adf. It is possible to use a measurement that requires
multiple simulations for each individual parameter set, but it
adds to the computational complexity and expense of the
parametrization, which increases as a power function with each
parameter. Properties such as the melting temperature Tm,

Figure 2. Response surface representing the residual of the rdf as a
function of ε and σ (all other parameters as in mW water). The same
response surface is shown using 3 × 3 (upper), 5 × 5 (middle), and 9
× 9 (lower) tensor grids. Increasing the density of Chebyshev points
(red dots) increases the accuracy of the response function but comes
at the cost of more simulations.
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melting enthalpy ΔHm, melting entropy ΔSm, surface tension γlv
and width t90−10, and temperature of maximum density TMD are
less amenable to this approach and were only calculated for
individual parameter sets. Sampling the full parameter space of
the five parameters of mW model (ε, σ, a, λ, γ) would require at
least 95 (about 60 000) simulations. Here we focus on the three
parameter spaces defined by smaller sets, (ε, σ, λ), (a, γ), and
(a, σ, λ), which are sampled with approximately 1000
simulations.
To illustrate how we use response surfaces to choose

parameters, we start with the parameter set (ε, σ, λ), which has
been partially explored for the Stillinger−Weber potentials in
the literature.42,47,48,68,69 We constructed response surfaces
using the interpolating polynomials described in eqs 9 and 12
to determine the output properties of ΔHvap and ρ as a function
of the parameters. The interpolating polynomials were
generated from the basis set of observations from the 729
simulations that spanned the parameter space (ε, σ, λ). All
other parameters were fixed to their values in the standard mW
potential. Figure 3 shows the response surfaces for ΔHvap and

density as a function of ε and σ while λ is maintained at 23.15,
the same as in the original mW model. The optimal parameters
were determined by finding the parameter set on the response
surface that simultaneously reproduces the experimental
density and enthalpy of vaporization. Because both surfaces
vary monotonically with ε and σ, there is only one point in the
parameter space that can simultaneously fulfill these criteria.
For the parameter space (ε, σ) maintaining λ = 23.15, we
determined that the parameters ε = 6.121 kcal/mol and σ =
2.3916 Å simultaneously reproduced the experimental values
for the enthalpy of vaporization and density of liquid water. Not
surprisingly these values are close to the values of the standard
mW model (ε = 6.189 kcal/mol and σ = 2.3925 Å) that did not
use the structure as part of the parametrization. Next we will

introduce the structure as an additional metric in the
parametrization.
The ability of a model potential to reproduce the structure of

liquid water was measured by the residuals between the rdf and
adf in the simulations and experiment (rdfres, eq 4 and adfres, eq
6). Figure 3 illustrates that the response surfaces for ΔHvap and
ρ are dependent on ε and σ, respectively. Unlike the case for
ΔHvap and ρ, no parameter set was able to exactly reproduce
the experimental rdf. The response surfaces for rdfres and adfres
for the parameter space (ε, σ) with all other parameters as in
mW water are shown in Figure 4. It is evident that the ability to

reproduce the experimental rdf is more selective to the choice
of parameters than the adf. This may be because our
determination of the adf uses the closest eight neighbors.
Computing the adf using the nearest four neighbors or using a
tetrahedral order parameter considering only first shell
neighbors may yield a better method to quantify the
tetrahedrality of the liquid, but we lack the corresponding
benchmarks derived from experiment. Due to the higher
selectivity for parameters of the rdf compared to the adf, we
used the rdf as the primary metric for the structure of liquid
water.
As we described above, for each value of λ, there is a

combination of ε and σ that simultaneously reproduces ΔHvap
and ρ. Including λ as a degree of freedom in the optimization,
we used the 729 simulations that spanned the parameter space
(ε, σ, λ) to construct interpolating functions that allowed us to
determine the set of parameters (ε, σ) that reproduce ΔHvap
and ρ as a function of λ. The resulting rdf curves as well as the
rdf residuals are shown in Figure 5. These results show that
there is an optimal set of parameters in the space (ε, σ, λ) that
simultaneously reproduces the enthalpy of vaporization and
density of liquid water and minimizes rdfres. These parameters
are σ = 2.3826 Å, ε = 6.1504 kcal/mol, and λ = 23.743. We
denote the model with these parameters mWUQ. The predicted
λ that minimizes the rdfres is only 2.6% higher than the value in
the standard mW model 23.15. A simulation using these

