
J Sci Comput (2015) 63:745–768
DOI 10.1007/s10915-014-9914-1

A Radial Basis Function (RBF)-Finite Difference (FD)
Method for Diffusion and Reaction–Diffusion Equations
on Surfaces

Varun Shankar · Grady B. Wright ·
Robert M. Kirby · Aaron L. Fogelson

Received: 3 April 2014 / Revised: 25 July 2014 / Accepted: 27 August 2014 /
Published online: 6 September 2014
© Springer Science+Business Media New York 2014

Abstract In this paper, we present a method based on radial basis function (RBF)-generated
finite differences (FD) for numerically solving diffusion and reaction–diffusion equations
(PDEs) on closed surfaces embedded inRd . Our method uses a method-of-lines formulation,
in which surface derivatives that appear in the PDEs are approximated locally using RBF
interpolation. The method requires only scattered nodes representing the surface and normal
vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby
avoiding coordinate distortions and singularities. We also present an optimization procedure
that allows for the stabilization of the discrete differential operators generated by our RBF-
FD method by selecting shape parameters for each stencil that correspond to a global target
condition number.We show the convergence of ourmethod on two surfaces for different sten-
cil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric
surfaces and more general surfaces represented by point clouds.

Keywords Radial basis functions · Finite differences · Mesh-free · Manifolds · RBF-FD ·
Method-of-lines · Reaction–diffusion

V. Shankar (B) · A. L. Fogelson
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
e-mail: vshankar@math.utah.edu

A. L. Fogelson
e-mail: fogelson@math.utah.edu

G. B. Wright
Department of Mathematics, Boise State University, Boise, ID 83725-1555, USA
e-mail: gradywright@boisestate.edu

R. M. Kirby
School of Computing, University of Utah, Salt Lake City, UT 84112, USA
e-mail: kirby@sci.utah.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-014-9914-1&domain=pdf

746 J Sci Comput (2015) 63:745–768

1 Introduction

Methods based on global radial basis functions (RBFs) have become quite popular for the
numerical solution of the partial differential equations (PDEs) due to their ability to handle
scattered node layouts, their simplicity of implementation and their spectral accuracy and
convergence on smooth problems. While these methods have been successfully applied to
the solution of PDEs on planar regions [10], they have also been applied to PDEs on the
two-sphere S2 (e.g. [13,14,25]).

Many methods have been developed for the solution of the class of PDEs known as
diffusion (or reaction–diffusion) equations on more general surfaces. Of these, the so-called
intrinsicmethods attempt to solve PDEs using surface-basedmeshes and coordinates intrinsic
to the surface under consideration; this approach can be efficient since the dimension of the
discretization is restricted to the dimension of the surface under consideration (e.g. [3,9]).
However, such intrinsic coordinates can contain singularities or distortions which are difficult
to accomodate. A popular alernative is the class of so-called embedded, narrow-bandmethods
that extend the PDE to the embedding space, construct differential operators in extrinsic
coordinates, and then restrict them to a narrow band around the surface (e.g. [29,30]). Such
methods incur the additional expense of solving equations in the dimension of the embedding
space; the curse of dimensionality will ensure these costs will grow rapidly depending on the
order of accuracy of the method.

RBFs have recently been used to compute an approximation to the surface Laplacian in
the context of a pseudospectral method for reaction–diffusion equations on manifolds [23].
In that study, global RBF interpolants were used to approximate the surface Laplacian at a
set of “scattered” nodes on a given surface, combining the advantages of intrinsic methods
with those of the embedded methods. This method showed very high rates of convergence
on smooth problems on parametrically and implicitly defined manifolds. However, for N
points on the surface, the cost of that method scales as O(N 3). Furthermore, the dense nature
of the resulting differentiation matrices means that the cost of applying those matrices to
solution vectors is O(N 2), assuming the manifold is static. Our goal is to develop a method
that is less costly to apply than the global RBF method while still retaining the ability to use
scattered nodes on the surface to approximate derivatives, thereby combining the benefits of
the intrinsic and narrow-band approaches. Our motivation is to eventually apply this method
for the simulation of chemical reactions on evolving surfaces of platelets and red blood cells.
For this, we turn to RBF-generated finite differences (RBF-FD).

First discussed by Tolstykh [36], RBF-FD formulas are generated from RBF interpolation
over local sets of nodes on the surface. This type of method is conceptually similar to the
standard FD method with the exception that the differentiation weights enforce the exact
reproduction of derivatives of shifts of RBFs (rather than derivatives of polynomials as is
the case with the standard FD method) on each local set of nodes being considered. This
results in sparse matrices like in the standard FD method, but with the added advantage that
the RBF-FD method can naturally handle irregular geometries and scattered node layouts.
We note that the RBF-FD method has proven successful for a number of other applications
in planar domains in two and higher dimensions (e.g. [4,5,34,35,40]). The RBF-FD method
has also been shown to be successful on the surface of a sphere [12,17] for convective flows
by stabilization with hyperviscosity.

An RBF-FDmethod for the solution of diffusion and reaction–diffusion equations on gen-
eral 1D surfaces embedded in 2D domains was recently developed [33]. In our experiments,
a straightforward extension of that approach to 2D surfaces proved to be unstable, requiring
hyperviscosity-based stabilization as in the case of the RBF-FD method for purely convec-

123

J Sci Comput (2015) 63:745–768 747

tive flows. In this work, we modify the RBF-FD formulation presented in [33], and present
numerical and algorithmic strategies for generating RBF-FD operators on general surfaces.
Our approach appears to do away with the need for hyperviscosity-based stabilization.

The remainder of the paper is organized as follows. In Sect. 2, we briefly review RBF
interpolationof both scalar andvector data on scatterednode sets inRd . Section3discusses the
formulation of surface differential operators in Cartesian coordinates. Section 4 then goes on
to describe how these differential operators are discretized in the formof sparsedifferentiation
matrices andpresents amethod-of-lines formulation for the solutionof diffusion and reaction–
diffusion equations on surfaces; this section also presents important implementation details
and comments on the computational complexity of our RBF-FDmethod. In Sect. 5, we detail
our shape parameter optimization approach and illustrate how it can be used to stabilize the
RBF-FD discretization of the surface Laplacian without the need for hyperviscosity-based
stabilization. In Sect. 6, we numerically demonstrate the convergence of our method for
different stencil sizes (on two different surfaces) for the forced scalar diffusion equation
using two different approaches to selecting the shape parameter ε. Section 7 demonstrates
applications of the method to simulations of Turing Patterns on two classes of surfaces:
implicit and parametric surfaces, andmore general surfaces represented only by point clouds.
We conclude our paperwith a summary and discussion of future research directions in Sect. 8.

Note: Throughout this paper, we will use the terms surface or manifold to refer to smooth
embedded submanifolds of codimension one inRd with no boundary, with the specific case of
d = 3. Although not pursued here, straightforward extensions are possible for manifolds of
higher codimension, ormanifolds of codimension 1 embedded in higher or lower dimensional
spaces.

2 A Review of RBF Interpolation

We start with a review of RBF interpolation, which is essential to understanding the RBF-FD
approach outlined in the next section. Let Ω ⊆ R

d , and φ : Ω × Ω → R be a kernel with
the property φ(x, y) := φ(‖x− y‖) for x, y ∈ Ω , where ‖ · ‖ is the standard Euclidean norm
in R

d . We refer to kernels with this property as radial kernels or radial functions. Given a
set of nodes X = {xk}Nk=1 ⊂ Ω and a continuous target function f : Ω → R sampled at the
nodes in X , we consider constructing an RBF interpolant to the data of the following form:

Iφ f (x) =
N∑

k=1

ckφ(‖x − xk‖) + cN+1. (1)

The interpolation coefficients {ck}N+1
k=1 are determined by enforcing Iφ f

∣∣
X = f |X and

∑N
k=1 ck = 0. This can be expressed as the following linear system:

⎡

⎢⎢⎢⎢⎢⎣

φ(r1,1) φ(r1,2) . . . φ(r1,N) 1
φ(r2,1) φ(r2,2) . . . φ(r2,N) 1

...
...

