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ABSTRACT
The wide presence of large graph data and the increasing popularity
of storing data in the cloud drive the needs for graph query process-
ing on a remote cloud. But a fundamental challenge is to process
user queries without compromising sensitive information. This
work focuses on privacy preserving subgraph matching in a cloud
server. The goal is to minimize the overhead on both cloud and
client sides for subgraph matching, without compromising users’
sensitive information. To that end, we transform an original graph
G into a privacy preserving graph Gk, which meets the require-
ment of an existing privacy model known as k-automorphism. By
making use of the symmetry in a k-automorphic graph, a subgraph
matching query can be efficiently answered using a graph Go, a s-
mall subset of Gk. This approach saves both space and query cost
in the cloud server. We also anonymize the query graphs to protect
their label information using label generalization technique. To re-
duce the search space for a subgraph matching query, we propose a
cost model to select the more effective label combinations. The ef-
fectiveness and efficiency of our method are demonstrated through
extensive experimental results on real datasets.

1. INTRODUCTION
Owing to the rich semantic and structure information represent-

ed by a graph, structured graph data is used in numerous applica-
tions, such as social networks, web graphs, biological networks,
transportation networks, knowledge base, and RDF graphs. Many
emerging applications rely on large graphs to satisfy their query
needs, such as Google’s knowledge graph and Facebook’s graph
search. Thus, graph data management has attracted significant at-
tention, and efficient graph query processing on large graph is an
important subject of study. In this paper, we focus on subgraph
matching query [25, 18, 12], which is a key component of numer-
ous applications. For example, answering SPARQL query Q is e-
qual to finding subgraph matches of Q on an RDF graph G [15].
Some graph databases also provide query language that is based on
subgraph matching semantics, such as Cypher in Neo4j.

Meanwhile, increasingly, companies choose the “cloud” as their
IT infrastructure platform. Using the cloud allows users to avoid
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expensive upfront infrastructure costs, and focus on projects that
differentiate their businesses instead of on infrastructure [2]. Many
public cloud services are available, such as Amazon cloud and Mi-
crosoft Azure. Some graph systems (such as GraphLab [14] and
Neo4j [1]) offer SaaS (software-as-a-service)-style cloud services.
In other words, they allow users to upload their graph data to their
cloud platforms and provide cloud-based computing services over
the outsourced graph data.

However, while utilizing cloud services for building graph appli-
cations is a cost-effective solution, the potential risk of compromis-
ing sensitive information is a serious problem.

One serious privacy leakage is the “identity disclosure” problem
[20, 13]. Assume that an adversary can locate the target entity t as a
vertex v of a social network graph G with a high probability. We say
that the identity of t is disclosed. A naïve anonymization solution
is to remove all identifiable personal information before publishing
the network, such as names and social security numbers. However,
even when a network is published without any identity information,
it is still possible to locate the target with a high probability based
on some structural information around the target [10].

For example, if an adversary knows the local graph structure
(such as degree, 1-neighbor graph) around the target t, he/she may
issue a subgraph query representing the local graph structure to find
the matching position. If there are only few matches in graph G,
the target will be identified with a high probability. Once it is de-
termined that a vertex v corresponds to the target t, all sensitive
attributes associated with v will be compromised. These are called
structural attacks; see details in [13, 24, 10].

To address these threats, many privacy preserving graph data
publishing techniques have been proposed [26, 6, 22]. A typical
solution to protect graph privacy is based on the symmetry of the
released graph data [26, 6, 22]. Specifically, given a graph G, we
transform G into a k-automorphic graph Gk by introducing some
noise edges, where each vertex has at least (k − 1) other symmet-
ric vertices. It means there are no structural differences between v
and each of its (k − 1) symmetric vertices. Thus it is impossible
to distinguish v from the other (k − 1) symmetric vertices. In oth-
er words, the k-automorphism strategy [26] can defend against any
structure-based attack.

These privacy preserving graph data publishing techniques seem
like perfect solutions to our problem, but they compromise the u-
tility of query results. In particular, they may return false positives
regarding subgraph matching queries, due to the noise edges and
vertices that were added. However, in a cloud setting, it is possible
to offload most query processing costs to the cloud server and ask
the clients to execute a simple and efficient filtering step to remove
false positives and find the exact answers.

EXAMPLE 1. Consider a professional social network in Figure
1 that is modeled as a graph G. Each vertex in G represents an
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Figure 1: An original data graph and a query graph on a professional social network graph.

entity, such as an individual (pi), a company (c j), or a school (s�).
Each edge in G represents a relation between two entities, such as
“spouse” relation, “work at” relation and “graduate from” rela-
tion. Each entity has some attributes. For example, the attributes
associated with individuals are “gender”, “occupation” and so on.

A user wants to find “two individuals satisfying (1) both of them
graduated from the same university located in Illinois, and (2) one
of them is working at a software company and the other one is
working at an Internet company”. The user issues a subgraph pat-
tern matching query Q over G, as shown in Figure 1.

Sending the original graph G to the cloud will leak user privacy
in G. Thus, we resort to the privacy preserving graph publishing
techniques. For example, we can use the k-automorphism model
[26]; the k-automorphic graph Gk for G and k = 2 is shown in
Figure 2, where noise edges are shown by red dashed lines. Clearly,
Gk protects the structure privacy of the graph G. To protect label
privacy, we also use label anonymization where each vertex label
in Gk is replaced by a label group (i.e., a generalized label). We
use Label Correspondence Table (LCT) (in Figure 2) to represent
the mapping between label groups and vertex labels. For example,
vertex p1 in Gk has label groups C and E in Figure 2.

A straightforward method is to upload Gk to the cloud and per-
form graph queries over Gk. Although the approach does not leak
any sensitive information, the answers to query Q over graph Gk

(R(Q,Gk)) are different from those over G (R(Q,G)). For exam-
ple, there are only two subgraph matches of Q over the original
graph G. However, due to the noise edges introduced into the k-
automorphic graph Gk and the label anonymization, there are eight
matches over Gk. Nevertheless, when the cloud returns R(Q,Gk)
with eight matches, the client can efficiently filter out false posi-
tives based on G to derive R(Q,G).

Note that the filtering step at the client side is much cheaper than
asking the client to run the subgraph matching query Q over G
(which is known to be expensive especially over large graphs). In
other words, the cloud server did most of the work in this process,
making the cloud service worthwhile and attractive for the client.
We do assume that the client is the data owner who has access to
G for the filtering step. For the general case, a query client (who
is trusted and authenticated by the data owner) can ask for the data
owner to execute the (very lightweight) filtering step.

However, the example above shows some major limitations of di-
rectly applying the existing graph data publishing techniques [26,
6, 22]. Firstly, most of these techniques that focus on structural
attacks do not protect label privacy at the same time. But more
importantly, to achieve higher privacy, they need to add a lot of
noise edges and/or vertices (e.g., a large k value in the case of the
k-automorphism model) to the original graph G. This results in a
much larger graph (than the original graph) on the cloud side, which
leads to much more expensive storage cost, much larger communi-

cation overhead, and much higher query costs for both the cloud
server and the query client.

This work focuses on reducing these overheads without compro-
mising either data and query graphs’ privacy or the correctness of
the final query results at the client side.

Solution overview. In order to achieve that, we first propose a ba-
sic solution. We transform the data graph G into an outsourced
graph Gk using existing privacy-preserving graph publication tech-
niques, such as the k-automorphism model [26]; and then upload
Gk to the cloud. At query time, we propose a two-phase query e-
valuation strategy. First, given a query graph Q, we transform Q
into an outsourced query graph Qo. In the cloud, we evaluate sub-
graph query Qo over Gk to obtain query results R(Qo,Gk). Then, in
the client side, we filter out false positives in R(Qo,Gk) based on G
to find the final, correct results R(Q,G), i.e., subgraph matches of
Q over the original graph G. To improve the query performance,
we propose a solution that only uploads a small part of Gk to the
cloud by leveraging the symmetry of the k-automorphic graph Gk.
This method saves both space cost and query processing time in the
cloud significantly. Although only a (small) part of Gk is upload-
ed to the cloud, our method still guarantees the correctness of the
query results. Furthermore, we also propose a cost model based la-
bel combination/generalization strategy to reduce the search space
for subgraph matching queries in the cloud.

Contributions. To the best of our knowledge, this is the first work
that supports privacy preserving subgraph matching queries over a
large graph in the cloud while protecting privacy without under-
mining query results. In this paper, we consider the cloud server
“honest-but-curious”, which is consistent with most related work-
s in the literature. In other words, the cloud server always offers
correct computations without cheating. However, the cloud server
is “curious” to learn the graph data, its index structure, and user
queries so as to gain sensitive information if he can. Our main con-
tributions are summarized as follows.

• We propose an effective strategy to provide exact subgraph
matching query services in public cloud while preserving pri-
vate information in the data graph and query graphs.

• To save both space cost and query processing cost, we on-
ly upload a small subset of the anonymized data graph to
the cloud. We answer subgraph matching queries efficient-
ly in the cloud by making use of the symmetry of the k-
automorphic graph. These techniques contribute to saving
cost while minimizing the overhead in the client side.

• In order to reduce the search space in answering subgraph
matching queries, we design a novel cost model to select ef-
fective vertex label combinations for anonymizing labels in
the data graph and query graphs.

