COMPARING IMPLEMENTATIONS OF
NEAR-DATA COMPUTING WITH
IN-MEMORY MAPREDUCE

\WORKLOADS

Seth H. Pugsley
University of Utah

Jeffrey Jestes
Cerner

Rajeev Balasubramonian
University of Utah

Vijayalakshmi Srinivasan
Alper Buyuktosunoglu
|BM Thomas J. Watson
Research Center

Al Davis
Feifei Li
University of Utah

MOVING COMPUTATION NEAR MEMORY HAS BECOME MORE PRACTICAL BECAUSE OF 3D

STACKING TECHNOLOGY. THIS ARTICLE DISCUSSES IN-MEMORY MAPREDUCE IN THE

CONTEXT OF NEAR-DATA COMPUTING (NDC). THE AUTHORS CONSIDER Tw0O NDC

ARCHITECTURES: ONE THAT EXPLOITS HYBRID MEMORY CUBE DEVICES AND ONE THAT

DOES NOT. THEY EXAMINE THE BENEFITS OF DIFFERENT NDC APPROACHES AND QUANTIFY

THE POTENTIAL FOR IMPROVEMENT FOR AN IMPORTANT EMERGING BIG-DATA WORKLOAD.

e o o o o o Warchouse-scale computing is
dominated by systems using commodity
hardware to execute workloads, processing
large amounts of data distributed among
many disks. Several frameworks, such as
MapReduce,' have emerged in recent years
to facilitate the management and develop-
ment of big-data workloads. These systems
rely on disks for most data accesses, but plac-
ing a large fraction of the data in memory is a
growing trend (for example, Memcached,
RAMCloud, SAS in-memory analytics, and
the SAP HANA in-memory computing and
in-memory database platform). Spark is a
new MapReduce framework that helps pro-
grammers tag objects and cache them in
DRAM main memory.> Such a framework is
especially useful for iterative MapReduce
computations that are popular for graph

Published by the IEEE Computer Society

processing, machine learning, and interactive
queries.” Such in-memory workloads will be
limited primarily by the bandwidth and
latency to access DRAM main memory and
are the targets for the new architectures pro-
posed in this article.

A primary reason for the resurgence of
interest in near-data computing (NDC)
is the recent emergence of 3D-stacked
memory-+logic products, such as Micron’s
Hybrid Memory Cube (HMC).> Such
devices enable colocation of processing and
memory in a single package, without
impacting the manufacturing process for
individual DRAM dies and logic dies. The
high bandwidth between the logic and
memory dies with through-silicon vias
(TSVs) can enable significant speedups for
memory-bound applications.

0272-1732/14/$31.00 © 2014 IEEE

This article first describes the basic NDC
framework that appeared in a paper at the
2014 IEEE International Symposium on Per-
formance Analysis of Systems and Software
(ISPASS).* It then extends that work by con-
sidering compelling alternatives. One of these
alternative architectures eliminates the use of
HMC devices because of their expected high
purchase price. The primary contribution of
this article is to generalize the NDC approach
and compare the merits of these different
implementations against a highly optimized
non-NDC baseline.

Background

We first review the MapReduce frame-
work and a previously described system opti-
mized for MapReduce execution.

MapReduce workloads

MapReduce applications typically operate
on disk-resident data. Large datasets (often
key-value pairs) are partitioned into splits.
Splits are distributed across several nodes of a
commodity cluster. Users provide Map and
Reduce functions to aggregate information
from these large datasets. A runtime frame-
work, such as Hadoop, is responsible for
spawning Map and Reduce tasks, moving data
among nodes, and handling fault tolerance.

Map tasks are spawned on all the nodes in
the cluster, and each task only works on the
splits in that node. A Shuffle phase takes
place between Map and Reduce phases,
where part of the output of every Map task is
moved to another node to be processed by
a Reduce task, according to a partitioning
function.

The Map and Reduce tasks are both
embarrassingly parallel and exhibit localized
data accesses. This makes such workloads
amenable to NDC. The Shuffle phase is
but brief. For
many MapReduce workloads, the Map phase

communication intensive,

takes up most of the execution time, followed
by the Reduce and Shuffle phases.