Figure 3. Response surfaces describing the relative error of the
enthalpy of vaporization and density of liquid water with respect to
experimental values as a function of ε and σ. The surface for the
enthalpy of vaporization varies as a function of ε, and the response
surface for the density is dependent on σ. There is only one unique
point at which the two surfaces simultaneously match the experimental
results. The black dot in the center marks the point in parameter space
that matches both the experimental density and ΔHvap (ε = 6.121
kcal/mol and σ = 2.3916 Å; all other values are the same as in the mW
model). The orange box shows the region in parameter space that is
within 5% of the experimental values for both properties. As discussed
in section III, the response surfaces for the enthalpy and density were
accurately reproduced with the smallest set of points (3 × 3 tensor
grid).

Figure 4. Response surfaces of the residuals for the radial distribution
function rdfres (unmeshed surface) and the angular distribution
function adfres (meshed surface) with respect to experiment as a
function of ε and σ (all other parameters the same as in the mW
model). The response surface for rdfres is more sensitive to the input
parameters than that of adfres. To aid in the comparison, the adfres and
rdfres have been scaled so that both surfaces have a maximum value of
1. As discussed in section III, the response surfaces for the rdfres and
adfres require a higher number of interpolation points than the
enthalpy of vaporization and density; 81 simulations (9 × 9 tensor
grid) were used to interpolate the surfaces shown here.
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optimized parameters results in ΔHvap of 10.52 kcal/mol and a
density of 0.997 g/mL, matching the experimental results
exactly. The rdfres calculated from the simulation is 0.058,
compared to the value predicted from interpolation function,
0.060. The results of various output properties for the mW and
mWUQ as well as the experiment are presented in Table 1.
The original parametrization of mW did not consider the rdf

or adf in the parametrization and matched Tm to 274 K. The Tm
for mWUQ model is 287 K, 5% above the experimental value of
273.15 K. Although the melting temperature of ice for mWUQ is

not as accurate as for the original mW model, it is still more
accurate than all popular atomistic water models except TIP4P/
ice, which was parametrized to reproduce this property.62 The
TMD for mWUQ is 23 K below the Tm, similar to the mW model
and 5% lower than the experimental value of 277 K. The lack of
hydrogen atoms in this family of coarse-grained models results
in the loss of all rotational contributions to the entropy. This
precludes the possibility of simultaneously reproducing Tm and
ΔHm. The original mW model reproduces the melting
temperature because it reproduces the ratio of ΔHm/ΔSm =
Tm. ΔHm and ΔSm in mW, however, are both 12% lower than
experiment.42 We note that previous investigations using the
Stillinger−Weber model indicate that ΔSm of the tetrahedral
crystal is quite insensitive to λ.69 For the mWUQ model
parameters that optimize the structure, density and enthalpy of
vaporization of the liquid, the improvement in ΔHm is
counterbalanced by an overestimation of Tm because ΔSm
remains unchanged.
The self-diffusion coefficient D for mWUQ is 5.9 × 10−5 cm2

s−1, slightly improved over the value for mW (6.5 × 10−5 cm2

s−1), but still 2.6 times higher than the experimental value. The
monatomic nature of this coarse-grained model precludes the
reproduction of experimental values of the diffusion constant
while also reproducing the structure and thermodynamics. The
loss of the hydrogen atoms results in fewer degrees of freedom
and a smoother potential energy surface. Therefore, dynamic
properties such as diffusion, which depend on the magnitude of
the barriers for rearrangement of hydrogen bonds, are not
reproduced by any of the coarse-grained water models that
represent water as a single particle or map several water
molecules into a single bead.
The results of this section illustrate that UQ can be used as a