. . .
...

...

φ(rN ,1) φ(rN ,2) . . . φ(rN ,N) 1
1 1 . . . 1 0

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
AX

⎡

⎢⎢⎢⎢⎢⎣

c1
c2
...

cN
cN+1

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
c f

=

⎡

⎢⎢⎢⎢⎢⎣

f1
f2
...

fN
0

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
fX

, (2)

123

748 J Sci Comput (2015) 63:745–768

where ri, j = ||xi − x j ||. If φ is a positive-definite radial kernel or an order one conditionally
positive-definite kernel on R

d , and all nodes in X are distinct, then the matrix AX above is
guaranteed to be invertible (see, for example, [38, Ch. 6–8]). The condition

∑N
k=1 ck = 0

affects the far-field behavior of the interpolant, which also depends on the choice of radial
kernel [15].

In the present study, we are interested in the set of interpolation nodes X lying on a
lower dimensional surface Ω = M in R

d . However, we will still use the standard Euclidean
distance in R

d for ‖ · ‖ in Eq. (1) (i.e., straight line distances rather than distances intrinsic to
the surface). This significantly simplifies constructing interpolants as no explicit information
about the surface is needed. A theoretical foundation for RBF interpolation on surfaces with
this distancemeasure is given in [22], where the authors prove and demonstrate that favorable
error estimates can be achieved.

In describing our method for approximating the surface Laplacian in the next section,
it is useful to extend the above discussion to the interpolation of vector-valued functions
g(x) : Ω → R

d sampled at a set of nodes X = {xk}Nk=1 ⊂ Ω . For this problem, we simply
apply scalar RBF interpolation as given in Eq. (1) to each component of g(x) and represent
the resulting interpolant as IΦg. For example, if d = 3 and g = [

gx gy gz
]T

, then the vector
interpolant is given as

IΦg(x) = [
Iφgx (x) Iφgy(x) Iφgz(x)

]
. (3)

The interpolation coefficients for each component of IΦg can be determined by solving a
system of equations similar to the one listed in Eq. (2), but with the right-hand-side replaced
with the respective component of g sampled on X . This allows some computational savings
for determining the interpolation coefficients for Iφ f and IΦg with a direct solver since the
matrix AX then only needs to be factored once.

There are many choices of positive definite or order one conditionally positive definite
radial kernels that can be used in applications; see [10, Ch. 4, 8, 11] for several exam-
ples. These kernels can be classified into two types: finitely smooth and infinitely smooth.
It is still an open question as to which kernel is optimal for which application. Typi-
cally infinitely smooth kernels such as the Gaussian (φ(r) = exp(−(εr)2)), multiquadric
(φ(r) = √

1 + (εr)2), and inverse multiquadric (φ(r) = 1/
√
1 + (εr)2) are used in the

RBF-FD method for numerically solving PDEs [2,7,12,34,40]. We continue with this trend
in the present work and use the inverse multiquadric (IMQ) kernel, which is positive definite
in R

d , for any d .
All infinitely smooth kernels, features a free “shape parameter” ε, which can be used to

change the kernels from peaked (large ε) to flat (small ε). In the limit as ε → 0 (i.e. a flat
kernel), RBF interpolants to data scattered in R

d typically (and always in the case of the
Gaussian radial kernel) converge to (multivariate) polynomial interpolants [8,27,31], and, in
the case of the surface of a sphere, they converge to spherical harmonic interpolants [19]. For
smooth target functions, smaller (but non-zero) values of ε generally lead to more accurate
RBF interpolants [20,27]. However, the standard way of computing these interpolants by
means of solving Eq. (2) (referred to as RBF-Direct in the literature) becomes ill-conditioned
for small ε (see, e.g., [21]). While some stable algorithms have been developed for bypassing
this ill-conditioning [11,16,18–20], there are issues with applying them to problems where
the interpolation nodes are arranged on a lower dimensional surface than the embedding
space, as is the case in the present study. These issues are related to the nodes being “non-
unisolvent” and some strategies have recently been undertaken to resolve them [28], but a
robust approach is not yet available. In later sections of this study, we will detail strategies for

123

J Sci Comput (2015) 63:745–768 749

selecting ε based on condition numbers of RBF interpolationmatrices.Wewill also introduce
a strategy for modifying ε to produce interpolants that compensate for irregularities in point
spacing on our test surfaces.

3 Surface Laplacian in Cartesian Coordinates

Here we review how to express the surface Laplacian in Cartesian (or extrinsic) coordinates;
for a full discussion see [23]. Working with the operator in Cartesian coordinates is funda-
mental to our proposed method as it completely avoids singularities that are associated with
using intrinsic, surface-based coordinates (e.g. the pole singularity in spherical coordinates).
We restrict our discussion to surfaces M of dimension two embedded in R

3 since these are
the most common in applications.

Let P denote the projection operator that takes an arbitrary vector field in R
3 at a point

x = (x, y, z) on the surface and projects it onto the tangent plane to the surface at x. Letting
n = (nx , ny, nz) denote the unit normal vector to the surface at x, this operator is given by

P = I − nnT =
⎡

⎣
(1 − nxnx) −nxny −nxnz

−nxny (1 − nyny) −nynz

−nxnz −nynz (1 − nznz)

⎤

⎦ = [
px py pz

]
, (4)

where I is the 3-by-3 identity matrix, and px , py and pz are vectors representing the
projection operators in the x , y and z directions, respectively. We can combine P with the
standard gradient operator in R

3, ∇ = [
∂x ∂y ∂z

]T
, to define the surface gradient operator

∇M in Cartesian coordinates as

∇M := P∇ =
⎡

⎣
px · ∇
py · ∇
pz · ∇

⎤

⎦ =
⎡

⎣
Gx

G y

Gz

⎤

⎦ . (5)

Noting that the surface Laplacian ΔM is given as the surface divergence of the surface
gradient, this operator can be written in Cartesian coordinates as

ΔM := ∇M · ∇M = (P∇) · P∇ = GxGx + G yG y + GzGz . (6)

The approach we use to approximate the surface Laplacian mimics the formulation given
in Eq. (6) and is conceptually similar to the approach based on global RBF interpolation used
in [23], with the important difference being that we use local RBF interpolants.

4 RBF-FD Approximation to the Surface Laplacian

Let X = {xk}Nk=1 denote a set of (scattered) node locations on a surfaceM of dimension two
embedded in R

3 and suppose f : M → R is some differentiable function sampled on X .
Our goal is to approximate ΔM f |X with finite-difference-style local approximations to the
operatorΔM. Without loss of generality, let the node where we want to approximateΔM f be
x1, and let x2, . . . , xn be the n−1 nearest neighbors to x1, measured by Euclidean distance in
R
3. We refer to x1 and its n− 1 nearest neighbors as the stencil on the surface corresponding

to x1 and denote this stencil as P1 = {x j }nj=1. We seek an approximation to ΔM f at x1 that
involves a linear combination of the values of f over the stencil P1 of the form

123

750 J Sci Comput (2015) 63:745–768

(ΔM f)
∣∣
x=x1

≈
n∑

j=1

w j f (x j). (7)

Theweights {w j }nj=1 in this approximationwill be computed usingRBFs, andwill be referred
to as RBF-FD weights.

The first step to computing the RBF-FD weights is to construct an RBF interpolant of f
similar to Eq. (1), but now only over the nodes in P1, i.e.