In this article, we consider implementa-
tions of the Map and Reduce phases that we
have written in C. These codes are run as
stand-alone threads in our simulators. Our
simulators cannot execute the Java Virtual
Machine (JVM) and Hadoop runtimes, so

they are simply modeled as constant over-
heads at the start and end of each Map and
Reduce task. We assume that each split is
128 Mbytes in size and resides in DRAM
memory. We execute workloads that have
varying bandwidth requirements, ranging
from 0.47 to 5.71 bytes per instruction.

An optimized baseline for MapReduce

We now describe a highly optimized
baseline for the embarrassingly parallel and
bandwidth-intensive in-memory MapRe-
duce workloads.

The processor socket is designed with
many low energy-per-instruction (EPI) cores.
This design will maximize the number of
instructions that are executed per joule and
will also maximize the number of instruc-
tions executed per unit time, within a given
power budget (assuming an embarrassingly
parallel workload). We therefore assume an
in-order core with power, area, and perform-
ance characteristics similar to the ARM Cor-
tex A5 that consumes 80 mWat 1 GHz. Our
analysis shows that 512 80-mW cores can be
accommodated on a single high-performance
chip while leaving enough area and power
budget to accommodate an on-chip net-
work, shared last-level cache, and memory
controllers.

This processor
equipped with the most bandwidth-capable
memory interface to maximize performance.
The HMC uses high-speed SerDes links to
connect to the processor. Using only 128
pins, the HMC can provide 80 Gbytes per
second (GBps) of bandwidth to the processor
socket. The HMC also provides low energy
per bit (10.48 p]/bit versus DDR3’s 70 pJ/
bit). An important factor in the HMC’s
energy efficiency is its ability to fetch a cache
line from a single DRAM die in the stack,
thus limiting the overfetch that plagues a tra-
ditional DDR3 memory interface. We there-
fore connect our many-core processor to four
HMC devices with eight high-speed links
(each comprising 16 data bits in each direc-
tion). Given the limited capacity of an HMC
device (4 Gbytes), we increase the board’s
memory capacity by connecting each HMC
to other HMC devices in a daisy chain. We
assume four daisy chains per processor
socket, with eight HMC:s in each daisy chain.

many-core must be

JuLy/Aucust 2014 45

BIG DATA

IEEE MICRO

Such a baseline maximizes our workload’s
processing capability and bandwidth, while
retaining the traditional computation model
that separates computation and memory to
different chips on a motherboard. We refer to
this baseline as the EECore (energy-efficient
core) model. Such a baseline expends low
amounts of energy in computations (low EPI
ARM cores) and DRAM array reads (HMC
with low overfetch), but it pays a steep price
for data movement (multiple high-frequency
SerDes hops on the daisy chain and on-chip
network navigation on the processor). Such
an optimized baseline thus further exposes
the communication bottleneck and stands to
benefit more from NDC.

Related work

A large body of prior work on processing
in memory (PIM)>8 integrates logic and
DRAM arrays on the same chip. Unlike prior
work, the analysis in this article focuses on
emerging big-data workloads and new incar-
nations of NDC that use 3D-stacked devices
or tightly coupled processors and memory on
a daughter card. Recent work in this area
includes associative computing accelerators’
and NDC with nonvolatile memories.''*

NDC architectures

We consider different implementations of
NDC, both wusing previously proposed
HMC-like devices, and using commodity
memory arranged on modules with a more
conventional memory interface.

NDC with HMCs

In this section, we briefly describe the
NDC architecture that we presented at
ISPASS 2014."

The NDC architecture is built on a con-
nected network of HMC devices, each of
which has 16 80-mW energy-efficient cores
placed on its logic chip. These are called
near-data cores, or NDCores, and we refer to
this augmented HMC as an NDC device.

Each NDCore is tightly coupled to one of
the 16 vaults on an NDC device. The vault is
a high-bandwidth connection to DRAM
banks located directly above the NDCore.
The vault has a capacity of 256 Mbytes, pro-
viding enough room to store one data split,

intermediate MapReduce outputs, and any
code or data belonging to the MapReduce
threads and the runtime. The NDCore is con-
nected to a level-1 instruction and data (L1 I
and D) cache. On a cache miss, the data is
fetched directly from the DRAM arrays
directly above. We employ a simple prefetcher
for all evaluated systems, which prefetches five
total cache lines on a cache miss. In essence,
each NDCore and its vault represent a self-
contained mininode that can perform a single
Map or Reduce task with high efficiency.