• We study the effectiveness and efficiency of our method through
extensive experiments over several large real graphs.
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Figure 2: A k-automorphic graph and an anonymized query graph on the same professional social network graph for k = 2.

Table 1: Notations
G The original data graph

Gk The data graph released by k-automorphism algorithm

Go The outsourced data graph

Q The original query graph

Qo The outsourced query graph

S i The i-th star of Qo generated by query decomposition

Rin The set of candidate matching results of Qo generated in
cloud

R(Q,G) The set of subgraph matches of Q on G

2. BACKGROUND
2.1 Preliminary

Traditional subgraph matching methods always adopt the ver-
tex labeled graph model [23], where each vertex has a single label.
But this model is not desirable to model complex graph data, such
as social networks and RDF graphs. In this work, we adopt the
attributed graph model, where each vertex has a rich data struc-
ture including vertex type, vertex attributes and vertex labels (i.e.,
attribute values). For simplicity, we only consider rich data struc-
tures on vertices and ignore those on edges, although handling the
more general case is not more complicated. For example, we can
introduce an imaginary vertex to represent an edge of interest and
assign the rich data structure on the edge to the new vertex. For-
mally, our graph model is defined as follows. Table 1 lists some
frequently-used notations in this paper.

Definition 1. Attributed Graph Model. An attributed graph is
defined as G = {V(G), E(G), T , Γ, L}, where (1) V(G) is a set of
vertices; (2) E(G) ⊆ V(G) × V(G) is a set of undirected edges; (3)
T is a set of vertex types, where each vertex has and only has one
vertex type; (4) Γ is a set of vertex attributes, where each vertex
type has one or more vertex attributes and different vertex types
have different vertex attributes; and (5) L is a set of vertex labels,
where each vertex attribute has one or more vertex labels.

The vertex type, vertex attributes and vertex labels of vertex v
are denoted as T (v), Γ(v), L(v), respectively. For any two different
vertices v1 and v2, if and only if T (v1) = T (v2), then Γ(v1) = Γ(v2).
For one vertex attribute A ∈ Γ(v), 〈A, {a1, · · · , an}〉 represents the
vertex attribute values on attribute A which are the vertex labels of
A. Note that one vertex attribute may have multiple vertex labels
(i.e., attribute values). For example, the “Company Type” of one
company can be “Internet”, “Software”, and so on.

The data graph G and the query graphs Q in the running example
follow the attributed graph model.

Definition 2. Subgraph Match. Given a data graph G = {V(G),
E(G),T,Γ, L} and a query graph Q = {V(Q), E(Q),T,Γ, L}, Q is
subgraph isomorphic to G, if and only if there exists at least one
injective function g : V(Q)→ V(G) such that
1) ∀qi ∈ V(Q), g(qi) ∈ V(G)⇒ L(qi) ⊆ L(g(qi)); and
2) ∀qi, qj ∈ V(Q), edge qiq j ∈ E(Q)⇒ edge g(qi)g(qj) ∈ E(G).
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Figure 3: An example of the k-automorphism algorithm [26].
If Q is subgraph isomorphic to G, a subgraph match M of Q is a

subgraph of G, represented as 〈g(q1), · · · , g(qn)〉.
The set of subgraph matches of Q on G is denoted as R(Q,G).
Our problem can now be formalized as follows:
[Problem Definition] Given a data graph G and a query graph

Q, our problem is to find all subgraph matches of Q over G, de-
noted as R(Q,G), through a cloud server, while preserving private
information in data graph G and query graph Q.

Note that the goal of our problem is to protect the privacy of data
graph and query graph against the cloud, where clients who ask a
subgraph query have the ability to de-anonymize, filter and verify
the results returned from the cloud based on the original graph.

2.2 K-Automorphism
As explained in Section 1 (Example 1 and its discussion), it

is possible to apply existing privacy preserving graph publication
techniques in constructing a baseline solution. However, they suf-
fer from major efficiency limitations. Furthermore, most of these
techniques that focus on structural attacks do not protect label pri-
vacy at the same time. Nevertheless, we can use these techniques
as a preprocessing step (e.g., k-automorphism [26]) towards con-
structing more effective and efficient solutions. That said, we will
briefly review k-automorphism [26] next.

The basic idea of k-automorphism is as follows. Given a graph
G to be published, we transform it into Gk by introducing more ver-
tices and edges, where Gk satisfies the k-automorphic graph model
(Definition 3). It means that any vertex v in graph Gk cannot dis-
tinguish itself from each of its symmetric (k − 1) vertices in Gk.
Therefore, Gk is safe to publish. Here, it is assumed that the graph
is unlabeled. Figure 3 shows an example of the algorithm in [26].

Definition 3. K-Automorphic Graph [26]. A k-automorphic
graph Gk is defined as Gk = {V(Gk), E(Gk) }, where V(Gk) can

be divided into k blocks and each block has
⌈
|V(Gk)|

k

⌉
vertices. Any

vertex v has k − 1 symmetric vertices v′ 1 in the other k − 1 blocks.
The k-automorphic graph is generated with the help of the k-

automorphic function defined as follows.

Definition 4. K-Automorphic Function [26]. Given a vertex v
in a k-automorphic graph Gk, v and its corresponding k − 1 sym-
metric vertices form an alignment vertex instance (AVI).
1“symmetric” means swapping v and v′ gives an isomorphic graph.
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All AVIs are stored in an Alignment Vertex Table (AVT). Each
AVI I in AVT is represented as a circularly-linked list. Specifically,
I.at(i) (i = 0, · · · , k − 1) denotes the i-th vertex in instance I.
Suppose v = I.at(i). If i ≤ k − 2, v.next = I.at(i + 1); else v.next =
I.at(0). For each vertex v in an AVI, we can define k automorphic
functions Fi (i = 0, · · · , k − 1) in Gk based on the AVI, where

• F0(v) = v;

• Fi(v) = Fi−1(v).next, for 1 ≤ i ≤ k − 1.

If M is a subgraph of Gk, each Fi(M) (i = 0, · · · , k−1) is defined
as a mapping graph under function Fi, where:

• V(Fi(M)) = {u | ∃v ∈ V(M), u = Fi(v)};
• E(Fi(M)) = {u1u2 | ∃ v1v2 ∈ E(M), u1 = Fi(v1) ∧ u2 =

Fi(v2)}.
A k-automorphic graph Gk (for k = 2) generated from G (in Fig-

ure 1) is given in Figure 2. The corresponding Alignment Vertex
Table (AVT) is given in Figure 4(a). Each row of AVT shows k
symmetric vertices. For example, the first row of AVT contain-
s p1 and p4, meaning p1 and p4 are symmetric vertices. In other
words, swapping vertices p1 and p4 will generate another isomor-
phic graph. Each column of AVT shows all vertices in one block
of the k-automorphic graph. For example, there are two block-
s {c1, p1, p2, s1} and {c2, p4, p3, s2} in the 2-automorphic graph in
Figure 3. Based on AVT, we also show the automorphic function
F1 of the running example in Figure 4(b).

Given a graph G, we generate a k-automorphic graph Gk from G
as follows. First, we adopt the METIS algorithm [11] to partition G
into k blocks. For example, to generate the 2-automorphic graph for
the graph G in Figure 1, we obtain two blocks B1{c1, p1, p2, s1} and
B2{c2, p4, p3, s2} by partitioning G. If |V(G)| cannot be divided by k,
we will introduce some noise vertices to guarantee that every block

has exactly
⌈
|V(Gk)|

k

⌉
vertices. There is an efficient method to build

the Alignment Vertex Table (AVT) (e.g., Figure 4) [26]. Based on
the AVT, it is easy to define the k-automorphic functions. Finally,
based on the k-automorphic functions, we build Gk by performing
graph alignment and edge copy. For example, we perform graph
alignment on B1 and B2 to obtain two alignment blocks B′1 and
B′2 (adding edge (p3, p4) and edge (p3, s2) in Figure 3(b)), where
B′1 and B′2 are isomorphic to each other. Lastly, the “edge copy”
technique is used to deal with the crossing edges between differen-
t blocks (adding edge (p2, s2) that corresponds to edge (p3, s1) in
Figure 3(c)). Readers can refer to [26] for further details. Further-
more, it is easy to show that any vertex in the k-automorphic graph
Gk cannot distinguish itself from each of its (k − 1) symmetric ver-
tices. It means that any adversary cannot identify any target vertex
with a probability higher than 1

k . 2

2.3 Our Framework and Analysis Overview
In order to provide the correct cloud-based subgraph query ser-

vices while preserving privacy in data graph and query graphs, our
solution works as follows. We transform G into an outsourced
graph Go and upload Go to the cloud. We guarantee that Go does

2The proof was given in Theorem 4.4 of [26].

not leak any private information in the original graph G. Specifi-
cally, we require that any adversary, who sees Go, cannot identify
any target vertex in graph G with a probability higher than 1

k . We
adopt the k-automorphism model [26] to achieve this objective, by
generating Go based on Gk. At query time, given a query graph
Q, we transform Q into an outsourced query graph Qo. Leveraging
the symmetry of the k-automorphic graph, the cloud server answers
subgraph matching query Qo based on Go and returns Rin (a small
subset of R(Qo,Gk), see Section 4.2.1) to the client. Based on Rin,
the client can efficiently recover R(Qo,Gk) and finally find the final
results R(Q,G). We highlight several key requirements.