Iφ f (x) =
n∑

j=1

c jφ(r j (x)) + cn+1, (8)

where r j (x) = ‖x− x j‖. The interpolation coefficients c j can be determined by the solution
to the system of equations given in Eq. (2), but with X replaced with P1; we denote this
system by AP1c f = fP1 . Second, we compute the surface gradient of the above interpolant
using Eq. (5) and evaluate it at the nodes in P1. In the case of the Gx component of the
gradient, this is given as

(Gx Iφ f (x)
)∣∣
x=xi

=
n∑

j=1

c j
(Gxφ(r j (x))

)∣∣
x=xi︸ ︷︷ ︸(

Bx
P1

)

i, j

, i = 1, . . . , n, (9)

where the constant term from Eq. (8) has vanished since its gradient is zero. We can rewrite
Eq. (9) in matrix–vector form using the fact that c f = A−1

P1
fP1 as follows:

(Gx Iφ f
)∣∣

P1
= Bx

P1c f =
(
Bx
P1 A

−1
P1

)
fP1 = Gx

P1 fP1 . (10)

Here Gx
P1

is an n-by-n differentiation matrix that represents the RBF approximation to
the x-component of the surface gradient operator over the set of nodes in P1. Similar approx-
imations can be obtained to the y- and z-components of the surface gradient operator on this
stencil as follows:

(G y Iφ f
)∣∣

P1
=

(
By
P1
A−1
P1

)
fP1 = Gy

P1
fP1 , (11)

(Gz Iφ f
)∣∣

P1
=

(
Bz
P1
A−1
P1

)
fP1 = Gz

P1
fP1 , (12)

where the entries of By
P1

and Bz
P1

are given as

(By
P1

)i, j = (G yφ(r j (x))
)∣∣
x=xi

and (Bz
P1

)i, j = (Gzφ(r j (x))
)∣∣
x=xi

.

In the third step, we mimic the continuous formulation of the surface Laplacian in Eq. (6)
using the differentiation matrices Gx

P1
, Gy

P1
, and Gz

P1
in place of the operators Gx , G y , and

Gz , respectively, which gives the following approximation to the surface Laplacian of f at
all the nodes in P1:

(ΔM f)
∣∣
P1

≈
(
Gx

P1G
x
P1 + Gy

P1
Gy

P1
+ Gz

P1
Gz

P1

)

︸ ︷︷ ︸
LP1

fP1 . (13)

This approximation is equivalent to the following operations: construct an interpolant of f
over P1, compute its surface gradient, interpolate each component of the surface gradient,

123

J Sci Comput (2015) 63:745–768 751

apply the surface divergence, and evaluate it at P1. Hence, we can use the vector interpolant
notation from Eq. (3), to write Eq. (13) equivalently as

(ΔM f)
∣∣
P1

≈ (∇M · IΦ
(∇M Iφ f

))∣∣
P1

.

This approach of repeated interpolation and differentiation avoids the need to analytically
differentiate the surface normal vectors ofM, which implies closed form expressions for these
values are not needed. This simplifies the computations and makes the method applicable to
surfaces defined by point clouds (as illustrated in Sect. 7).

While the approximation in Eq. (13) is for all the nodes in P1, we are only interested in the
approximation at x = x1 (the “center” point of the stencil P1) according to Eq. (7). Because
of the ordering of nodes in P1, the value of Eq. (7) is given by the first value in the vector
that results from the product on the right of Eq. (13). Thus, the weights w j in Eq. 7 are given
by the entries in the first row of the matrix LP1 from Eq. (13). Extracting these entries from
this matrix, and disregarding the rest, then completes the steps for determining the RBF-FD
weights for the node x1.

For each node xk ∈ X , k = 1, . . . , N , we repeat the above procedure of finding its n − 1
nearest neighbors (stencil Pk), computing the corresponding matrix LPk according to Eq.
(13), and extracting out of this matrix the row of RBF-FD weights for xk . These weights are
then arranged into a sparse N -by-N differentiation matrix LX for approximating the surface
Laplacian over all the nodes in X .

The computational cost of computing each matrix LPk is O(n3), and there are N such
stencils, so that the total cost of computing the entries of LX is O(n3N) (this is apart from the
cost of determining the stencil nodes, for which an efficient method is discussed below). In
practice, n << N andwould typically be fixed as N increases, so that the total cost scales like
O(N). Furthermore, each LPk can be computed independently from the others and is thus
a embarrassingly parallel computation. In contrast, the method from [23], requires O(N 3)

operations and results in a dense differentiation matrix. However, the accuracy of this global
method is better than the local RBF-FD approach.

4.1 Implementation Details

To efficiently determine the members of stencils Pk , k = 1, . . . , N , we first build a k-d tree
for the full set of N nodes in X . The k-d tree is constructed in O(dN log N) operations,
where d is the number of dimensions. The members of stencil Pk can then be determined
from the k-d tree in O(log N) operations. Combining the computational cost of the k-d tree
construction and look-ups with computing the RBF-FD weights, the total cost of building
LX is O(N log N) + O(N), where the constants in the last term depend on the cube of n.

We note that points in each of the N stencils Pk on the surfaces are selected merely using
a distance criterion; in other words, for a node xk , the stencil only comprises of its n − 1
nearest neighbors, with the distances measured in R

3, rather than along the surface. While it
is possible to include more information to form more regular or biased stencils, we do not
explore these possibilities in our current work. One consequence of using distances in the
embedding space is that one must exercise caution when simulating PDEs on the surfaces of
thin objects, or thin features of more general surfaces. If the distance between points across
a thin feature is smaller than the distance between points on the same sides of the surface
of the thin feature, a poor approximation to the surface Laplacian will result in that region.
We will not address this issue in our work, except by taking care to have a sufficiently dense
sampling of the surface around thin features.

123

752 J Sci Comput (2015) 63:745–768

Fig. 1 The figure on the top left shows maximum determinant nodes mapped from the sphere to the surface
of the Red Blood Cell. The figure on the top right shows the re-ordered matrix LX , obtained by applying the
Reverse Cuthill-McKee re-ordering algorithm. 0.31% of the entries of the matrix are non-zeros for the Red
Blood Cell. The figure on the bottom left shows a node set obtained on the double-torus. The figure on the
bottom right shows the re-ordered matrix LX , obtained by applying the Reverse Cuthill-McKee re-ordering
algorithm. 0.62% of the entries of the matrix are non-zeros for the double-torus. We use a stencil size of
n = 31 for both objects

In general, the nodes in X will lack any ordering, which may negatively impact the fill-in
of the sparse matrix LX . We therefore re-order the matrix using the Reverse Cuthill-McKee
algorithm [24] for all our tests. This usually results in faster iterations in an iterative solver
involving LX , and improved sparsity in stored lower triangular and upper triangular factors
within a sparse direct solver involving LX . Figure 1 shows two different surfaces, a idealized
red blood cell and a double-torus, with corresponding nodes X , and the resulting sparsity
pattern of LX after re-ordering with Reverse Cuthill-McKee.

4.2 Method-of-Lines

In Sects. 6 and 7, we use the RBF-FD discrete approximation to the surface Laplacian in the
method-of-lines (MOL) to simulate diffusion and reaction–diffusion equations on surfaces.

123

J Sci Comput (2015) 63:745–768 753

We briefly review this technique for the former equation, as its generalization to the latter
follows naturally.

The diffusion of a scalar quantity u on a surface with a (non-linear) forcing term is given
as

∂u

∂t
= νΔMu + f (t, u), (14)

where ν > 0 is the diffusion coefficient, f (t, u) is the forcing term, and an initial value of u
at time t = 0 is given. Letting X = {x j }Nj=1 ⊂ M and uX ∈ R

N denote the vector containing
the samples of u at the points in X , our RBF-FD method for (14) takes the form

d

dt
uX = δLXuX + f (t, uX) , (15)

where LX is an n-node RBF-FD differentiation matrix for approximatingΔM over the nodes
in X , as described above.This is a (sparse) systemof N coupledODEsand, provided it is stable
(see Sect. 5), can be advanced in time with a suitably chosen time-integration method. For an
explicit time-integration method, LX can be evaluated in O(N) operations. For a method that
treats the diffusion term implicitly, one can use an iterative solver such a BICGST AB, or
form the sparse upper and lower triangular factors obtained from the LU factorization of the
implicit equations and use them for an efficient direct solver every time-step. These are the
two respective approaches we use in our convergence studies in Sect. 6 and our applications
in Sect. 7.