Although the ISPASS paper uses a similar
topology to the baseline (host processor sock-
ets connected to daisy-chained NDC devi-
ces), in this article, we consider a board that
uses only NDC devices and eliminates the
host processor socket. This approach avoids
dealing with the requirement that inactive
cores be disabled to save power and enables
an apples-to-apples comparison with the
NDC-Module design.

We consider both mesh and ring networks
to connect the many NDC devices. The mesh
requires 2 times the number of SerDes links as
the ring network. In both cases, the network
serves only to facilitate the Shuffle phase.

NDC with modules

Our new approach to NDC replaces an
HMC-based memory system with a memory
system comprising commodity LPDDR2
%32 chips, which are connected via conven-
tional, non-SerDes memory interfaces to low-
power multicore processors. These processor
cores have the same performance and power
characteristics as NDCores. Unlike a tradi-
tional server board, where the processor socket
is on the motherboard and the memory chips
are on add-in DIMMs, the lightweight pro-
cessor and its associated memory are both sol-
dered onto add-in daughter card modules that
are in turn arranged into networks on the
motherboard (see Figure 1). We label this
approach NDC-Module. Map and Reduce
phases both again execute on the same pro-
cessors, with an explicit Shuffle phase between
them.

The HMC-based NDC devices are
expensive, because of their logic chip and the
3D manufacturing process. LPDDR2
DRAM is cheaper, but compared to NDC-
HMC, NDCModule offers less memory

bandwidth to each core, so the opportunity
for high performance is not as great. We
design the NDC-Module system to have the
same memory capacity and number of cores
as the NDC-HMC system.

There are two key insights behind the
NDC-Module system. First, a standard
DDRx channel exposes a small fraction of
DRAM chip bandwidth to the processor,
because each memory controller pin is
shared by many DRAM chips. Moving
computation to the DIMM, as in the
NDC-Module design, enables available
bandwidth to scale linearly with the number
of DRAM chips. Second, similar to the
HMCG, an entire cache line is fetched from a
single LPDDR2 chip, reducing activation
energy and overfetch.

NDC-Module cards. Each NDC-Module card
comprises eight nodes. Each node contains
one 8-Gbit LPDDR2 x32 chip and one four-
core energy-efficient CMP, similar to the
memory interface and core count of an Nvidia
Tegra 3 mobile processor. In total, each card
contains 8 Gbytes of LPDDR2 DRAM and
32 energy-efficient cores. This is the same
ratio of computation cores to DRAM as in

NDC-HMC.

LPDDR2 x32 DRAM chips. The NDC-
Module system uses commodity LPDDR2
DRAM chips instead of an HMC-based
memory system. We use LPDDR2 x32
chips, which can transmit 1,066 Mbits per
second (Mbps) per I/O wire, for a total
bandwidth of 4.26 GBps per chip. This
bandwidth is shared between read and write
operations and services only four energy-
efficient cores. Each node’s bandwidth is
independent of other nodes. This design
gives a higher per-core theoretical band-
width than that of the baseline EECore sys-
tem, but lower per-core bandwidth than the

NDC-HMC system.

NDC-Module motherboard organization. As
Figure 1 shows, we organize eight nodes on
a single add-in card for a total of 8 Gbytes
and 32 low-EPI cores. The NDC-Module
system comprises 32 such add-in modules
arranged on a single motherboard. We employ
PCI-Express 3.0 xX16 to connect all of the

DRAM

Computation

Figure 1. The NDC-Module architecture. A single card (top), and a fully

populated system board (bottom).

modules, offering a total of 31.5 GBps of

bandwidth with which to perform the Shuffle
phase.

Evaluation

In this article, we compare NDC-HMC,
with both ring- and mesh-network configura-
tions, to NDC-Module and to our optimized
socket-based baseline (EECore). All systems
have equal core counts (1,024) and memory
capacity (256 Gbytes, storing 1024 128-
Mbyte splits) but vary in the connections
between processor and memory and in how
NDC devices are networked. Figure 2 sum-
marizes all evaluated systems.

Methodology

We use a multistage CPU and memory
simulation infrastructure to simulate both
CPU and DRAM systems in detail.