method to parametrize coarse-grained models using an arbitrary
number of properties of interest, and to assess the accuracy,
representability and transferability of the model with respect to
these and other properties. These same methods would also
work to parametrize an atomistic model using a “top-down”
approach. The selection of experimental properties to match in
the parametrization determines the overall quality of the
model.62 The mWUQ model with σ = 2.3826 Å, ε = 6.1504
kcal/mol, and λ = 23.743 is very close in parameter space and
performance to the original mW model (σ = 2.3925 Å, ε =
6.189 kcal/mol, and λ = 23.15). The mWUQ parametrization
improves slightly the accuracy on rdf, TMD, ΔHvap, and ΔHm at
the expense of a small loss in accuracy in Tm and the liquid−
vapor surface tension γlv. The overall global agreement of the
two parametrizations of the monatomic water model, as
measured by the sum of the deviations with respect to all
experimental properties in Table 1, is comparable. In the
following section, we use UQ methods not merely to
parametrize a model, but to better understand the effect of
the length of the interaction potential on the accuracy of the
model and its representability.

V. HOW SHORT IS TOO SHORT FOR WATER
INTERACTIONS?

The length of the interaction between water molecules in the
mW model is controlled by the parameters σ and a. Their
product determines the distance at which the two-body and
three-body terms of the interaction potential go to zero (upper
and middle panels of Figure 6). The parameter γ scales the
magnitude of the three-body potential energy term (lower
panel of Figure 6). To investigate the role of the length of the

Figure 5. Residual of the radial distribution function g(r) as a function
of λ (upper panel). For each value of λ on this curve, the
corresponding values of ε and σ are those that simultaneously match
experimental enthalpy of vaporization and density as determined using
the response surfaces in the (ε, σ, λ) parameter space. The radial
distribution functions g(r) for various values of λ (lower panel). The
rdf curves on the lower panel are color-coded to the points on the
upper panel. The dashed line indicates the rdf determined from
experimental measurements in ref 58.

Table 1. Output Properties for mWUQ Compared to mW and
Experiment

exp mWUQ
a mW

Tm (K) 273.15 287 274
TMD (K) 277 264 250
γlv (mJ m

−2) 71.6 63.8 66.0
t90−10 (Å) 2.8 3.3
ρ (g cm−3) 0.997 0.997 0.997
ΔHvap (kcal mol

−1) 10.52 10.52 10.65
ΔHm (kcal mol−1) 1.436 1.32 1.26
ΔSm (cal mol−1 K−1) 5.257 4.60 4.60
D (10−5 cm2 s−1) 2.3 5.9 6.5
rdfres (Å

2) 0 0.06 0.07

amWUQ parameters are σ = 2.3826 Å, ε = 6.1504 kcal/mol, and λ =
23.743.
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interaction potential cutoff on the output properties, we
constructed the response surfaces as a function of the a and
γ parameters while maintaining all other parameters at their
values in the standard mW model. Figure 7 shows the density
as a function of σa and γ. The surfaces as a function of the
length scale of the potential σa and the scale of the three-body
potential γ display a common behavior: the properties change
smoothly except for the region of σa shorter than 3.95 Å and
except when γ deviates from 1.2, for which the properties differ
radically from those of water. This is associated with the
inability to hold together the structure of water in the first shell,
which extends from about 2.5 to 3.5 Å, when the range of the
interactions is shorter than the first peak of the radial
distribution function. Note that due to the form of the
potential, even when the cutoff σa is longer than 3.5 Å, e.g., for
σa = 3.95 Å in Figure 6, the interactions within the first shell are
severely diminished.

We find that the interaction length that reproduces the
experimental values for ρ and ΔHvap of water is limited to a
small region of parameter space centered around a = 1.8 (σa =
4.31 Å). Figure 8 displays the loci of optimum ΔHvap and ρ
along with the contour plots of rdfres (upper panel) and adfres
(lower panel) as a function of a and γ. The family of
parametrizations with a = 1.65 (cutoff σa = 3.95 Å) either
reproduces the density at the expense of the enthalpy of
vaporization or vice versa. All parametrizations with this shorter
cutoff sacrifice the accuracy of the rdf and also deviate
significantly in the prediction of most other properties, as
shown in Table 2. Note the wild variations of the liquid vapor
surface tension, γlv, and width of the water−vapor interface,
t90−10, on changing γ for the potentials with σa = 3.95 Å. The
decrease in tetrahedral interactions on increasing γ and the
decrease in length scale of the potential on lowering a result in
a destabilization of the tetrahedral ice crystal and the
disappearance of the density anomaly. These very short
potentials fail at producing, even qualitatively, the characteristic
properties of water.
The parameter γ is able to compensate for the tetrahedral