We conclude by noting that solving surface reaction–diffusion equations with an RBF-FD
method was also considered in our paper [33] for the case of 1D surfaces embedded in R

2.
However, the approach used in that study for computing a discrete approximation to the
surface Laplacian differs in an important way from the RBF-FD formulation of the surface
Laplacian presented above. In that work, given a set of N nodes (X) on a surface, we start
by using n-node RBF-FD formulas to construct differentiation matrices for the Gx and G y

over the node set X , which we denote by Gx
X and Gy

X . Next, the surface Laplacian was
approximated from these matrices as LX = Gx

XG
x
X + Gy

XG
y
X . As with the above approach,

this formulation also avoids the need to compute derivatives of the normal vectors of the
surfaces, but has the effect of doubling the bandwidth of the LX compared toGx

X andGy
X . We

tried extending this approach to two dimensional surfaces in embedded inR3, but encountered
stability issues when combining this with the method-of-lines, as the differentiation matrices
LX had eigenvalues with (sometimes large) positive real parts. The present method appears
to be much less susceptible to these problems as discussed in the next section.

5 Shape Parameter and Eigenvalue Stability

A necessary condition for stability of the MOL approach described in the previous section is
that the eigenvalues of theRBF-FDdifferentiationmatrices LX must be in the stability domain
of the ODE solver used for advancing the system in time. As a minimum requirement, this
will generally mean that all eigenvalues must, at the very least, be in the left half plane. The
RBF-FD procedure does not guarantee that this property will hold for LX , and it is possible
to encounter situations in which this requirement is violated. In this section, we discuss a
procedure related to choosing a stencil-dependent shape parameter εk when computing the
RBF-FD weights that appears to ameliorate this issue and lead to LX with eigenvalues in the
left-half plane.

123

754 J Sci Comput (2015) 63:745–768

The idea is to choose a shape parameter εk > 0 for each stencil Pk that “induces” a
particular target condition number κT for the RBF interpolation matrix on that stencil. In the
previous section we denoted this matrix by APk , but now we denote it by APk (ε) since the
entries of the matrix depend continuously on the shape parameter (see Eq. (2)). The condi-
tion number of RBF interpolation matrices increase monotonically as the shape parameter
decreases to zero (cf. [21]), so that the unique εk that induces the desired condition number
κT is given as the zero of the function

F(ε, κT) = log(κ(APk (ε))/κT), (16)

where κ(APk) is the condition number of APk (ε)with respect to the two-norm. Since APk (ε)

is symmetric, this is just the ratio of its largest singular value to its smallest. We view this
process as a homogenization that compensates for irregularities in the node distribution. It
is a generalization of the method from [12] for the surface of the sphere, where the nodes X
are quasi-uniformly distributed so that one shape parameter gives roughly equal condition
numbers amongst all the stencil interpolation matrices. In that study, the shape parameter
is chosen to be proportional to

√
N , which keeps all the conditions number approximately

equal as N grows.
We illustrate the effect of the proposed optimization process on the eigenvalues of the

matrix approximation to the surface Laplacian LX with two tests: one on a slightly distorted
but somewhat regular set of nodes and one on a very irregular set of nodes.

For the first test, we start with the N=10,000 quasi-uniform Maximal Determinant (MD)
node set for the unit sphere (obtained from [39]). We then map this point set to an idealized
RedBloodCell surface, which is biconcave in shape; (see [23], AppendixB) for the analytical
expression and the upper left picture in Fig. 1 for a plot of these mapped nodes. While the
MD points offer a quasi-uniform sampling of the sphere, they do not offer a good sampling
when mapped to the Red Blood Cell (for a true quasi-uniform sampling of the latter, the
correct procedure would be to solve an optimization problem and directly obtain MD points
on the Red Blood Cell). Next, we form two RBF-FD matrix approximations to the surface
Laplacian on the Red Blood Cell using n = 31 point stencils. The first approximation uses an
optimized shape parameter on each stencil with the target condition number set to κT = 1012

in Eq. (16). The second approximation uses a single shape parameter of ε = 2.51 across all
stencils. This value is the mean of the shape parameters obtained in the first approximation.
The eigenvalues of the corresponding differentiation matrices for these two procedures are
shown in the top row of Fig. 2, with the optimized ε per stencil on the left and the single ε

on the right. We can see from the figure that optimized version produces eigenvalues all in
the left half plane, while the single-ε version results in one large positive eigenvalue.

For the second test, we start with an N=5,041 set of nodes on the double-torus that were
obtained from the program 3D-XplorMath. This node set offers a fairly irregular sampling
of the double-torus. For more on how the nodes were generated, see [23]. As on the Red
Blood Cell, we form two RBF-FD matrix approximations to the surface Laplacian on the
double-torus using n = 31 point stencils. The first approximation uses an optimized shape
parameter on each stencil with the target condition number set to κT = 6 × 1011 in Eq.
(16), the largest condition number that we could safely use on the irregular node set for
n = 31 nodes (with larger condition numbers giving us eigenvalues with positive real parts).
The second approximation uses a single shape parameter of ε = 2.47 across all stencils.
Again, this value is the mean of the shape parameters obtained in the first approximation.
The eigenvalues of the corresponding differentiation matrices are shown in the bottom row
of Fig. 2, with the optimized ε per stencil on the left and the single ε on the right. Again, we

123

J Sci Comput (2015) 63:745–768 755

Fig. 2 The figure on the left of the top row shows the eigenvalues of the n = 31 RBF-FD matrix LX for
the surface Laplacian on the Red Blood Cell using N = 10,000 MD nodes mapped to the Red Blood Cell
and the per-stencil shape parameter optimization strategy with κT = 1012. The right figure on the top row is
similar, but shows the eigenvalues of LX using a single shape parameter of ε = 2.51, which is the mean of the
shape parameters from LX in the left figure. The figures on the bottom row are similar to the top, but show the
eigenvalues of LX for the double-torus using N = 5,041 scattered nodes. In the left one, the per-stencil shape
parameter optimization strategy was used with κT = 6 × 1011, while the one on the right used the mean of
the shape parameters from the right which was ε = 2.47

can see from the figure that the optimized version produces eigenvalues all in the left half
plane, while the single-ε version results in one large positive eigenvalue.

To get a sense of how the range of shape parameters that results from our optimization
algorithm vary and to see how these values may depend on the stencil, we plot in Fig. 3 the
shape parameters versus the stencil width r , which we define as the maximum (Euclidean)
distance between the nodes in a given stencil. The plot on the left for the Red Blood Cell (left)
shows a clear trend toward larger stencil widths leading to smaller shaper parameters to reach
the desired target condition number. A similar trend is not clear in the plot on the right for the
double-torus, indicating that stencil width has much less (if any) influence on determining
the optimal shape parameter. While the nodes on the Red Blood Cell are scattered, they are
still much more regular than the double-torus, since they are just mapped MD nodes on the

123

756 J Sci Comput (2015) 63:745–768

Fig. 3 The figure on the left shows the computed shape parameters on the Red Blood Cell using N = 10,000
MD nodes mapped to the Red Blood Cell (with κT = 1012) as a function of the stencil width. The figure on
the right shows the computed shape parameters on the double-torus using using N = 5,041 scattered nodes
with κT = 6 × 1011. In both cases, the stencil size is set to n = 31

sphere. Consequently, the nodes in a stencil on the Red Blood Cell will be more regularly
spaced than the nodes in a stencil on the double-torus. This may be why the single parameter
of stencil width seems to be a good predictor for the resulting shape parameter. We also
produced plots of the shape parameter versus the minimum distance between stencil nodes,
but also did not see a clear trend in the double-torus results and hence omitted them.

We note that it is possible to choose a single shape parameter in the above examples that is
sufficiently large so that LX have all eigenvalues in the left half-plane (for example, ε = 3.4
for both the Red Blood Cell and the double-torus). However, this does not produce equally
good results. The reason is that smaller shape parameters generally give better accuracy
(cf. [28,40]). Using the optimization procedure for selecting ε allows us to benefit from
the accuracy afforded by smaller shape parameters where possible, as well as the stability
afforded by larger shape parameters (when required by the irregularity of the node set). The
trade-off in this procedure is that optimizing the shape parameter adds the cost of root-finding
to theRBF-FDmethod.Additionally, fixing a target condition number across all stencils could
mean that we end up choosing a lower condition number on some stencil than the condition
number naturally dictated by the minimum width on that stencil. In this scenario, we are
sacrificing some degree of local accuracy for the overall stability of the method. However,
our tests did not reveal any impact of this on the convergence of the method.