To simulate the CPU cores (EE and
NDC), we use the Simics full system simula-
tor. To simulate the DRAM, we use the
USIMM DRAM simulator,'® which has been
modified to model an HMC architecture. We
assume that the DRAM core latency (Activate
+ Precharge + ColumnRead) is 40 ns.

Our CPU simulations model a single
Map or Reduce thread, and we assume that
throughput scales linearly as more cores are
used. For the EECore system, 512-core Sim-
ics simulations are not tractable, so we use a
trace-based version of the USIMM simulator
to model memory contention and then feed
these contention estimates into detailed
single-thread Simics simulations.

JuLy/Aucust 2014 4]

BIG DATA

IEEE MICRO

EECore system

CPU configuration

2x512 cores, 1 GHz

Core parameters

Single-issue in-order

L1 caches 32-Kbyte instruction and data caches, one cycle
NDC cores =
NDC-HMC system
NDC cores 1,024 cores, 1 GHz
Core parameters Single-issue in-order
L1 caches 32-Kbyte instruction and data caches, one cycle

Interdevice connection

8x8 mesh or 1D ring

NDC-Module system

Add-In Cards (AIC)

32

AIC configuration

8 NDC-Module nodes

NDC-Module node

4 low-EPI cores, 1 Gbyte

Total NDC cores

1,024 cores, 1 GHz

Core parameters

Single-issue in-order

L1 caches

32-Kbyte instruction and data caches, one cycle

Inter-AlC connection

PCI-Express 3.0 x 16

Figure 2. Parameters for the EECore, NDC-HMC, and NDC-Module systems we evaluated.
All evaluated systems have the same number of processor cores and total computational

capability.

All power and energy evaluations consider
workload execution times and component
activity rates.

We assume that an HMC’s four SerDes
links consume a total of 5.78 W per HMC,
and the remainder of the logic layer con-
sumes 2.89 W. Total maximum DRAM array
power per HMC is assumed to be 4.7 W for
an 8-DRAM die.” We approximate back-
ground DRAM array power at 10 percent of
this maximum value, or 0.47 W according to
the Micron power calculator, and the remain-
ing DRAM power depends on DRAM activ-
ity. Energy is consumed in the arrays on each
access at the rate of an additional 3.7 pJ/bit.

For LPDDR2, bit-transport energy is
40 pJ/bit, and when operating at peak band-
width, one LPDDR2 chip consumes 1.36 W
of power. Background power for LPDDR2
chips is assumed to be 42.3 mW.

For data that is moved to the processor
socket, we add 4.7 pJ/bit to navigate the
global wires between the memory controller
and the core. This estimate is conservative,
because it ignores intermediate routing ele-
ments and favors the EECore baseline.

For the core power estimates, we assume
that 25 percent of the 80-mW core peak
power can be attributed to leakage (20 mW).
The dynamic power for the core varies line-
arly between 30 and 60 mW, based on IPC

(because many circuits are switching even
during stall cycles).

Workloads

We evaluate the Map and Reduce phases
of five MapReduce workloads—namely,
Group-By Aggregation (GroupBy), Range
Aggregation (RangeAgg), Equi-Join Aggrega-
ton (EquiJoin), Word Count Frequency
(WordCount), and Sequence Count Fre-
quency (SequenceCount).

GroupBy and EquiJoin both involve sort-
ing as part of their Map phase, but the
RangeAgg workload is simply a high-band-
width Map scan through the input split.
These first three workloads use the 1998
World Cup website log as input.'*

WordCount and SequenceCount find the
frequency of words or sequences of words in
large HTML files, and as input we use Wiki-
pedia HTML data."> These workloads also
involve sorting, but parsing and sorting text
items is more computationally intensive than
sorting integers, so these workloads are more
CPU-bound than the others.

When executing on the EECore system, a
RangeAgg MapReduce task takes on the order
of milliseconds to complete, GroupBy and
EquiJoin take on the order of seconds to com-
plete, and WordCount and SequenceCount
take on the order of minutes to complete.

For each workload, we have also added
1 ms execution time overheads for beginning
a new Map phase, transitioning between
Map and Reduce phases, and for completing
a job after the Reduce phase. This conserva-
tively models the MapReduce runtime over-
heads and the cost of cache flushes between
phases. Even if these estimates are off by
three orders of magnitude, they would still
have a negligible impact on the longer run-
ning workloads.