Firstly, we need to define what sensitive information is in da-
ta graph and query graphs. We do not consider the vertex types
T and vertex attributes Γ as sensitive information, since they do
not compromise users’ privacy. For any vertex v in G or Q, we
consider vertex labels L(v) (i.e., attribute values) as private infor-
mation. Thus, the “label privacy” considered in this paper refers
to the privacy of the attribute values of each vertex in the graph.
For example, given an “individual” vertex in graph G in Figure 1,
the values of gender and occupation are users’ privacy. Subgraph
matching queries will reveal vertex labels in original data graph G,
if we do not anonymize the vertex labels (i.e., attribute values) in
query graphs. Thus, the vertex labels in query graph Q are also
considered as sensitive information.

Secondly, we must reduce expenses for the cloud server; that is to
say, we need to save query time and storage space in the cloud and
reduce communication overhead between the client and the cloud.
To protect data privacy, we have to introduce noise edges into the
data graph and anonymize attribute values of vertices. Doing so
will lead to larger search space in subgraph matching. Therefore,
in Section 5, we propose a cost model to guide how to select a
good graph anonymization strategy. We also study how to reduce
the storage space and communication overhead by leveraging the
symmetry of the anonymized graph in Section 4, which also helps
reduce the cloud’s query processing cost.

Thirdly, we should minimize the overhead in the client side. Sub-
graph matching is an expensive task in terms of both time and s-
pace complexity. In our framework, the client only needs to filter
out false positives using a hash index in linear time complexity (in
terms of the number of candidate results generated by the cloud).

3. A BASELINE SOLUTION
We first describe a simple scheme to help illustrate the basic

principle of our approach. For a graph G, we first generate the
k-automorphic graph Gk. A baseline solution is to upload Gk to
the cloud directly. Note that k-automorphism [26] assumes that the
graph is unlabeled. To protect the vertex labels in data graph and
query graphs, we resort to the generalization technique, which is
also used in k-anonymity [17, 19]. Specifically, each vertex label in
data graph and query graphs is represented by a generalized label.
We refer to a generalized vertex label as a “label group” in the fol-
lowing discussion. Here, we assume that each label group contains
not less than θ distinct labels, where θ is a user-specified parameter.
For example, a label group “A” in Figure 2 includes θ = 2 labels
{Internet, Software}.

The Label Correspondence Table (LCT) (in Figure 2) shows all
label groups in the running example. Obviously, the label general-
ization strategy will affect the query performance. We assume that
the label groups are given until Section 5, where we will propose a
cost model to find a good label generalization strategy.

Using label generalization on a data graph G, we obtain a graph
G′ whose vertices hide vertex labels by label groups. Next, using
the k-automorphism algorithm in [26], we obtain a k-automorphic
data graph Gk and the corresponding AVT. Each vertex v in Gk has
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Figure 5: The outsourced data graph Go for G in Example 1.

(k−1) symmetric vertices Fi(v) under automorphic functions Fi for
i = 1, · · · , k − 1. The k vertices, i.e., v together with Fi(v) for i = 1,
· · · , k − 1, form a symmetric vertex group, which corresponds to a
row in AVT (an AVI). For each symmetric vertex group, we ensure
that all vertices in it have the same label groups, i.e., a vertex v’s
label gropus are L(v) ∪ L(F1(v)) ∪ · · · ∪ L(Fk−1(v)).

EXAMPLE 2. Given the original data graph G in Figure 1, the
k-automorphic graph Gk together with its label correspondence ta-
ble (LCT) is given in Figure 2. A naïve solution is to upload Gk to
the cloud directly.

Given a query graph Q, we anonymize Q by representing each
vertex label using its corresponding label group. The anonymized
query graph is denoted as Qo, which is submitted to the cloud. The
cloud server answers subgraph query Qo over the k-automorphic
graph Gk. We know that R(Q,G) ⊆ R(Qo,Gk). Intuitively, we
introduce more edges and vertices into G to form Gk, and Qo and
Gk’s vertex labels are anonymized using the same LCT. Formally,

Theorem 1. For graph G and query graph Q, R(Q,G)⊆ R(Qo,Gk).

Finally, R(Qo,Gk) are sent to the client and the client filters out
false positives in R(Qo,Gk) based on G to obtain R(Q,G).

The baseline solution suffers from the following limitations. First,
we need to upload the k-automorphic graph Gk to the cloud. S-
ince the size of Gk can be significantly larger than |G|, this intro-
duces communication overhead and higher storage cost. Secondly,
a larger graph Gk naturally leads to a larger search space for sub-
graph matching, which leads to higher query cost, especially as k
increases.

Nevertheless, the baseline solution already saves the client from
executing the very expensive subgraph matching query herself.

4. THE OPTIMIZED METHOD
4.1 Outsourced Graph

According to Definition 3, Gk is a k-automorphic graph consist-
ing of k blocks. Each vertex v in Gk has (k−1) symmetric vertices in
the other (k− 1) blocks. Intuitively, we only need to upload a block
of Gk together with k automorphic functions Fi (i = 0, · · · , k − 1)
to the cloud, since the cloud can recover the whole Gk based on
Go and the functions Fi. This is the motivation of defining the out-
sourced graph Go (Definition 5), which is exactly the first block of
Gk together with the 1-hop neighbors in Gk.

Definition 5. Outsourced Graph. For a graph G(V(G), E(G),
T , Γ, L) and its k-automorphic graph Gk(V(Gk), E(Gk), T , Γ, L),
an outsourced graph of G is defined as Go = {V(Go), E(Go), T ,
Γ, L}, where (1) Go follows the attributed graph model; (2) V(Go)
is the union of vertices in the first block of Gk, denoted as V(B1),
together with their one-hop neighbors in Gk denoted as V(N1); and

(3) E(Go) is the subset of undirected edges from E(Gk) that connect
vertices within V(B1) and vertics between V(B1) and V(N1).

Given a k-automorphic graph Gk, according to Definition 5, we
generate an outsourced graph Go and upload it to the cloud. For
example, given G and Gk in Figure 1 and Figure 2 from Example
1 respectively, an outsourced graph Go is represented in Figure 5.
Go contains the vertices in the first block of Gk (i.e., the vertices
in the first column of AVT) together with their 1-hop neighbors in
Gk, and their corresponding edges in Gk. Note that the size of Go is
much smaller than the size of Gk (roughly an 1/k fraction of it).

Although Go is a part of Gk, according to the k automorphic
functions Fi (see Definition 4), each vertex/edge in Gk must have a
counterpart in Go. It means that we can easily recover Gk based on
Go and the k automorphic functions Fi (i = 0, · · · , k − 1). This is
the intuition that we only upload Go to the cloud without compro-
mising the accuracy of query results. More sophisticated technical
details are discussed in the following subsection.

4.2 Privacy Preserving Subgraph Query
Given a query Q at the client side, we generalize its vertex labels

to form Qo. Specifically, for each vertex label in Q, we replace it
with the corresponding label group according to the LCT (an exam-
ple is shown in Figure 2). Qo has the same size as Q, although each
vertex of Qo has a generalized label group. Qo ensures the privacy
of the vertex label information in Q. It is a trade-off between the
query privacy and the query performance. Thus, label generaliza-
tion is an interesting challenge in its own and we assume for now
that this is done and present the details in Section 5.

The client then sends Qo to the cloud. The cloud first finds sub-
graph matches of all basic units of Qo over Go, which will be de-
fined shortly. Using the symmetry of the k-automorphic graph, the
cloud can then obtain R(Qo,Gk), but without Gk since it only has
Go, by joining these intermediate results. Lastly, R(Qo,Gk) is sen-
t back to the client, who can obtain R(Q,G) by pruning the false
positives in R(Qo,Gk). Theorem 1 guarantees the correctness of
this framework.

4.2.1 Processing in the Cloud
A k-automorphic graph Gk consists of k symmetric blocks (B1,
· · · , Bk), while the outsourced graph Go contains only one block
together with the first-hop neighbors of its boundary vertices. The
challenge is how to find subgraph matches crossing multiple blocks
of Gk without accessing Gk, since only Go resides in the cloud.

We adopt the query decomposition method. Given a query Qo,
the cloud server decompose Qo into a set of stars {S i}, i = 1, ..., n,
where a star is a root vertex together with its adjacent edges and
neighbors in Qo. Then, it finds R(S i,Go) for each star graph S i

for i = 1, · · · , n. Leveraging the symmetry of Gk, we can then
obtain R(S i,Gk) based on R(S i,Go). Finally, we obtain R(Qo,Gk)
by joining the matching results for these stars.

Query Decomposition. We first discuss how to decompose Qo into
a set of stars and how to find the optimal query decomposition.

Consider a query Qo in Figure 2. The stars rooted at vertices
with Type P are shown in Figure 6, where a shaded circle denotes
the center (aka root) of a star.

Intuitively, a query decomposition is a set of stars that collective-
ly cover the outsourced query graph Qo. Figure 6 shows the query
decomposition {S 1, S 2} over query Qo. The set of subgraph match-
es of a star graph S i with respect to the outsourced graph Go is
R(S i,Go), or simply R(S i) when the context is clear. To reduce the
number of intermediate results, we design a cost model to estimate
the number of matches, |R(S i)|, for each star S i. We will discuss the
technical details of the cost model in Section 5. Here, we assume
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that each |R(S i)| (i = 1, · · · , n) is given. We define the cost of the
query decomposition as follows.