parameter λ in the three-body potential function. As γ
decreases, the energetic penalty for nontetrahedral three-body
configurations increases, mimicking the effect of increasing λ.
The parameter a is also able to partially compensate for
changes in λ. For example, in the three-body potential reducing
σa from 4.31 to 3.95 Å (8% reduction) affects the magnitude of
the potential (at rij = rik = σ and θijk = 90°) in a way similar to
reducing λ by 50%. At the same time, reducing a decreases the
cutoff distance of the two-body and three-body terms. Can an
increase in tetrahedral order (either increase λ or decrease γ)
compensate for the effect of a very short potential? Figure 6
shows that reducing a diminishes the control of the
tetrahedrality of the model (because of a shorter cutoff),
leaving λ or γ less able to compensate for this loss. In the
evaluation above of the surfaces for (a, γ), all the other
parameters were fixed to their values in the standard mW
model. However, because some of the parameters in this model
can compensate for each other to potentially improve the
parametrization for different interaction cutoffs, there may be a
set of parameters for other values of a that result in more
accurate parametrizations of water. In what follows we use UQ

Figure 6. Two-body interaction potential as a function of a (upper
panel). Three-body interaction potential as a function of a (middle
panel). Three-body interaction potential as a function of γ (lower
panel). The product σa determines the cutoff of the interaction
potential. The solid black line represents the potential using the
standard mW parameters a = 1.8 (σa = 4.31 Å) and γ = 1.2. A blue line
indicates a = 1.65 (σa = 3.95 Å), and a red line indicates a = 1.95 (σa
= 4.67 Å). The dashed black line indicates γ = 1.3, and the dotted
black line indicates γ = 1.1. To visualize the three-body term of eq 1,
the constraints rij = rik and θijk = 90° are imposed. All other parameters
have the same value as in the standard mW model.

Figure 7. Relative error of the density of liquid water with respect to
experiment as a function of parameters γ and σa (σ = 2.3925 Å). The
interaction potential cutoff distance is determined by the product σa.
Below σa = 3.95 Å (red line), the first shell neighbors do not
sufficiently interact with each other, resulting in a low density state for
low γ and high density state for high γ. Values of γ smaller than 1.2
increase the value of the three-body interaction potential and promote
the separation of particles. Values of γ larger than 1.2 decrease the
three-body repulsion and promote the condensation of particles.
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to find the best set of parameters as a function of the cutoff
length a.
To investigate the role of the interaction length on the

physical properties of short-ranged, anisotropic three-body
water models, we evaluated the accuracy of the model as a
function of the cutoff distance a. To allow the model
parameters to compensate for each other to produce the
most accurate representations of water for each cutoff distance,
we constructed a three-dimensional response surface as a
function of the parameters σ, a, and λ. For each value of a, we

found the combination of parameters that minimized rdfres.
Because λ and γ are able to compensate for each other, we fixed
γ at 1.2. We scaled the strength of interaction potential ε so that
each of the parameter sets had the same depth of the attractive
potential well (6.189 kcal/mol). The cutoff distance of the
interaction potential is given by the product of σ and a. The
resulting two- and three-body interaction potentials represent
the potential functions that have the combination of parameters
σ and λ that minimize rdfres for each value of a and are shown in
Figure 9. Table 3 summarizes the output properties as a
function of the length of the interaction potential.

Figure 8. Simultaneous optimization of the enthalpy of vaporization,
density, and structure in the parameter space of γ and a. Regions in
parameter space that match the experimental density (blue line) and
enthalpy of vaporization (red line) are overlaid on the rdf residual
(upper panel) and the adf residual (lower panel). The orange circles
represent the points in parameter space for the simulations with a =
1.65 (σa = 3.95 Å) listed in Table 2. The values of the adf residual
have been scaled up by 1000 to aid in the comparison to the rdf.