While the shape parameter optimization procedure adds to the cost of our method, there
are a few mitigating factors. First, we only solve the optimization problem to an absolute
tolerance of 10−4; this proved sufficient for the purpose of stability and achieving the target
condition number. Second (and more important), since the optimization is done on a per-
stencil basis and the stencil computations themselves are easily parallelized, the overall
optimization procedure itself is also embarrassingly parallel. These advantages are retained
even if the surface sampled by the node set is evolving in time.

We conclude by noting that algorithms for the stable computation of RBF-FDmatrices for
all value of the shape parameters are available [28], but efforts tomake these work for the case
when the nodes are distributed on a lower dimensional surface embedded inRd is still needed.
Though successful outcomes in this areawouldmean that we could use larger target condition
numbers in our method, this does not necessarily imply the obsolescence of our optimization

123

J Sci Comput (2015) 63:745–768 757

procedure. Given that current methods to stably compute RBF interpolants in planar domains
are currently at least 5–10 times as costly as the standard RBF interpolation method, it is
probable that new methods will have this drawback as well. In such a scenario, our shape
parameter optimization procedure will likely allow for cost-efficient implementations of the
RBF-FD method, allowing trade-offs between accuracy and computational cost.

6 Convergence Studies

We now present the results illustrating the convergence of our method for the (forced) dif-
fusion equation given in Eq. (14) on some standard surfaces. We present experiments with
two different optimization strategies. First, we present results for studies where we fix the
condition number across all stencils for a given N , but allow the target condition number to
grow with increasing N . Then, we present results for studies involving fixing the condition
number for increasing N (equivalent to increasing the shape parameter for increasing N).
In the latter case, we run into saturation errors [10] due to the employment of stationary
interpolation. We use the Backward Difference Formula of Order 4 (BDF4) for all tests and
set the time-step to Δt = 10−4, a time-step that allows the spatial errors to dominate the
temporal error. We use BICGST AB to solve the implicit system arising from the BDF4
discretization; we noticed that the solver needed at most three iterations per time-step to
converge to a relative tolerance of 10−12. For convenience, we measure errors using the �2
and �∞ norms rather than approximations to the continuous versions of these norms on the
test surfaces. The convergence of our method is a function of the fill distance hX , defined
as the radius of the largest ball that is completely contained on the manifold which does not
contain a node in X . For quasi-uniformly distributed nodes on our test surfaces, we expect that
h ∝ 1√

N
, where N is the total number of nodes on the surface. In the following subsections,

we therefore examine convergence as a function of
√
N .

6.1 Convergence Studies with Increasing Condition Number

In this section, we present the results of numerical convergence studies where the uniform
condition number across the RBF-FDmatrices is allowed to grow as the number of points (N)
on the surface increases. In the absence of the shape parameter optimization procedure, this
would be equivalent to fixing the shape parameter while increasing N , the simplest approach
to take with RBF interpolation.

First,we examine the convergence of ourMOL formulation by approximating the diffusion
equation on a sphere. Then,we examine the convergence of ourmethod on simulating a forced
diffusion equation on a torus. We present results for different stencil sizes n and examine
convergence as the total number of nodes N increases.

6.1.1 Diffusion on the Sphere

This test problem was presented in [29], and involves solving the heat equation on a unit
sphere S

2. The exact solution to this problem is given as a series of spherical harmonics
u(t, θ, φ) = 20

3π

∑∞
l=1 e

−l2/9e−tl(l+1)Yll(θ, φ), where θ and φ are longitude and latitude
respectively, and Ylm is the degree l order m real spherical harmonic. Since the coefficients
decay rapidly, the series is truncated after 30 terms. As in [29], we evolve the PDE until
t = 0.5, using the exact solutions to boot-strap our BDF4 scheme. We test the RBF-FD

123

758 J Sci Comput (2015) 63:745–768

Fig. 4 The figure on the left shows the �2 error in the numerical solution to the diffusion equation on the
sphere as a function of

√
N , while the figure on the right shows the �∞ error. Both figures use a log–log scale,

with colored lines indicating the errors in our method and dashed lines showing ideal p-order convergence
for p = 2, 3, 4, 5. All errors were measured against the exact solution. The errors for n = 31 and N = 40,962
were computed in quad-precision (Color figure online)

method for n = 11, 17, and 31 for N = 642, 2,562, 10,242, and 40,962 icosahedral points on
the sphere [1], and plot the relative error in the numerical solutions. For all tests, we start with
a target condition number of κT = 105 and allow it to grow with increasing N to κT = 1018.
This effectively fixes the mean shape parameter on the surface as N grows. The results of
this study are shown in Fig. 4.

In addition to the errors, Fig. 4 shows dashed lines corresponding to ideal p-order con-
vergence, where p = 2, 3, 4, 5. It is clear that our method gives convergence between orders
two and three for n = 11, close to order four for n = 17 and slightly higher than order five
for n = 31, both in the �2 and the �∞ norms. Our method achieves similar results for smaller
values of N than were used by the Closest Point method in [29], as is to be expected from
a method that uses points only in the embedded space S

2. However, it is important to be
cautious when comparing errors against the Closest Point method. The values of N given in
the results in [29] are greater than the actual number of points used in that work to compute
approximations to the Laplace-Beltrami operator. The values of N in that work correspond
to all the points used in the embedding space R3.

We note that the RBF-FD weights for n = 31 and N = 40,962 were computed in quad-
precision, though the simulations that used the weights were only run in double-precision.
This is because our approach of allowing the condition number to grow with N leads to
condition numbers of 1018 for very high N and n, which correspond to nearly-singular or
singular matrices in double-precision. A possible way of remedying this is to start with a
smaller target condition number for N = 642. Of course, this will lead to a higher error for
each N , but can help offset the ill-conditioning for very large N and n. Later in this section,
we will present an alternative way of ameliorating this issue.

6.1.2 Forced Diffusion on a Torus

This test is similar to the test presented in [23] involving randomly placed Gaussians on the
sphere, except that this procedure is done on a torus. We consider the torus given by the
implicit equation:

123

J Sci Comput (2015) 63:745–768 759

Fig. 5 Forced diffusion on a torus. The figure on the left shows the intial condition for the forced diffusion
problem on the torus given by Eq. (17). The figure on the right shows a node set containing N = 5,400
quasi-uniformly spaced nodes on the same torus

T
2 =

{
x = (x, y, z) ∈ R

3

∣∣∣∣∣

(
1 −

√
x2 + y2

)2

+ z2 − 1

9
= 0

}
,

which can be parameterized using intrinsic coordinates ϕ and λ as follows:

x =
(
1 + 1

3
cos(ϕ)

)
cos(λ), y =

(
1 + 1

3
cos(ϕ)

)
sin(λ), z = 1

3
sin(ϕ), (17)

where −π ≤ ϕ, λ ≤ π . The surface Laplacian of a scalar function f : T
2 → R in this

intrinsic coordinate system is given as

ΔM f (ϕ, λ) = 1
(
1 + 1

3 cos(ϕ)
)2

∂2 f

∂λ2
+ 9

(
1 + 1

3 cos(ϕ)
)

∂

∂ϕ

((
1 + 1

3
cos(ϕ)

)
∂ f

∂ϕ

)
.

The manufactured solution to the diffusion equation (given by Eq. (14) with M = T) is

u(t, ϕ, λ) = e−5t
23∑

k=1

e−a2(1−cos(λ−λk))−b2(1−cos(ϕ−ϕk)), (18)

where a = 9, b = 3, and (ϕk, λk) are randomly chosen values in [−π, π]2. The solution is
C∞(T2) and a visualization at t = 0 is given in Fig. 5 (left). While the solution and forcing
function are all specified using intrinsic coordinates, the RBF-FDmethod uses only extrinsic
(Cartesian coordinates) without requiring knowledge of the underlying intrinsic coordinate
system.We compute the forcing function corresponding to Eq. (18) analytically and evaluate
it implicitly. We similarly compare errors in the numerical solution of the forced diffusion
equation at time t = 0.2 for stencils of size n = 11, 17 and 31 nodes.