Definition 6. The Cost of Query Decomposition. Given a set
of stars {S 1, . . . , S n} that is a decomposition of an outsourced query
graph Qo, the cost of the query decomposition is:

cost(Qo) =
∑n

i=1
|R(S i)|.

It is straightforward to reduce a minimum weighted vertex cover
(a classical NP-hard problem) to the problem of finding the query
decomposition with the minimum cost. Formally,

Theorem 2. Given an outsourced query graph Qo, finding the
query decomposition with the minimum cost with respect to Defini-
tion 6 is an NP-hard problem.

That said, we formulate finding the optimal query decomposi-
tion as the following ILP (integer linear programming) problem and
use an available ILP tool, e.g, the Gurobi ILP solver, to solve this
problem. Although ILP is still an NP-hard problem, Qo is always
a small-size graph. Thus in practice, it is actually very efficient
to find the optimal query decomposition through this formulation.
Solving this ILP also gives us the value n, the number of stars, in
the query decomposition.

minimize
∑

all vi∈V(Qo)

|R(S (vi))|xvi

sub ject to xvi + xv j ≥ 1 for all viv j ∈ E(Qo)

/*Each edge is contained in at least one star.*/

xvi ∈ {0, 1} for all vi ∈ V(Qo)

/*A star rooted at each vertex vi is either selected (xvi = 1) into the
query decomposition or not (xvi = 0).*/
Star Matching. Next, we present our star matching algorithm. The
algorithm is designed to find the subgraph matches for each star S i,
in the query decomposition of Qo, over Go, i.e., R(S i,Go). The
cloud server builds a query index structure offline to improve the
query efficiency.

The index can be considered as two parts: one is regarding the
vertex label, and the other one is regarding the neighbourhood struc-
ture. Thus, there are two components in the index structure, as
shown in Figure 7 which are constructed based on LCT (label cor-
respondence table) and Go (see Figure 2 and Figure 5 respectively)

. They are the Vertex Bit Vector (VBV) Table and the Neighbor La-
bel Bit Vector (LBV) Table, respectively. For convenience, the first
block of Gk is denoted as B1. Obviously, B1 is a subgraph of Go.

Each VBV corresponds to a label group, where the correspond-
ing bit in the VBV for a vertex v ∈ B1 is set to 1 iff v contains that
label group. For example, p2 contains D but not E in B1. Thus the
two corresponding bits in VBV are 1 and 0, respectively.

In LBV, for each vertex v in B1, the corresponding bit for a label
group L is set to 1 if and only if L is contained in at least one label
set for v’s neighbor vertices. For example, D is contained in the
label set of p2 that is one of p1’s neighbors. However, E is not
contained in the label set of any of p1’s neighbors. Thus the two
corresponding bits for p1 in LBV are 1 and 0, respectively.

Algorithm 1 Star Matching Algorithm

Require: Input: Go (the outsourced data graph) and S ∗ (the set of stars that
contains star S i with center vi, for 1 ≤ i ≤ n).
Output: RS (R(S i,Go) for 1 ≤ i ≤ n).

1: Initialize RS := φ.
2: for i := 1 to n do
3: Initialize RS i := φ.
4: Set α := VBV(L(vi, 1)) ∧ VBV(L(vi, 2))∧ · · · ∧ VBV(L(vi, |L(vi)|)).
5: for each vertex va that corresponds to a non-zero bit in α do
6: if LBV(va) ∧ LBV(vi) = LBV(vi) then
7: Generate the set of matches of S i with center va, denoted as

RS temp.
8: RS i := RS i ∪ RS temp.
9: RS := RS ∪ RS i.

10: Return RS .

The Star Matching Algorithm is presented in Algorithm 1. With-
out loss of generality, assume that the center of a star S i is vertex vi.
For each star S i for 1 ≤ i ≤ n, we first find each Vertex Bit Vector
that corresponds to every label group of vi; e.g. VBV(C) = (1, 1) in
our example. Recall L(v) is the set of label groups for vertex v. We
use L(v, j) to denote the j-th label group of v, for 1 ≤ j ≤ |L(v)|.

Hence, the first step is to find VBV(L(vi, j)) for 1 ≤ j ≤ |L(vi)|.
We perform a bitwise AND operation on these |L(vi)| bit vectors to
obtain the result vector α (Line 4). Each vertex va that corresponds
to a non-zero bit in α is a candidate match of vi. If each label group
of vi’s neighbors can be found in the label sets of va’s neighbors
(Line 6), some of va’s neighbors can be candidate matches of vi’s
neighbors. By enumerating candidate vertex combinations of va

and its neighbor vertices, we generate matches of S i and add them
to the result set (Line 7-Line 8).

Result Join. The next challenge is how to compute R(Qo,Gk) based
on the star matching results R(S i,Go), for i = 1, ..., n. A straight-
forward solution works as follows. First, using the k-automorphic
function F j ( j = 0, · · · , k − 1), we compute R(S i,Gk) based on
R(S i,Go). Then we compute R(Qo,Gk) by joining R(S i,Gk)’s, i.e.,
R(Qo,Gk) = R(S 1,Gk) � R(S 2,Gk) � · · · � R(S n,Gk). Obviously,
the cost of the join is

∏n
i=1 |R(S i,Gk)|.

Figure 8 demonstrates the above process using the running ex-
ample. In our example, Qo is decomposed into two stars S 1 and
S 2 (in Figure 6). Given the graph Go (in Figure 5) on the cloud,
we perform subgraph matching to obtain R(S 1,Go) and R(S 2,Go)
(as shown in Figure 8), i.e., the subgraph matches of S 1 and S 2

over graph Go, respectively. According to the automorphic function
F1 (defined in Figure 4), we can derive R(S 1,G2) and R(S 2,G2).
Specifically, for each match M in R(S 1,Go), using the automorphic
function F1, F1(M) derives another match M′ in R(S 1,G2). For ex-
ample, (p1, c1, s1) is a match of S 1 over Go; thus, (F1(p1), F1(c1),
F1(s1)) gives another match (p4, c2, s2). Thus, we get R(S 1,Gk) =
R(S 1,Go) ∪ F1(R(S 1,Go)) ∪ · · · ∪ Fk−1(R(S 1,Go)). We can obtain
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Figure 8: Star join.

R(S 2,Gk) in a similar fashion. Figure 8 illustrates this process for
our running example where k = 2.

Finally, we need to join R(S 1,Gk) and R(S 2,Gk) based on the
topology relation between S 1 and S 2. Since S 1 and S 2 shares on-
ly one common vertex q3 in this case, the join condition is that
R(S 1,Gk).q3 = R(S 2,Gk).q3 but the other two columns of R(S 1,Gk)
and R(S 2,Gk) do not match. The join results are R(Qo,Gk).

In this subsection, we propose an efficient technique to speed up
the above process by leveraging the symmetry of the k-automorphic
graph Gk. We conceptually divide R(Qo,Gk) into two parts: Rin

and Rout. We only compute the subgraph matches in Rin through
the above join process. The subgraph matches in Rout can be easily
computed based on the automorphic functions (such as in Figure
8) without going through the expensive join process. For exam-
ple, in Figure 8, we only expand R(S 2,Go) to R(S 2,Gk) using the
automorphic function. Then, we join R(S 1,Go) with R(S 2,Gk) to
obtain Rin. All other matches can be obtained by applying the au-
tomorphic function over matches in Rin. For n stars, we can apply
this idea recursively over two star matches at a time, which can be
done in parallel as well.

Consider a vertex q1 in Qo. For any match M′ of Qo over Gk,
let v′ denote the matching vertex of q1 in this match. There are
only two cases: v′ is in B1 (the first block of Gk) or not. If v′ �
B1, there must exist another match M under automorphic function
F1 (i.e., M′ = F1(M)), where v is the matching vertex of q1 in
match M and v is in B1. For example, in match (p1, c1, s1, p3, c2) in
Figure 8, p1 corresponds to q1, where p1 is in block B1. In match
(p4, c2, s2, p2, c1), p4 corresponds to q1 but p4 is not in block B1;
but we know that (p4, c2, s2, p2, c1) = F1(p1, c1, s1, p3, c2), where
F1 is an automorphic function. In the latter match, p1 matches q1

and p1 is in block B1. Formally, we have the following theorem.

Theorem 3. Given Qo with m vertices qa (a = 1, · · · , m), M′

with m vertices v′a (a = 1, · · · , m) is a subgraph match of Qo over
graph Gk, where v′a matches qa. Consider a vertex qa in Qo. If
vertex v′a matching qa is not in B1 (the first block of Gk), we can
find another match M that contains a vertex va matching qa, where
va ∈ B1 and v′a = F j(va) under some automorphic function F j.
Furthermore, M′ = F j(M), where F j(M) is a mapping graph of M
under an automorphic function F j, which is defined in Definition 4.

Let us consider a vertex qa in Qo. Given qa, the set of subgraph
matches R(Qo,Gk) can be divided into the following two parts:

1. Rin={M|M ∈ R(Qo,Gk) ∧ (∃va ∈ B1, va ∈ M ∧ va ↔ qa)}
2. Rout={M|M ∈ R(Qo,Gk) ∧ (∃va � B1, va ∈ M ∧ va ↔ qa)}

where va ↔ qa means that vertex va matches qa.
We only need to find subgraph matches in Rin. Then based on

the automorphic functions, the client can obtain Rout. Note that
the cloud server can do this step too if the goal is to minimize the

processing cost at the client side, but with a higher communication
overhead. Finally, R(Qo,Gk) = Rin ∪ Rout.