Table 2. Effect of γ on the Properties of the Model for aσ = 3.95 Å

exp mW γ = 1.0 γ = 1.1 γ = 1.2 γ = 1.3

Tm (K) 273.15 274 321 240 NAa NAa

TMD (K) 277 250 209 218 NAb NAb

γlv (mJ m
−2) 71.6 66.0 16.1 28.9 59.4 111

t90−10 (Å) 3.3 8.9 5.5 4.7 2.8
ρ (g cm−3) 0.997 0.997 0.922 1.06 1.31 1.53
ΔHvap (kcal mol

−1) 10.52 10.65 6.40 6.64 7.98 10.25
D (10−5 cm2 s−1) 2.3 6.5 2.2 8.8 12.0 4.2
rdfres (Å

2) 0 0.07 1.2 0.4 0.2 0.5

aThe crystal was not stable. bThe liquid vitrifies without displaying a density maximum.

Figure 9. Interaction potential curves for the two-body interactions
(upper panel) and three-body interactions (lower panel) with
increasing interaction cutoff length σa. The parameters σ and λ for
each curve are the optimized values taken from the response surface
for the parameter space (a, σ, λ) as a function of a. The parameter ε is
scaled so that each of the parameter sets had the same depth of the
attractive potential well (6.189 kcal/mol). These parameters are listed
in Table 3. To visualize the three-body term of eq 1, the constraints rij
= rik and θijk = 90° are imposed. All other parameters have the same
value as in the standard mW model. The dashed line indicates the first
minimum in the radial distribution function 3.45 Å from ref 58. The
cutoff lengths defined by σa are 3.98, 4.08, 4.29, 4.46, and 4.55 Å for
the blue, green, black, orange and red curves, respectively.
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The cutoff length that best reproduces the structure and
energetics of water is 4.29 Å, essentially indistinguishable from
the 4.31 Å cutoff of the standard mW model. The parameters
that minimize the rdfres do not reproduce the experimental
density exactly, but they are still quite close (within 3%).
Improving the density by rescaling σ would also increase rdfres.
The agreement with ΔHvap can be improved by rescaling ε, but
the best simultaneous agreement with structure and energetic
properties is centered at a = 1.8. Not surprisingly, the accuracy
of the model decreases as the cutoff becomes shorter.
Interestingly, interaction potentials extending longer than
4.29 Å do not improve the accuracy of the model but actually
diminish it. Using the effective potential to recreate the
tetrahedral structure of water becomes unphysical when the
interaction potential is integrated much beyond the first
solvation shell. These results indicate that interactions with
the first neighbor shell have to be fully accounted for, and that
subtle changes in the interaction with the first neighbor shell
greatly affect the physics of water. It should be noted that the
models used for the preceding analysis use the same cutoff
distance for the two- and three-body terms. It is possible to add
another degree of freedom by creating separate cutoff distances
for the two- and three-body terms will yield a different
optimum length scale. In coarse-grained parametrizations
determined by force matching and relative entropy minimiza-
tion, the cutoff lengths are different for the two- and three-body
interactions, but the agreement with the target atomistic SPC/E
model (and experimental) ΔHvap is poor despite the accuracy
with respect to the rdf and adf of the atomistic model, which
are not exactly the same as in the experiment.3,14 Figure 8
shows that as the interaction length of the water model
decreases, the accuracy of the enthalpy and density suffer and
adjusting parameters to fix one diminishes the other, although
the structure is still well reproduced, suggesting that this
limitation of short models is beyond the nature of the target
model used for the parametrization. The inability of very short
ranged anisotropic monatomic water models to reproduce
simultaneously the density and enthalpy of water is not limited
to SW potentials that, like mW and the variants investigated in
this work, use the same cutoff for the two- and three-body
interactions but is manifest also in SW monatomic water
models parametrized using relative entropy minimization
allowing for distinct cutoffs of the two- and three-body
interactions,14 as well as in monatomic water models optimized
with force matching that not only employ different cutoffs for

the three-body and two-body interactions but also use very
flexible spline functions to represent the latter.3,13 Therefore,
we expect the representability issues of very short-models to be
independent of the specific form of the interaction potential.
The structure and thermodynamics of water are simulta-

neously and quite accurately reproduced for the interaction
length scale of the standard mW model. Even though the radial
and angular distribution functions of water were not used for
the original mW parametrization, the model does an excellent
job at reproducing them as well as the density and energetics of
liquid water leaving surprisingly little room for improvement
within this paradigm. Also surprising is that the choice for the
interaction cutoff length of a = 1.8 in the original Stillinger and
Weber silicon potential is the locus for the optimal interaction
length for the water model.