The node sets we use for experiments on the torus are generated from a “staggered” grid
in intrinsic variable space, and are determined as follows:

1. Givenm, choosem+1 equally spaced angles on [−π, π] in ϕ and 3m+1 equally spaced
angles on [−π, π] in λ.

123

760 J Sci Comput (2015) 63:745–768

Fig. 6 The figure on the left shows the �2 error in the numerical solution to the forced diffusion equation
on the torus given by Eq. (17) as a function of

√
N , while the figure on the right shows the �∞ error. Both

figures use a log–log scale, with colored lines indicating the errors in our method and dashed lines showing
ideal p-order convergence for p = 2, 3, 4, 6. All errors were measured against the solution given by Eq. (18).
The errors for n = 31 and N = 38,400 were computed in quad-precision (Color figure online)

2. Disregard the values of ϕ and λ at π and take a direct product of the remaining points to
obtain N = 3m2 points on [−π, π)2. Map these points to T

2 using Eq. (17) and call the
set of nodes X1.

3. Next, generate another set of N = 3m2 gridded points in [−π, π)2 from the previous set
by offsetting the ϕ coordinate by π/m and the λ coordinate by π/(3m), so they lie at the
midpoints of the previous gridded values. Map these to T

2 and call the set of nodes X2.
4. The final set of nodes is given by X = X1 ∪ X2.

In the experiments we use m = 10, 20, 30, 60, 80, corresponding to node sets of size N
= 600, 2,400, 5,400, 21,600, 38,400. A plot of the nodes for N = 5,400 is shown in Fig. 5
(right). These points remain more or less uniformly spaced on the torus as N grows.

The results for the experiments are shown in Fig. 6. Again, the figure shows dashed lines
corresponding to ideal p-order convergence, where p = 2, 3, 4, 6. On this test, our method
gives convergence of order two for n = 11, close to order four for n = 17 and between
orders five and six for n = 31, both in the �2 and the �∞ norms. The convergence rates are
comparable to the results seen for diffusion on the sphere. The results for n = 31 and N =
38,400 were computed in quad-precision, for the same reasons as before.

6.2 Convergence Studies with Fixed Condition Number

In Sect. 6.1, we saw that allowing the target condition number to grow as N increases by
fixing the mean shape parameter can give excellent results, but will eventually cause the RBF
interpolation matrices to be ill-conditioned for large N and n.

In this section, we present an alternate approach. We choose to fix the target condition
number at a particular (reasonably large) value for all values of N and n. As N increases,
this has the effect of increasing the value of the average shape parameter. Our goal here is
to understand the relationship between the magnitude of the target condition number and
the value of n and N at which saturation errors can set in. This would also give us intuition

123

J Sci Comput (2015) 63:745–768 761

Fig. 7 The figure on the left shows the �2 error in the numerical solution to the forced diffusion equation
on the torus given by Eq. (17) as a function of

√
N , while the figure on the right shows the �∞ error. Both

figures use a log–log scale, with colored lines indicating the errors in our method and dashed lines showing
ideal p-order convergence for p = 2, 3, 4, 5. The target condition number was set to κT = 1014 (Color figure
online)

on the connection between the target condition number and the order of convergence of our
method.

With this in mind, we present the results of numerical convergence studies for two fixed
condition numbers, κT = 1014 and κT = 1020, for increasing values of N and n. For
κT = 1020, theRBF-FDweights on eachpatchwere run in quad-precision using theAdvanpix
Multicomputing Toolbox. However, once the weights were obtained, they were converted
back to double-precision and the simulations were carried out only in double-precision. We
limit the presented results to those of the forced diffusion example on a torus from the previous
section, but similar results were found for other examples. We again use a BDF4 method
with Δt = 10−4, with the forcing term computed analytically and evaluated implicitly. The
errors in the �2 and �∞ measured at t = 0.2 are shown in Figs. 7 and 8.

The results for κT = 1014 are shown in Fig. 7, and those for κT = 1020 are shown in Fig. 8.
Figure 7 shows that fixing the target condition number at κT = 1014 produces no saturation
errors in the �2 or �∞ norms for n = 11 or n = 17 in either norm. Indeed, κT = 1014 seems
sufficient for methods up to order 4 for the values of N tested. However, for n = 31, we
see saturation errors for N > 5,400, again showing that larger target condition numbers are
required for high-order RBF-FD methods.

Figure 8 shows that convergence of the solution for κT = 1020 and for n = 11 and 17 is
similar to the case of κT = 1014 for the �2 norm, with the errors for n = 11 being slightly
lower for the �∞ norm. For n = 31, we see that setting κT = 1020 actually results in an
increased error in the solution over κT = 1014 in the case of N = 600, 2,400 and 5,400.
However, as N is increased past 5,400 nodes, the errors in the solution drop rapidly below
those with κT = 1014 and the overall order of convergence for n = 31 appears to be between
five and six. Since κT = 1020 results in smaller computed shape parameters than κT = 1014,
these results imply that the errors can actually increase for a particular value of n and N as
the shape parameter is reduced.

In order to better understand how the numerical solution to the forced diffusion equation
on the torus behaves as a function of the target condition number κT , we fixed the stencil

123

762 J Sci Comput (2015) 63:745–768

Fig. 8 The figure on the left shows the �2 error in the numerical solution to the forced diffusion equation on
the torus given by Eq. (17) as a function of

√
N , while the figure on the right shows the �∞ error. Both figures

use a log–log scale, with colored lines indicating the errors in our method and dashed lines showing ideal
p-order convergence for p = 2, 3, 4, 6. The target condition number was set to κT = 1020 and all RBF-FD
weights were computed in quad precision (Color figure online)

Fig. 9 The figure shows the �2
and �∞ errors in the numerical
solution to the forced diffusion
equation on the torus given by
Eq. (17) as a function of the target
condition number, κT . The figure
uses a log–log scale. All RBF-FD
weights for κT > 1014 were
computed in quad-precision

size at n = 31 and the node set at N = 38,400 and computed relative errors in the solutions
for κT = 108, 1012, . . . , 1024. The results are shown in Fig. 9 from which we see the errors
decreasing at a consistent rate as κT increases until around κT = 1020 atwhich point they level
off, with a very slight increase as κT increases further. This shows that for a given value of N
and n, there is an “optimal” target condition number beyond which it is pointless to further
increase κT . An analogous way to view these results is in terms of the shape parameter. As κT
increases, the overall magnitudes of the shape parameters across all stencils decrease and the
radial kernels used to compute the stencil weights become increasingly flat. In this context,
Fig. 9 shows that the solutions become increasingly accurate for increasingly flat kernels, up
to a point at which the accuracy cannot be improved, or actually degrades. This is entirely
inline with other results in the RBF-FD literature involving a single shape parameter [40].

123

J Sci Comput (2015) 63:745–768 763

Table 1 The above table shows the values of the parameters of Eqs. (19) and (20) used in the numerical
experiments shown in Figs. 10 and 11

Surface/pattern δv α β γ τ1 τ2 Final time

RBC/spots 4.5 × 10−3 0.899 −0.91 −0.899 0.02 0.2 800

RBC/stripes 2.1 × 10−3 0.899 −0.91 −0.899 3.5 0 6,500

Bumpy sphere/spots 4.5 × 10−3 0.899 −0.91 −0.899 0.02 0.2 800

Bumpy sphere/stripes 2.1 × 10−3 0.899 −0.91 −0.899 3.5 0 7,000

Double-torus/spots 2.1 × 10−3 0.899 −0.91 −0.899 0.02 0.2 700

Double-torus/stripes 8.87 × 10−4 0.899 −0.91 −0.899 3.5 0 6,000

Frog/spots 2.87 × 10−4 0.899 −0.91 −0.899 0.02 0.2 600

Bunny/stripes 2.87 × 10−4 0.899 −0.91 −0.899 3.5 0 6,000

In all cases, we set δu = 0.516δv

7 Application: Turing Patterns

This section presents an application of our RBF-FD method to solving a two-species Turing
system (twocoupled reaction–diffusion equations) ondifferent surfaces.Wepresent two types
of results, the first is for surfaces where parameterizations or implicit equations describing
the surface are known, and the second where they are not. To facilitate comparison, we use
the Turing system first described for the surface of the sphere in [37] and applied to more
general surfaces in [23]. The system describes the interaction of an activator u and inhibitor
v according to