Algorithm 2 presents the join algorithm. Let us consider a query
decomposition {S 1, . . . , S n} over Qo. Suppose that |R(S a)| (1 ≤ a ≤
n) is the minimum over all stars, and without loss of generality star
S a roots at vertex qa. Initially, we set answer set Rin = R(S a,Go).
We start with S a and find another star S i (1 ≤ i � a ≤ n), where S i

overlaps with S a and |R(S i)| is minimum over all such overlapping
stars. Then, we compute R(S i,Gk) according to the automorphic
functions F j ( j = 0, · · · , k − 1) (Line 5-Line 8). We perform the
natural join Rin = Rin � R(S i,Gk) (Line 9). Then we delete all
the matches that contain duplicate vertices (Line 10-Line 12), since
two query vertices cannot match the same vertex in the data graph,
according to the definition of subgraph isomorphism. We iterate
the above process until all stars in the query decomposition have
been processed.

Algorithm 2 Result Join Algorithm

Require: Input: RS (the set of R(S i,Go), 1 ≤ i ≤ n) and Alignment Vertex
Table (AVT).
Output: Rin.

1: Initialize Rin := R(S a,Go), where |R(S a)| is minimum over all stars.
2: RS := RS − Rin.
3: while RS .size() > 0 do
4: Initialize a set Rnext := R(S i,Go) (1 ≤ i � a ≤ n), where S i overlaps

with the part of query graph that corresponds to current matches in
Rin, and |R(S i)| is minimum over all such overlapping stars.

5: Initialize a set Rk
next := φ.

6: for m := 0 to k − 1 do
7: Rk

next := Rk
next ∪ Fm(Rnext).

8: /* Fm(Rnext) = {M|∃M′ ∈ Rnext , M = Fm(M′)}. */
9: Rin := Rin �Rk

next .
10: for each match M ∈ Rin do
11: if M contains duplicate vertices then
12: Rin := Rin − {M}.
13: RS := RS − Rnext .
14: Return Rin.

4.2.2 Processing in the Client Side
According to Algorithm 2, the cloud obtains the set Rin and trans-

mits it to the client. There are two stages in the client side process-
ing. The pseudocode is given in Algorithm 3.

First, we need to compute Rout according to the automorphic
functions F j ( j = 1, · · · , k − 1) (Line 1-Line 4 in Algorithm 3).
For each match M in Rin, we compute F j(M) ( j = 1, · · · , k − 1)
and put them into Rout. Obviously, R(Qo,Gk) = Rin ∪ Rout (Line 5).
Note that this step can also be done by the cloud.

Secondly, the client computes the final result set R(Q,G) by fil-
tering out the false positives in R(Qo,Gk) (Line 6-Line 23). The
filtering process also has two steps. In the first step, we remove
some matches in R(Qo,Gk) that contain vertices or edges that do
not exist in the original graph G (Line 8-Line 20). Also note that
we anonymize the vertex labels in the query graph by using vertex
label groups. Thus in the second step, we need to filter out matches
that contain vertices whose labels cannot match those of the corre-
sponding vertices in the original query graph Q (Line 21-Line 22).

It is straightforward to see that the time complexity of the client
processing is linear with the number of matches in R(Qo,Gk). Fur-
thermore, it is easy to design some hashing techniques to speed up
the filtering processing.

5. COST MODEL
In order to reduce the search space of subgraph matching, we

need a cost model for both label generalization and query decom-
position. Different label combinations lead to different search s-



Algorithm 3 Result Processing Algorithm

Require: Input: Rin (the set of candidate matching results generated in
cloud), Alignment Vertex Table (AVT).
Output: R (the set of final matching results).

1: Initialize Rout := φ.
2: for m := 1 to k − 1 do
3: Rout := Rout ∪ Fm(Rin).
4: /* Fm(Rin) = {M|∃M′ ∈ Rin, M = Fm(M′)}. */
5: Set Rk := Rin ∪ Rout .
6: Initialize R := φ.
7: for each match M ∈ Rk do
8: find := true;
9: for each vertex v ∈ V(M) do

10: if v � V(G) then
11: find := false;
12: break;
13: if find = false then
14: continue;
15: for each edge e ∈ E(M) do
16: if e � E(G) then
17: find := false;
18: break;
19: if find = false then
20: continue;
21: if M contains any vertices whose labels do not match those of the

corresponding vertices on query Q then
22: continue;
23: R := R ∪ {M}.
24: Return R.

paces in subgraph matching. Since our subgraph matching algo-
rithm is based on joining star matches, we require that the number
of star matches (|R(S )|) should be as small as possible. Further-
more, the query decomposition method in Section 4.2.1 also relies
on estimating |R(S )|. Thus, we propose a cost model for estimating
|R(S )|.

5.1 Estimating |R(S)|
Given a star query S with center q, it matches a star with the

center v in B1 (i.e., the first block of Gk) if and only if the following
two conditions hold. Therefore, we should consider the two factors
while estimating |R(S )|.
• center q should match v;

• each neighbor of q should match one of v’s neighbors.

First Factor. The first factor measures the number of candidate
matching vertices of the center q of the star query S . Given an
outsourced graph Go, the vertices matching the center q of S only
locate in the first block of Gk, i.e., block B1. That is to say, we
need to find the number of such candidate vertices v in B1, where
each v and q share the same vertex type and each such candidate

v contains q’s vertex label group. |V(Gk)|
k is the number of vertices

in B1. Given a center q, we should estimate the probability that a
vertex v ∈ B1 has the same vertex type with q and v contains q’s
vertex label group.

Due to the symmetry in Gk, the first block B1 has the same vertex
label distribution with Gk. Thus, we use Gk to derive the probabil-
ity. Let V(Gk, j), Vl(Gk, ( j, i)), and Vg(Gk, ( j, i)) denote the set of
vertices with the j-th vertex type, label l j, i (ith label of jth vertex
type), and label group Lj, i respectively. Then, we define:

FGk ( j) =
|V(Gk , j)|
|V(Gk)| , F

l
Gk ( j, i) =

|Vl(Gk , ( j, i))|
|V(Gk , j)| , F

g
Gk ( j, i) =

|Vg(Gk , ( j, i))|
|V(Gk , j)|

(1)

for the graph Gk.
Intuitively, FGk ( j) estimates the probability of a vertex being the

jth vertex type; Fl
Gk ( j, i) estimates the probability of a vertex that’s

the jth vertex type having an ith label; lastly, Fg
Gk ( j, i) estimates the

probability a vertex that’s the jth vertex type having an ith label
group after the label generalization.

Similarly, we can also define FS ( j), Fl
S ( j, i) and Fg

S ( j, i) for a star
query graph S , replacing Gk by star S in the equation.

Without loss of generality, assume that for the j-th (1 ≤ j ≤
t) vertex type, there are θhj different labels (l j, 1, l j, 2, · · · , l j, θh j ).
These labels can be combined into hj label groups (Lj, 1, Lj, 2, · · ·
, Lj, h j ). The i-th group Lj, i contains θ different labels, which are
l j, pθ(i−1)+1

, l j, pθ(i−1)+2
, · · · , l j, pθi for 1 ≤ i ≤ hj. Note that 〈p1, p2, · · ·

, pθh j 〉 forms a permutation of {1, 2, · · · , θhj}.
FGk ( j)FS ( j) is the probability that a vertex v in Gk has the same

vertex type with the star center q. Consider each possible vertex

type. For the j-th vertex type,
h j∑
i=1

Fg
Gk ( j, i)Fg

S ( j, i) denotes the prob-

ability that vertex v and the query center has the same label group.
Therefore, the first factor estimating the number of vertices that can
match the center of the star query is as follows.

|V(Gk)|
k

t∑
j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣FGk ( j)FS ( j)
h j∑
i=1

Fg
Gk ( j, i)Fg

S ( j, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Second Factor. The second factor measures the search space of
checking whether each of q’s neighbors can find its matching vertex
in v’s neighbors. The estimation here is similar with that of the
first factor. The difference is that the candidate matching vertex
v of the center q of S has been given. Thus, to match the first
vertex of q’s neighbors, the number of candidate vertices that we

should search is the degree of vertex v rather than |V(Gk)|
k . Since

there are several candidate vertices v, we use the average degree of
vertices in Gk to estimate the degree of vertex v. Here, we denote
it as D(Gk). Then, to match the second vertex of v’s neighbors, the
potential search space is D(Gk) − 1. The rest can be done in the
same manner. Suppose the center of the star query S has Dc(S )
neighbors. Thus, this part of the search space can be estimated as
D(Gk)·(D(Gk)−1) · · · (D(Gk)−Dc(S )+1). For the sake of simplicity,
we can estimate it as D(Gk)Dc(S ). As with the estimation of the first
factor, we should also consider the probability of sharing the same
vertex type and containing the corresponding vertex label group.