Performance results

We evaluate the proposed NDC systems
in the context of bandwidth usage, absolute
MapReduce and energy
efficiency.

performance,

Bandwidth

Unlike the EECore system, the NDC sys-
tems are not limited by host CPU processor
socket bandwidth during Map phase execu-
tion (see Figure 3). In RangeAgg, we see that
the NDC-HMC system can attain an average
of 3.4 Tbytes per second (TBps) of aggregate
read bandwidth, and the NDC-Module sys-
tem can attain an average of 580 GBps aggre-
gate read bandwidth, but the EECore system
is limited to only using 260 GBps of aggre-
gate read bandwidth.

We see that RangeAgg is memory band-
width bound, that WordCount and Sequen-
ceCount are CPU-bound, and that GroupBy
and EquiJoin fall somewhere in between. All
of the performance advantage, and much of
the energy advantage, of the NDC systems
over the EECore system comes from high-
bandwidth access to memory.

MapReduce performance

Figure 4 shows how execution time is split
between Map, Shuffle, and Reduce phases
for each workload and shows the relative exe-
cution times for each system. Map phase per-
formance directly tracks with the memory
bandwidth numbers discussed previously for
each system and workload, so the NDC-
HMC systems have the highest performance,
followed by the NDC-Module system.

The Shuffle phase generally takes a very
small amount of overall MapReduce execu-
tion time. Only when executing the GroupBy

Mapper read bandwidth
3,(51010) = === 2m=m0roaecae oo RN o

EECore = NDC-HMC =NDC-Module

)
@
o
o
e)

2,500
2,000
1,500
1,000

Bandwdith (Gbytes/s

500

RangeAgg GroupBy

Equidoin

WordCount Sequence

Count

Figure 3. Average read bandwidth usage during Map phase for an entire
system. There are no shared memory interfaces in NDC-HMC, so
bandwidth usage is limited only by processor performance.

and EquiJoin workloads does the Shuffle
phase have a nontrivial impact on perform-
ance. However, even in the worst case, per-
formance for EquiJoin is hurt by only 8.4
percent when using NDC-HMC Ring, ver-
sus NDC-HMC Mesh. The EECore system
does not use the Shuffle phase at all. Instead,
the EE system uses long-latency random
accesses to memory during the Reduce
phase.

Compared to the EECore baseline,
NDC-HMC Mesh and NDC-HMC Ring
both reduce execution time by 23.7 percent
(WordCount) to 92.7 percent (RangeAgg).
NDC-Module reduces execution time over
the EECore system by 16.5 percent (Word-
Count) to 55.5 percent (RangeAgg).

Energy consumption

We consider both static and dynamic
energy in evaluating the energy and power
consumption of EE and NDC systems. Fig-
ure 5 shows the breakdown in energy con-
sumed by the memory subsystem and the
processing cores. All three NDC systems
improve on the energy efficiency of the EE
baseline, in large part because of improved
task execution times.

NDC-HMC Ring improves on the
energy efficiency of NDC-HMC Mesh be-
cause it uses fewer SerDes links. The gap
between the Mesh and Ring systems is nar-
rowest for GroupBy and EquiJoin, which
spend longer in their Shuffle phase—the only

JuLy/Aucust 2014 [H]

BIG DATA

Normalized execution times

"""""""""" .'"""""""'""A"""""'""""'-""""""":
e - - Wi
[RGN USSR RENNY BN BN DN RaRReE S B B N
olc| oo olc|olo olc |o|o olc oo olc oo
olBlE|= 3| BI=E = 6|8 £ |2 o|l8E|= S| & |E =
Ols|x|3 O|l=s|x|8 O|ls | |8 Ols |xZ|T O|=s |x |8
| © | Q | o |] | Q
lolg|z| [Elo|g|3| [EioRE| |Hi2|glz| |Ele|glz
=|T|O = (T|O = T |O =T |0 =T |0
Tt |t T |°r O IT|rt|AO T |r |
0 = & 'R TS ‘= oK'z © Q"=
5 g 5 E) B S g 5 &
z Z =2 = = = =z Z =z =
RangeAgg GroupBy Equidoin WordCount SequenceCount

m Reduce m Shuffle m Map

Figure 4. Execution time for an entire MapReduce job normalized to the EE system. Shuffle
time does not have a large impact on performance, even in systems with low Shuffle

bandwidth.