∂u

∂t
= αu(1 − τ1v

2) + v(1 − τ2u) + δuΔMu, (19)

∂v

∂t
= βv

(
1 + ατ1

β
uv

)
+ u(γ + τ2v) + δvΔMv. (20)

If α = −γ , then (u, v) = (0, 0) is a unique equilibrium point of this system. Altering the
diffusivity rates of u and v can lead to instabilities which manifest as pattern formations. The
coupling parameter τ1 favors stripe formations, while τ2 favors spots. Stripe formations take
much longer to attain “steady-state” than spot formations. In the following subsections, We
use the Semi-implicit Backward Difference Formula of order 2 (SBDF2) as the time-stepping
scheme, and set the time-step toΔt = 0.01 for all tests. Since the diffusion terms are handled
implicitly, the RBF-FD matrix needs to be inverted every time-step. We accomplish this by
pre-computing a sparse LU decomposition of the matrix, and using the triangular factors for
forward and back solves every time-step. The values for all parameters for Eqs. (19) and
(20), including final times for simulations, are presented in Table 1.

7.1 Turing Patterns on Manifolds

We first solve the Turing system on three surfaces: the Red Blood Cell (RBC) and the double-
torus described earlier, and on the Bumpy Sphere detailed in [23]. RBCs are biconcave
surfaces and can be represented parametrically, as described earlier. The Bumpy Sphere is
a point set downloaded from an online repository, and equipped with point unit normals by
parametric interpolation with the RBF parametric model presented in [32]. Also, since the
downloaded model had N = 5,256 vertices and we wished to demonstrate the viability of

123

764 J Sci Comput (2015) 63:745–768

Fig. 10 SteadyTuring spots and stripe patterns resulting fromsolvingEqs. (19) and (20) on theRedBloodCell,
the Bumpy Sphere model and the double-torus surfaces. In all plots, red corresponds to a high concentration
of u and blue to a low concentration (Color figure online)

the RBF-FD method on far more vertices, we sampled our parametric model to generate
N = 10,000 vertices, and solve the Turing system on that point set. The first three rows of
Table 2 list all the parameters used in the RBF-FD discretizations of Eqs. (19) and (20) on
each of these three surfaces, and the last column of Table 1 lists the final times used for
these simulations. The results of these simulations are shown in Fig. 10. The spot and stripe
patterns are qualitatively similar to those shown in [23].

7.2 Turing Patterns on More General Surfaces

We now turn our attention to more general point sets: a Frog model (obtained from the
AIM@SHAPEShapeRepository) and the StanfordBunnymodel (obtained from the Stanford

123

J Sci Comput (2015) 63:745–768 765

Table 2 The above table shows
the values of the parameters used
in the RBF-FD discretization of
Eqs. (19) and (20) for the
numerical experiments shown in
Figs. 10 and 11

In all cases, the time-step was set
to Δt = 0.01

Surface Number of
nodes (N)

Stencil
size (n)

Target
cond.
no. (κT)

RBC 10,000 31 1012

Bumpy sphere 10,000 31 1012

Double-torus 12,100 31 1011

Frog 7,458 31 1010

Bunny 11,339 31 1010

3D Scanning Repository). Rather than as point clouds, these models are available in the form
of meshes and approximate normal data. In contrast the previous two examples, it is not clear
if the surfaces represented by thesemeshes can be analytically parametrized. To prepare these
point sets for simulations, we first run the Poisson surface reconstruction algorithm [26] to
generate awater-tight implicit surface that fits the point cloud.This algorithm requires both the
point cloud and the approximate normals as input. Forming an implicit surface smoothes the
approximate normal vectors input into the Poisson surface reconstruction, resulting in a more
stable RBF-FD discretization. Having generated an implicit surface, we sample that with the
Poisson disk sampling algorithm to generate a point cloud with the desired number of points.
The other rationale for employing Poisson disk sampling is that while the Poisson surface
reconstruction will fix any holes in the mesh, those former holes may not be sufficiently
sampled. This pre-processing was performed entirely in MeshLab [6].

After this preprocessing, we run a Turing spot simulation on the Frog model, and a Turing
stripe simulation on the Stanford Bunny. The last two rows of Table 2 list all the parameters
used in the RBF-FD discretizations of Eqs. (19) and (20) on each of these surfaces, and the
last column of Table 1 lists the final times used for these simulations. The results are shown
in Fig. 11. Before the color-mapping for aesthetics, the results are qualitatively similar to
those shown in Fig. 10.

8 Discussion

In this paper, we introduced a new numericalmethod based on radial basis function-generated
finite differences (RBF-FD) for computing a discrete approximation to the Laplace-Beltrami
operator on surfaces of codimension one embedded in R

3. The method uses scattered nodes
on the surface, without requiring expansion into the embedding space. We improved on
the method presented in [33], designing a stable numerical method that does not require
stabilization with artificial viscosity (a feature of RBF-FD methods for convective flows).
This development was facilitated by an algorithm to optimize the shape parameter for each
interpolation patch on the surface. We demonstrated that this optimization procedure can
compensate for irregularities in the sampling of the surface. We then presented error and
convergence estimates for our method using two approaches: allowing the condition number
to grow with the number of points on the surface, and fixing the condition number for an
increasing number of points. We discussed the trade-offs inherent in each approach, and
provided intuition as to the relationship between the condition number, shape parameter and
the order of convergence of our method on the diffusion equation on a sphere and a torus.
We presented an application of our method to simulating reaction–diffusion equations on

123

766 J Sci Comput (2015) 63:745–768

Fig. 11 The figure on the top right shows a Turing spot pattern on a Frog model. Green corresponds to a
low concentration, and brown and black to higher concentrations. The figure on the bottom right shows a
Turing stripe pattern on the Stanford Bunny model. Here, the lightest browns (almost white) correspond to
low concentrations, and darker browns correspond to higher concentrations. Both the figures on the left show
the point clouds used for the solution of the Turing system (Color figure online)

surfaces; specifically, we demonstrated the solution of Turing PDEs on several interesting
shapes, both parametrizable and more general.

While our method currently works for static objects, our goal is to apply RBF-FD to the
solution of PDEs on evolving surfaces, with the evolution dictated by the interaction of a fluid
with the object. It will be necessary to employ efficient and fast k-d tree implementations,
including algorithms for dynamically updating and/or re-balancing the k-d tree as the point
set evolves. The method will almost certainly need to be parallelized to be efficient.

One issue with our method is its ability to handle thin features on surfaces. Indeed, our
method is not innately robust to such features. For RBF-FD to be robust on more general
surfaces, it will be necessary to combine our method with an adaptive refinement code that
detects thin features and samples sides of the feature sufficiently (the alternative would be to
find an efficient way to measure distances along arbitrary surfaces).

123

J Sci Comput (2015) 63:745–768 767

A natural extension of this work would be to adapt the method to handle spatially-variable
(possibly anisotropic) diffusion.While this extension is not conceptually difficult, the realiza-
tion of this extension would make our method even more useful for biological applications,
like the simulation of gels or viscoelastic materials on surfaces. We intend to address this
in a follow-up study. Finally, while we have successfully applied RBF-FD to periodic sur-
faces, it would be interesting to apply the method to solving PDEs on surfaces with boundary
conditions imposed on them. We intend to address this in a follow-up study as well.

Acknowledgments Wewould like to acknowledge useful discussions concerning thisworkwithin theCLOT
group at the University of Utah. The first, third and fourth authors acknowledge funding support under NIGMS
Grant R01-GM090203. The second author acknowledges funding support under NSF-DMS Grant 1160379
and NSF-DMS Grant 0934581.