Thus, we can define the second factor that estimates the search
space of matching the star center q’s neighbors as follows.⎧⎪⎪⎪⎨⎪⎪⎪⎩D(Gk)

t∑
j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣FGk ( j)FS ( j)
h j∑
i=1

Fg
Gk ( j, i)Fg

S ( j, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

Dc(S )

(3)

The Cost Model. Our cost model is given by Expression 4, which
is simply the product of factor 1 and factor 2 from (2) and (3).

It does assume independence among the label distributions for
the neighbors of a vertex. This may not always hold in practice. But
our experimental results show that our assumption is acceptable in
three real large graphs and our cost model is very effective. We also
note that |Vg(Gk, ( j, i))| ≤ [1 + δ(k)] · ∑θm=1 Vl(Gk, ( j, pθ(i−1)+m)) for
some constant 0 ≤ δ(k) ≤ k − 1, i.e., the number of vertices from
the jth vertex type having the ith label group is at most a constant
factor of the total number of vertices with jth vertex type having a
label that was generalized into this label group. Immediately, this
implies that Fg

Gk ( j, i) ≤ [1+ δ(k)] ·∑θm=1 Fl
G( j, pθ(i−1)+m). Intuitively,

each vertex u in Gk has (k − 1) symmetric vertices. To ensure that
they have the same vertex groups, we require that u should have a
union of all its symmetric vertices’ label groups. In the worst case,
Fg

Gk ( j, i) will increase by a factor of (k−1). In fact, δ(k) can be much
less than (k−1), and given G and the corresponding k-automorphic
graph Gk, we can give a much tighter bound on the parameter δ(k).
That is to say, if we do not introduce any unnecessary label groups
during label generalization (just like the example in Figure 2), δ(k)



will be 0. In practice, δ(k) is far less than 1 when k is small, as
demonstrated in our experiments.

|R(S )|

=
|V(Gk)|

k

t∑
j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣FGk ( j)FS ( j)
h j∑
i=1

Fg
Gk ( j, i)Fg

S ( j, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

·
⎧⎪⎪⎪⎨⎪⎪⎪⎩D(Gk)

t∑
j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣FGk ( j)FS ( j)
h j∑
i=1

Fg
Gk ( j, i)Fg

S ( j, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

Dc(S )

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t∑

j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣FGk ( j)FS ( j)
h j∑
i=1

Fg
Gk ( j, i)Fg

S ( j, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

Dc(S )+1

· |V(Gk)|D(Gk)
Dc(S )

k

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t∑
j=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩FGk ( j)FS ( j)
h j∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣
θ∑

m=1

Fl
G( j, pθ(i−1)+m)

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
θ∑

m=1

Fl
S ( j, pθ(i−1)+m)

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Dc(S )+1

· |V(Gk)|D(Gk)
Dc(S )

[1 + δ(k)]Dc(S )+1

k
(4)

5.2 Label Combination
The cost model based query decomposition has been studied in

Section 4.2.1. Hence, we only need to show how to do label gener-
alization (label combination) based on the cost model above. Our
solution works as follows. Let us consider the j-th vertex type and
its θhj different vertex labels (li, 1, li, 2, · · · , li, θh j ). Assume that
P = 〈p1, p2, · · · , pθh j 〉 is a permutation of {1, 2, · · · , θhj}. We di-
vide P sequentially into hj groups, where each group has θ vertex
labels. Each permutation corresponds to one possible label combi-
nation. The goal is to find the optimal permutation, which leads to
the minimum cost in star matching.

In the derivation of Expression 4, we only estimate the search
space of a single star query S . However, to perform the label com-
bination of the k-automorphic graph Gk, we need to estimate the
search space of star queries in the average case. The average case
can be estimated by exploring different query patterns. Suppose
S set is the set of all possible star queries. Similar to the definitions
in Equation 1 in Section 5.1, we can define

FS avg ( j) =

∑
s∈S set

|V(s, j)|
|V(s)|

|S set | , F
l
S avg

( j, i) =

∑
s∈S set

|Vl(s,( j,i))|
|V(s, j)|

|S set | , F
g
S avg

( j, i) =

∑
s∈S set

|Vg(s,( j,i))|
|V(s, j)|

|S set |
for star queries. These values rely on all possible star queries rather

than any one single star query. Similarly, let Dc(S avg) =
∑

s∈S set Dc(s)

|S set | .
Now similar to the derivation of Expression 4, we can estimate

the search space of star queries in the average case, denoted as
|R(S avg)|, in Expression 5 (the derivation follows the same steps as
that in Expression 4). According to Expression 5, the component
that concerns the label combination is given in Expression 6.

|R(S avg)|

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t∑
j=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩FGk ( j)FS avg ( j)
h j∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣
θ∑

m=1

Fl
G( j, pθ(i−1)+m)

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
θ∑

m=1

Fl
S avg

( j, pθ(i−1)+m)

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Dc(S avg)+1

· |V(Gk)|D(Gk)
Dc(S avg)

[1 + δ(k)]Dc(S avg)+1

k
(5)

Therefore, we define the label combination cost as follows.

Definition 7. Label Combination Cost. Given the j-th ver-
tex type and its θhj different vertex labels (l j, 1, l j, 2, · · · , l j, θh j ),
we can form a list {(Fl

G( j, 1), Fl
S avg

( j, 1)), (Fl
G( j, 2), Fl

S avg
( j, 2)), · · ·

, (Fl
G( j, θhj), Fl

S avg
( j, θhj))}, where

∑θh j
i=1

Fl
G( j, i) = 1 and

∑θh j
i=1

Fl
S avg

( j, i)

i 1 2 3 4 5 6 
Label lj, 1 lj, 2 lj, 3 lj, 4 lj, 5 lj, 6 

FG
l ( j, pi ) 0.05 0.1 0.15 0.2 0.25 0.25 

FSavg
l ( j, pi ) 0.15 0.05 0.2 0.3 0.1 0.2 

i 1 2 3 4 5 6 
Label lj, 1 lj, 4 lj, 3 lj, 2 lj, 5 lj, 6 

FG
l ( j, pi ) 0.05 0.2 0.15 0.1 0.25 0.25 

FSavg
l ( j, pi ) 0.15 0.3 0.2 0.05 0.1 0.2 

i 1 2 3 4 5 6 
Label lj, 1 lj, 4 lj, 3 lj, 5 lj, 2 lj, 6 

FG
l ( j, pi ) 0.05 0.2 0.15 0.25 0.1 0.25 

FSavg
l ( j, pi ) 0.15 0.3 0.2 0.1 0.05 0.2 

i 1 2 3 4 5 6 
Label lj, 1 lj, 4 lj, 3 lj, 5 lj, 2 lj, 6 

FG
l ( j, pi ) 0.05 0.2 0.15 0.25 0.1 0.25 

FSavg
l ( j, pi ) 0.15 0.3 0.2 0.1 0.05 0.2 

Iteration 1 

Iteration 2 

Figure 9: An example of label anonymization algorithm.

= 1. Given P = 〈p1, p2, · · · , pθh j 〉 as a permutation of {1, 2, · · · , θhj},
the label combination cost of P for the j-th vertex type is defined as
follows:

cost(P) =

h j∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣
θ∑

m=1

Fl
G( j, pθ(i−1)+m)

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
θ∑

m=1

Fl
S avg

( j, pθ(i−1)+m)

⎤⎥⎥⎥⎥⎥⎥⎦ (6)

/*G refers to the original data graph in this definition.*/

Thus we need to choose an effective permutation P to decrease
cost(P) as much as possible. To achieve that, we propose a heuristic
solution. It works in an iterative manner. Initially, we generate a
random label combination. Then, in each iteration, we try to swap
two labels in two label groups, respectively. If the swap leads to
smaller cost (see Expression 6), we keep the swap; otherwise, we
ignore that. For example, we keep the swap between l j, 2 and l j, 4

(see Figure 9) in the first iteration. We consider all possible swaps
sequentially. Once we cannot find a swap that leads to smaller cost,
the algorithm stops. Our experimental results show that for each of
the three datasets in Section 6 and each vertex type, we generally
need no more than 10 such iterations before the results converge.
An example of label anonymization algorithm for θ = 2 (two lables
in each label group) is represented in Figure 9, using our running
example.

6. EXPERIMENTAL RESULTS
6.1 Datasets and Setup

We evaluated our method on three real datasets in our experi-
ments. Statistics on these graphs are given in Table 2.

Table 2: Real graph datasets.
Dataset |V | |E| # of

Types
# of At-
tributes

# of La-
bels

Web-NotreDame 325, 729 109, 0108 1 1 200
DBpedia 3, 243, 606 8, 588, 047 86 101 6300
UK-2002 18, 520, 486 261, 787, 258 2500 2500 20,000

Web-NotreDame. Web-NotreDame is a web graph collected in
1999. Vertices represent pages from the University of Notre Dame
and edges represent hyperlinks between them.
DBpedia. DBpedia is a crowd-sourced community effort to extract
structured information from Wikipedia and generate a large seman-
tic knowledge graph. Vertices correspond to entities in DBpedia
and edges correspond to relationships among them. According to
type information and property information from the dataset, we ex-
tract types, attributes and attribute values and add them for all the
vertices.
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Figure 10: Time cost in generating Gk.
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Figure 11: Number of noise edges in Gk.