VI. CONCLUSIONS
We performed uncertainty quantification by generalized
polynomial chaos using Lagrange interpolation with Chebyshev
nodes to assess the accuracy and representability of a family of
coarse-grained water models as a function of the model input
parameters. The hierarchical nature of the Lagrange inter-
polation allows for more efficient sampling than other UQ
methods. The nested hierarchy and ability to evaluate the
sensitivity of the model to input parameters can help determine
where to invest computational resources during the para-
metrization of model potentials. Simulation models are not
capable of simultaneously reproducing all properties of interest,
but UQ allows for a more comprehensive understanding of
which properties suffer at the expense of others. UQ can be
used to efficiently evaluate the transferability of a model over a
wide range of state points with fewer computational resources
than in traditional approaches, as we illustrated for the
temperature dependence of the density of liquid water. These
methods should be viewed as part of a holistic approach that
can be coupled with other force-field parametrization methods
such as force-matching and relative entropy minimization to
develop more accurate models and a deeper understanding of
molecular systems.
The overall quality of the resulting coarse-grained model

depends on which output properties of water are used as
targets. Parameters that prioritize the structure of liquid water
are different from those that privilege the accurate reproduction
of the melting temperature of hexagonal ice. Nevertheless, we
found that the parametrization that optimizes density, enthalpy

Table 3. Properties of Water Models as a Function of Interaction Length

σa (Å)

exp 4.31 (mW) 3.98 4.08 4.29 4.46 4.55

a 1.8 1.65 1.6939 1.8 1.9061 1.95
σ (Å) 2.3925 2.4127 2.4067 2.3807 2.3388 2.3332
λ 23.15 27.78 27.78 23.57 19.06 18.52
ε (kcal mol−1) 6.189 9.102 8.019 6.189 5.025 4.662
Tm (K) 273.15 274 272 263 286 262 282
TMD (K) 277 250 NAa 235 256 227 212
γlv (mJ m

−2) 71.6 66.0 82.7 70.9 64.4 66.5 62.1
t90−10 (Å) 3.3 2.8 3.1 3.1 3.1 3.6
ρ (g cm−3) 0.997 0.997 1.24 1.13 1.00 0.948 0.892
ΔHvap (kcal mol

−1) 10.52 10.65 11.0 10.7 10.6 10.9 10.7
D (10−5 cm2 s−1) 2.3 6.5 7.7 6.7 6.1 7.4 6.5
rdfres (Å

2) 0 0.07 0.11 0.07 0.06 0.14 0.17
aThe liquid vitrifies without displaying a density maximum.
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of vaporization and rdf is very close to the standard mW
parametrization based on density, enthalpy of vaporization and
melting temperature of ice. For the family of coarse-grained
models of this study, the diffusivity is never accurately
reproduced simultaneously with the energetics and structure.
This represents an intrinsic limitation of the model associated
to the reduction in the entropy due to the loss of degrees of
freedom and cannot be alleviated by reparametrization.
The cutoff length for the potential determines the ability of

the monatomic anisotropic model to simultaneously reproduce
the structure and energetics of water. The structure and
thermodynamics of water can be simultaneously reproduced
with a monatomic model that uses short two- and three-body
interaction potentials that act over a distance slightly longer
than the first solvation shell of the water−water radial
distribution function. The interaction length that satisfies
these two criteria is limited to a small region of parameter
space centered at the cutoff distance 4.3 Å for the functional
form of the Stillinger−Weber potential. Models with cutoffs
that are shorter and longer than this optimal distance do not
reproduce the structure of water as measured in experiment,
and attempts to compensate by changing other parameters
degrades the accuracy of the energetics. We conclude that the
length scale relevant for interactions in water is, as predicted 80
years ago by Bernal and Fowler, barely beyond the first
neighbor shell.
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