References

1. Baumgardner, J.R., Frederickson, P.O.: Icosahedral discretization of the two-sphere. SIAM J. Numer.
Anal. 22(6), 1107–1115 (1985). doi:10.1137/0722066

2. Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: Rbf-fd formulas and convergence properties. J.
Comput. Phys. 229(22), 8281–8295 (2010)

3. Calhoun, D., Helzel, C.: A finite volume method for solving parabolic equations on logically cartesian
curved surface meshes. SIAM J. Sci. Comput. 31(6), 4066–4099 (2010). doi:10.1137/08073322X. http://
epubs.siam.org/doi/abs/10.1137/08073322X

4. Cecil, T., Qian, J., Osher, S.: Numerical methods for high dimensional Hamilton–Jacobi equations using
radial basis functions. J. Comput. Phys. 196, 327–347 (2004)

5. Chandhini, G., Sanyasiraju, Y.: Local RBF-FD solutions for steady convection–diffusion problems. Int.
J. Numer. Methods Eng. 72(3), 352–378 (2007)

6. Cignoni, P., Corsini, M., Ranzuglia, G.: Meshlab: an open-source 3d mesh processing system. ERCIM
News (73), 45–46 (2008). http://vcg.isti.cnr.it/Publications/2008/CCR08

7. Davydov, O., Oanh, D.: Adaptive meshless centres and rbf stencils for poisson equation. J. Comput. Phys.
230(2), 287–304 (2011)

8. Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput.
Math. Appl. 43(3), 413–422 (2002)

9. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292
(2007). doi:10.1093/imanum/drl023. http://imajna.oxfordjournals.org/content/27/2/262.abstract

10. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sci-
ences, vol. 6. Scientific Publishers, Singapore (2007)

11. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM
J. Sci. Comput. 34, A737–A762 (2012)

12. Flyer, N., Lehto, E., Blaise, S., Wright, G., St-Cyr, A.: A guide to RBF-generated finite differences for
nonlinear transport: shallow water simulations on a sphere. J. Comput. Phys. 231, 4078–4095 (2012)

13. Flyer, N., Wright, G.B.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys.
226, 1059–1084 (2007)

14. Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc.
Roy. Soc. A 465, 1949–1976 (2009)

15. Fornberg, B., Driscoll, T.A.,Wright, G., Charles, R.: Observations on the behavior of radial basis functions
near boundaries. Comput. Math. Appl. 43, 473–490 (2002)

16. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J.
Sci. Comput. 33(2), 869–892 (2011)

17. Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs.
J. Comput. Phys. 230, 2270–2285 (2011)

18. Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput.
Math. Appl. 65, 627–637 (2013)

19. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput.
30, 60–80 (2007)

20. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape
parameter. Comput. Math. Appl. 48, 853–867 (2004)

123

http://dx.doi.org/10.1137/0722066
http://dx.doi.org/10.1137/08073322X
http://epubs.siam.org/doi/abs/10.1137/08073322X
http://epubs.siam.org/doi/abs/10.1137/08073322X
http://vcg.isti.cnr.it/Publications/2008/CCR08
http://dx.doi.org/10.1093/imanum/drl023
http://imajna.oxfordjournals.org/content/27/2/262.abstract

768 J Sci Comput (2015) 63:745–768

21. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpo-
lation. Comput. Math. Appl. 54, 379–398 (2007)

22. Fuselier, E., Wright, G.: Scattered data interpolation on embedded submanifolds with restricted positive
definite kernels: Sobolev error estimates. SIAM J. Numer. Anal. 50(3), 1753–1776 (2012). doi:10.1137/
110821846. http://epubs.siam.org/doi/abs/10.1137/110821846

23. Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations
on surfaces. J. Sci. Comput. 1–31 (2013).doi:10.1007/s10915-013-9688-x

24. George, A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite. Prentice Hall Professional
Technical Reference (1981)

25. Gia, Q.T.L.: Approximation of parabolic pdes on spheres using spherical basis functions. Adv. Comput.
Math. 22, 377–397 (2005)

26. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth
Eurographics Symposium onGeometry Processing, SGP ’06, pp. 61–70. Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland (2006). http://dl.acm.org/citation.cfm?id=1281957.1281965

27. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with
increasingly flat radial basis functions. Comput. Math. Appl. 49, 103–130 (2005)

28. Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and
scattered node stencils based on gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–
A2119 (2013). doi:10.1137/120899108

29. Macdonald, C., Ruuth, S.: The implicit closest point method for the numerical solution of partial differ-
ential equations on surfaces. SIAM J. Sci. Comput. 31(6), 4330–4350 (2010). doi:10.1137/080740003.
http://epubs.siam.org/doi/abs/10.1137/080740003

30. Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential
equations on arbitrary surfaces. J. Comput. Phys. 231(20), 4662–4675 (2012)

31. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21,
293–317 (2005)

32. Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A study of different modeling choices for simu-
lating platelets within the immersed boundary method. Appl. Numer. Math. 63(0), 58–77 (2013). doi:10.
1016/j.apnum.2012.09.006. http://www.sciencedirect.com/science/article/pii/S0168927412001663

33. Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A radial basis function (rbf) finite difference
method for the simulation of reactiondiffusion equations on stationary platelets within the augmented
forcing method. Int. J. Numer. Methods Fluids (2014). doi:10.1002/fld.3880

34. Shu, C., Ding, H., Yeo, K.: Local radial basis function-based differential quadrature method and its
application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl.
Mech. Eng. 192(7), 941–954 (2003)

35. Stevens, D., Power, H., Lees, M., Morvan, H.: The use of PDE centers in the local RBFHermitean method
for 3D convective–diffusion problems. J. Comput. Phys. 228, 4606–4624 (2009)

36. Tolstykh, A., Shirobokov, D.: On using radial basis functions in a finite difference mode with applications
to elasticity problems. Comput. Mech. 33(1), 68–79 (2003)

37. Varea, C., Aragon, J., Barrio, R.: Turing patterns on a sphere. Phys. Rev. E 60, 4588–4592 (1999)
38. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational

Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)
39. Womersley, R.S., Sloan, I.H.: Interpolation and cubature on the sphere. Website (2007). http://web.maths.

unsw.edu.au/~rsw/Sphere/
40. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial

basis functions. J. Comput. Phys. 212(1), 99–123 (2006). doi:10.1016/j.jcp.2005.05.030. http://www.
sciencedirect.com/science/article/pii/S0021999105003116

123

http://dx.doi.org/10.1137/110821846
http://dx.doi.org/10.1137/110821846
http://epubs.siam.org/doi/abs/10.1137/110821846
http://dx.doi.org/10.1007/s10915-013-9688-x
http://dl.acm.org/citation.cfm?id=1281957.1281965
http://dx.doi.org/10.1137/120899108
http://dx.doi.org/10.1137/080740003
http://epubs.siam.org/doi/abs/10.1137/080740003
http://dx.doi.org/10.1016/j.apnum.2012.09.006
http://dx.doi.org/10.1016/j.apnum.2012.09.006
http://www.sciencedirect.com/science/article/pii/S0168927412001663
http://dx.doi.org/10.1002/fld.3880
http://web.maths.unsw.edu.au/~rsw/Sphere/
http://web.maths.unsw.edu.au/~rsw/Sphere/
http://dx.doi.org/10.1016/j.jcp.2005.05.030
http://www.sciencedirect.com/science/article/pii/S0021999105003116
http://www.sciencedirect.com/science/article/pii/S0021999105003116

	A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction--Diffusion Equations on Surfaces
	Abstract
	1 Introduction
	2 A Review of RBF Interpolation
	3 Surface Laplacian in Cartesian Coordinates
	4 RBF-FD Approximation to the Surface Laplacian
	4.1 Implementation Details
	4.2 Method-of-Lines

	5 Shape Parameter and Eigenvalue Stability
	6 Convergence Studies
	6.1 Convergence Studies with Increasing Condition Number
	6.1.1 Diffusion on the Sphere
	6.1.2 Forced Diffusion on a Torus

	6.2 Convergence Studies with Fixed Condition Number

	7 Application: Turing Patterns
	7.1 Turing Patterns on Manifolds
	7.2 Turing Patterns on More General Surfaces

	8 Discussion
	Acknowledgments
	References