Dataset k = 2 k = 3 k = 4 k = 5 k = 6 

Web-
NotreDame 

|E(Go)| 1024152 1044054 1092048 1131386 1163919 
|E(Gk)| 2013828 2923686 3850740 4848650 5743884 

DBpedia 
|E(Go)| 13000836 19106315 23923355 27285461 32653869 
|E(Gk)| 16582848 25561791 33971336 42268695 50278758 

UK-2002 
|E(Go)| 351912573 502482658 618590274 737819332 848864429 
|E(Gk)| 487677404 713567550 952457696 1202931182 1460772185 

Figure 12: Number of edges in Go and Gk using EFF.

UK-2002. UK-2002 is obtained from a crawl of the .uk domain
performed by UbiCrawler3 in 2002.

We find that the frequencies of different vertex labels on these
graphs all (roughly) obey Zipf’s law of different skewness.

SETUP. We compare four methods EFF, BAS, FSIM and RAN,
where EFF is our method with all optimizations discussed.

1. EFF applies both the “cost model based” label generalization
and the graph size reduction (i.e., uploading Go).

2. BAS applies the same cost model based label generalization
approach with EFF; but BAS uploads the entire Gk directly.

3. FSIM and RAN adopt two different label generalization ap-
proaches. FSIM combines vertex labels with similar frequencies
in the data graph into the same label groups, while RAN random-
ly combines vertex labels into label groups. However, both FSIM
and RAN adopt the graph size reduction approach proposed in this
paper, i.e., they upload Go instead of Gk to the cloud.

We use a Windows 7 PC with 3.0 GHz Intel Core 2 Duo CPU
and 8 GB main memory as the client side. The cloud server is
on a virtualized Windows machine within Microsoft Azure cloud,
providing 64 GB main memory and four CPU cores. All methods
are implemented in C++. Some additional experimental results are
presented in Appendix B.

6.2 Cost of Generating Gk and Go

In this subsection, we evaluate the performance of generating Gk

and Go. The default value of θ (the number of labels contained in
each label group) is 2 in all the experiments. The main results of
these experiments are as follows.

3http://law.di.unimi.it/webdata/uk-2002
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Figure 13: Index cost of our algorithm.

The cost model based label anonymization approach EFF is as
efficient as simple strategies like RAN and FSIM when generating
Gk, as shown in Figure 10. The cost on Web-NotreDame slightly
increases when k goes from 2 to 6, but the running time on DB-
pedia decreases as k becomes larger. The reason is that there are
a few high-degree vertices on DBpedia. Since we use the BFS s-
trategy in graph alignment for generating Gk, when k is small, such
as 2, we have to do more explorations on these high-degree ver-
tices. The experimental results on UK-2002 are similar with those
on DBpedia; see Appendix B.

The number of noise edges (|E(Gk)|− |E(G)|) does not depend on
the label anonymization approach. We find that the three approach-
es introduce nearly the same number of noise edges (as shown in
Figure 11). The number of noise edges roughly grows linearly
when k goes from 2 to 6. The experimental results on UK-2002
are also similar with those on the other two datasets; see Appendix
B.

We also report the number of edges in Go and Gk (i.e., space
and communication cost) in Figure 12. Since the three approaches
introduce nearly the same number of noise edges, we only report
the results generated by EFF method. As shown in Figure 12, The
edge number of Go is much less than that of Gk. Especially, when
k is small, |E(Go)| is close to |E(G)|. It shows that our method not
only ensures the data privacy but also saves the online query cost,
since online subgraph matching is performed on Go rather than Gk.

Although the three label anonymization algorithms have similar
efficiency in generating Gk, they do generate different Gk’s. EFF
produces Gk’s that perform much better than the graphs produced
by the other two methods in terms of the query performance. We
will report these results shortly.

6.3 Performance in the Cloud
We first report the cost of index construction for our method.

Figure 13 shows the space and time cost of constructing the index
structure, which is discussed in Section 4.2.1. Both space and time
costs of our index construction decrease while k increases from 2 to
6. The reason lies in the fact that the size of our index (see Figure
7) depends on the vertex number of Go (i.e., |V(Go)|). Obviously,
|V(Go)| decreases with the increase of k, since Go roughly contain-
s only the first block of vertices in Gk and each block in Gk has

about |V(Gk)|
k vertices. Thus, larger k leads to less index size and less

construction cost.
Then we pay attention to the cost of subgraph matching in the

cloud. We generate query graphs by randomly extracting connect-
ed subgraphs from the data graph G, ensuring that |E(Q)| meets a
user-specified parameter value N. Specifically, we randomly locate
the first edge e from the data graph G and set E(Q) = {e}. We then
expand the current query graph Q through a random walk over G
iteratively until it reaches N edges. We used 100 queries and report
the average. We compared our method with the baseline BAS and
the other two label generalization techniques. First, we report the
query performance for different query graph sizes |E(Q)|. Figure
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Figure 14: Query time vs. |E(Q)| on Web-NotreDame.
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(b) k = 5
Figure 15: Query time vs. |E(Q)| on DBpedia.
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(b) |E(Q)| = 12
Figure 16: Query time vs. k on Web-NotreDame.
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Figure 17: Query time vs. k on DBpedia.

14 shows that our method EFF performs much better than the other
three approaches on Web-NotreDame. Note that RAN and FSIM
use the same processing framework as EFF (i.e., they rely on Go

and our cloud processing algorithms as well); they only differ from
EFF in how to generate the label combinations. Thus, the experi-
mental results confirm the effectiveness of our cost model and the
cost model based label combination.

We find similar results on DBpedia, as shown in Figure 15. The
experimental results on UK-2002 are also similar with those on oth-
er datasets; see Appendix B. When the query size becomes larger,
EFF outperforms the other three approaches by at least one order
of magnitude. Furthermore, BAS always performs the worst, since
the search space on Gk is much larger than that on Go.

The running time of subgraph matching increases with k from
2 to 6, as shown in Figure 16 and Figure 17. This is because that
|E(Go)| increases with k from 2 to 6, since we must insert more
noise edges into Go when k becomes larger. Nevertheless, EFF
is always the best method. Furthermore, compared with other ap-

Dataset 
k = 3 k = 5 

|E(Q)| = 6 |E(Q)| = 12 |E(Q)| = 6 |E(Q)| = 12 

Web-
NotreDame 

EFF 9 31 42 137 
RAN 19 69 89 288 
FSIM 25 87 117 374 

DBpedia 
EFF 7 19 24 54 
RAN 11 36 41 110 
FSIM 14 50 50 149 

UK-2002 
EFF 7 24 34 125 
RAN 11 38 53 196 
FSIM 15 52 72 267 

Star Matching Time (ms) 
Figure 18: Star matching time.

Dataset 
k = 3 k = 5 

|E(Q)| = 6 |E(Q)| = 12 |E(Q)| = 6 |E(Q)| = 12 

Web-
NotreDame 

EFF 96 188 487 696 
RAN 187 556 792 2089 
FSIM 252 729 1100 2858 

DBpedia 
EFF 64 126 296 431 
RAN 125 402 581 1920 
FSIM 163 478 759 2544 

UK-2002 
EFF 91 160 454 663 
RAN 127 431 638 1779 
FSIM 210 528 722 2668 

|RS| 
Figure 19: Result set size of the star matching algorithm (|RS|).
proaches, the advantage of EFF becomes even more significant for
larger values of k.

We also find that both the query decomposition algorithm and
the star matching algorithm run very fast. Even when |E(Q)| is as
large as 12, the time cost of query decomposition algorithm is less
than 1 ms. As for the time cost of star matching algorithm, Fig-
ure 18 shows the experimental results which are also very efficient.
We also report the size of the set RS generated by our star match-
ing algorithm in Figure 19. |RS | has a large influence on the time
cost of result join algorithm. These results show the importance of
optimizing the result join algorithm.

6.4 Processing Cost in the Client Side
The last step of all methods involves processing in the client side.

Figure 20 and Figure 21 illustrate this overhead on the first two real
graphs. The goal of client side processing is to filter out all false
positive matches due to the noise edges and labels in Gk.

First of all, note that for all methods, client processing cost is
much less than cloud processing cost; it is orders of magnitude less.
As Figure 20 and Figure 21 show, the overhead in the client side s-
cales very well in terms of query size and k. EFF still outperforms
both RAN and FSIM, but it is slightly worse than BAS in the client
side. The reason is that EFF generates fewer intermediate results
than RAN and FSIM, due to its effective label combination algo-
rithm. However, following our processing framework, EFF, RAN,
and FSIM produce Rin (i.e., a small subset of R(Qo,Gk), see Sec-
tion 4.2.1) in the cloud, and the client needs to find R(Qo,Gk) based
on Rin and our client side algorithm as shown in Section 4.2.2. In
contrast, BAS obtains R(Qo,Gk) from the cloud directly (since the
cloud has Gk instead of Go as that in our method).

However, note that client processing time is a tiny fraction of the
entire processing time. Furthermore, compared with our method
like EFF, BAS has much more expensive communication cost, s-
ince |R(Qo,Gk)| is always much larger than |Rin| (i.e., the size of a
small subset of R(Qo,Gk), see Section 4.2.1). For example, the av-
erage size of matching results for |E(Q)| = 6, k = 4 on UK-2002 in
BAS is 12,224 bytes, while EFF only transmits 3,056 bytes. Thus
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Figure 20: Client processing time on Web-NotreDame.
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Figure 21: Client processing time on DBpedia.

Dataset 
k = 3 k = 5 

|E(Q)| = 6 |E(Q)| = 12 |E(Q)| = 6 |E(Q)| = 12 

Web-
NotreDame 

EFF 21 608 249 10948 
RAN 73 7941 624 61306 
FSIM 110 12329 1197 108880 
BAS 109 25240 2423 318390 

DBpedia 

EFF 14 170 139 4144 
RAN 24 3263 265 52212 
FSIM 38 6048 492 86412 
BAS 64 11725 1805 350867 

UK-2002 

EFF 19 465 203 10076 
RAN 50 4721 400 50651 
FSIM 76 7956 550 96353 
BAS 112 17859 2381 277208 

Overall Running Time (ms) 

Figure 22: Overall running time.

the average communication time for transmitting results in BAS is
11 ms, but EFF only spends 3 ms. More importantly, as discussed
in Section 4, the step of finding R(Qo,Gk) based on Rin in EFF can
be easily moved to the cloud side if the priority is to lower the client
processing cost and communication cost is a lesser consideration.
As stated above, EFF runs much faster than other methods in terms
of the overall running time, which is shown in the next subsection.

6.5 Overall Online Performance
Lastly, we report the end-to-end running time for privacy pre-

serving subgraph matching queries in the cloud in Figure 22. The
end-to-end time consists of three parts: the running time in the
cloud, the network communication time, and the running time in
the client side. Figure 22 shows that our method EFF, the cost mod-
el based label anonymization with graph size reducation approach,
has the best overall running time. In particular, EFF outperforms
other competing methods significantly.

7. RELATED WORK
Privacy preserving graph data publication. Lots of recent works
pay attention to privacy protection for graph publication. The ma-
jority of these works [13, 24, 21, 26, 6] focus on protecting data

privacy from structural attacks, they can be used as a baseline for
our problem with significant overheads.

Some existing works [13, 24, 21] assume that the attacker on-
ly launches one type of structural attack. In fact, an attacker can
launch multiple types of structural attacks to identify the target
based on the strong background knowledge. The data graph pro-
duced from some privacy preserving techniques may lose a few
edges because of edge delete operations [6]. The loss of structural
information in original data graph will lead to the infeasibility of
subgraph matching on published data graph. Thus, we utilize k-
automorphism [26] to protect the data graph from compromising
sensitive information. First, a k-automorphic graph can defend n-
ode re-identification based on any background information of any
subgraph [26]. Second, a k-automorphic graph will not delete any
vertices or edges from the original data graph. Third, the key point
of utilizing k-automorphism is to enable us to leverage the symme-
try of the k-automorphic graph, which allows our method to answer
subgraph matching queries efficiently.

Differential privacy [8] is an effective model to protect against
unknown attacks with guaranteed probabilistic accuracy. But due
to the perturbation, these techniques [16, 4, 5] are useful in find-
ing statistical information (e.g. aggregates) from a graph, but are
not feasible in answering privacy preserving subgraph matching
queries exactly.

Privacy preserving graph query processing in the cloud. For
answering secure shortest path queries, Das et al. propose a lin-
ear programming method to anonymize edge weights of the orig-
inal graph while preserving shortest paths [7]. However, any at-
tacker with some topological knowledge can re-identify sensitive
information easily. Gao et al. transform an original graph into a
linked graph and a set of outsourced graphs to support privacy pre-
serving shortest distance queries in the cloud [9]. However, it has
much difficulty in answering subgraph matching queries, because
of losing the connectivity in the original graph. Cao et al. pro-
pose a method to answer subgraph matching queries over encrypt-
ed graphs in the cloud [3], for a database of graphs. The method
pre-builds a feature-based index for each data graph. After filter-
ing in the cloud, each candidate supergraph is verified by checking
subgraph isomorphism in the client. However, the method does not
apply to our case where the goal is to find subgraph matches on a
single large graph (instead of many small graphs).

8. CONCLUSION
In this paper, we present an efficient framework for privacy p-

reserving subgraph matching on a large graph in the cloud. Our
design protects both structural and label privacy in a graph, with-
out losing data utility. By exploring a number of optimization tech-
niques and leveraging an effective cost model, our method achieves
superior query performance compared to the baseline method. Ex-
tensive experiments on large real graphs confirm the effectiveness
and efficiency of our approach. Extending our framework to han-
dling other important graph queries will lead to a number of inter-
esting and important future works.
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Appendix
A. Proof of Theorems.

Theorem 1. Given a data graph G and a query graph Q, R(Q,G)
⊆ R(Qo,Gk).

PROOF. For any match M ∈ R(Q,G), we assume that g : V(Q)→
V(G) is the injective function. We can let g′ : V(Qo)→ V(Gk) have
the same mapping relation with g, since G is a subgraph of Gk. Thus
we have ∀qi ∈ V(Qo)⇒ g′(qi) ∈ V(Gk) and ∀qi, qj ∈ V(Qo), qiq j ∈
E(Qo)⇒ g′(qi)g′(qj) ∈ E(Gk). Since we use the same label group-
ing strategy on G and Q, ∀qi ∈ V(Qo) ⇒ L(qi) ⊆ L(g′(qi)). Ac-
cording to Definition 2, M ∈ R(Qo,Gk), represented as 〈g′(q1), · · ·
, g′(qn)〉.

Theorem 2. Given an outsourced query graph Qo, finding the
query decomposition with the minimum cost with respect to Defini-
tion 6 is an NP-hard problem.

PROOF. Finding a minimum vertex cover is a classical NP-hard
problem. When each |R(S i)| = 1 (i = 1, · · · , n), finding the opti-
mal query decomposition is equivalent to finding a minimum ver-
tex cover. Thus finding a minimum vertex cover is a subproblem of
finding the optimal query decomposition.

Theorem 3. Given Qo with m vertices qa (a = 1, · · · , m), M′

with m vertices v′a (a = 1, · · · , m) is a subgraph match of Qo over
graph Gk, where v′a matches qa. Consider a vertex qa in Qo. If
vertex v′a matching qa is not in B1 (the first block of Gk), we can
find another match M that contains a vertex va matching qa, where
va ∈ B1 and v′a = F j(va) under some automorphic function F j.
Furthermore, M′ = F j(M)4.

PROOF. Since M′ is a subgraph of Gk, we have v′a ∈ Gk. Without
loss of generality, assume that v′a ∈ Pi (1 < i ≤ k). We set va =

Fk−(i−1)(v′a), i.e., j = i − 1 and v′a = F j(va). Thus va ∈ P1.
Here, we prove that M = Fk−(i−1)(M′) is another match of Qo

over Gk. Thus M′ = F j(M).
For the match M′, we assume that g′ : V(Qo)→ V(Gk) is the in-

jective function. Here, we prove that g = Fk−(i−1)(g′) is the injective
function of M. Obviously, ∀qs ∈ V(Qo) ⇒ g′(qs) ∈ V(Gk) ⇒
Fk−(i−1)(g′(qs)) ∈ V(Gk) ⇒ g(qs) ∈ V(Gk). In a similar way,

∀qs, qt ∈ V(Qo), qsqt ∈ E(Qo)⇒ g′(qs)g′(qt) ∈ E(Gk)⇒
Fk−(i−1)(g′(qs))Fk−(i−1)(g′(qt)) ∈ E(Gk) ⇒ g(qs)g(qt) ∈ E(Gk). Ac-
cording to Definition 3, ∀qs ∈ V(Qo) ⇒ L(qs) ⊆ L(g′(qs)) =
L(Fk−(i−1)(g′(qs))) = L(g(qs)). According to Definition 2, M ∈
R(Qo,Gk), represented as 〈g(q1), · · · , g(qn)〉.
B. Additional Experimental Results Figure 23 shows the time
cost in generating Gk on UK-2002. Figure 24 shows the number
of noise edges in Gk on UK-2002. Figure 25 and Figure 26 show
the query time in the cloud on UK-2002. Figure 27 shows the fil-
tering time in the client side on UK-2002. As these figures show,
the experiment results on UK-2002 are similar with those on other
datasets. Figure 28, Figure 29 and Figure 30 show the query time
in the cloud on the three datasets, respectively. Figure 31 shows the
time cost of our star matching algorithm on the three datasets. Fig-
ure 32 shows the size of the set RS generated by our star matching
algorithm on the three datasets. Figure 33 shows the network over-
head on the three datasets when transferring the candidate match-
ing results from the cloud to the client side. Figure 34 shows the
end-to-end running time on the three datasets. These results show
similar trends as that in the experiment section and further confirm
the superiority of our method.

4F j(M) is a mapping graph of M under an automorphic function
F j, which is defined in Definition 4.



2 3 4 5 6
100

101

102

103

104

105

106

tim
e 

co
st

 (s
)

k

EFF RAN FSIM

Figure 23: Time cost in generating Gk on UK-2002.
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Figure 24: Number of noise edges in Gk on UK-2002.
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Figure 25: Query time vs. |E(Q)| on UK-2002.
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Figure 26: Query time vs. k on UK-2002.
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Figure 27: Client processing time on UK-2002.
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Figure 31: Star matching time.
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Figure 32: The size of result set generated by star matching
algorithm (|RS|).
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Figure 33: Network overhead.
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Figure 28: Query time vs. |E(Q)| on Web-NotreDame.
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Figure 29: Query time vs. |E(Q)| on DBpedia.
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Figure 30: Query time vs. |E(Q)| on UK-2002.