Normalized task energy

elgl2lel lelglele] [elgl2le] [glgl2g] [glgl2le
(e} = = (e} = || = (o) i || 2 o = || 2 o = | 2
Q2|8 [221Z(8] IQIZ1E|B] |9I2(=18] 8|23
dio|gl3| (Elo|g|3| |Bo|g|Z| |H|e|g|E] [E|o|g|z
Z1Z|8 Z1Z8 Z1Z8 Z1T18 Z|Z|8
O =Z 0'R'=Z o'Q'Z o'{'z O'2'=
a a a a a

> = > = 2 = S =z = =

RangeAgg GroupBy Equidoin WordCount SequenceCount

m Computation energy = Memory energy

Figure 5. Energy consumed by the memory and processing resources, normalized to the EE
system. All three NDC systems improve on the EE baseline’s energy efficiency.

compared to an HMC-based memory,
but lower background power because of
its lack of a SerDes interface. The CPU-
bound WordCount and SequenceCount

phase where having more SerDes links helps
performance.

The NDC-Module system uses LPDDR2,
which has a higher energy cost per access,

5[] IEEE MICRO

workloads have many opportunities for
the LPDDR2 interface to be idle, so
NDC-Module uses the least energy in these
two workloads.

ata parallel workloads like MapReduce

benefit when useable memory band-
width can be extracted from every memory
chip in the system simultaneously. In this
article, we have focused only on executing a
single MapReduce task on a single, isolated
system, rather than on a cluster of connected
systems. Future work will seek to verify that
NDC performance scales to larger clusters,
and that neither communication nor soft-
ware overheads outweigh the benefit offered
by NDC. Also, the use of commodity mem-
ory in the NDC-Module architecture could
lead to substantial cost savings compared to
NDC-HMC; however, this benefit has not
yet been quantified. Finally, iterative Map-
Reduce, and other non-MapReduce applica-
tion types, offer additional challenges and
opportunities for NDC architectures that are
unaddressed by this article, but which are
worth further exploration. Nicko

References
1. J. Dean and S. Ghemawat, “MapReduce:
Simplified Data Processing on Large
Clusters,” Proc. 6th Conf. Operating Systems
Design & Implementation, 2004, article 10.

2. M. Zaharia et al., “Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing,” Proc. 9th
USENIX Conf. Networked Systems Design
and Implementation, 2012, article 2.

3. J. Jeddeloh and B. Keeth, “Hybrid Memory
Cube—New DRAM Architecture Increases
Density and Performance,” Proc. Symp.
VLS| Technology, 2012, pp. 87-88.

4. S.Pugsley etal., “NDC: Analyzing the Impact
of 3D-Stacked Memory + Logic Devices on
MapReduce Workloads,” to be published in
Proc. IEEE Int’l Symp. Performance Analysis
of Systems and Software (ISPASS 14), 2014.

5. M. Hall et al., “"Mapping Irregular Applica-
tions to DIVA, a PIM-Based Data-Intensive
Architecture,” Proc. ACM/IEEE Conf. Super-
computing, 1999, p. 57.

6. D. Patterson et al., “A Case for Intelligent
DRAM: IRAM," IEEE Micro, vol. 17, no. 2,
1997, pp. 34-44.

7. Y. Kang et al, "FlexRAM: Toward an
Advanced Intelligent Memory System,”
Proc. Int'l Conf. Computer Design, 1999,
pp. 192-201.

8. T. Kgil et al., "PicoServer: Using 3D Stack-
ing Technology to Enable a Compact Energy
Efficient Chip Multiprocessor,” Proc. 12th
Int’l Conf. Architectural Support for Pro-
gramming Languages and Operating Sys-
tems, 2006, pp. 117-128.

9. Q. Guoetal,, "AC-DIMM: Associative Com-
puting with STT-MRAM," Proc. 40th Ann.
Int’l Symp. Computer Architecture, 2013,
pp. 189-200.

10. P. Ranganathan, “From Microprocessors to
Nanostores: Rethinking Data-Centric Sys-
tems,” Computer, Jan. 2011, pp. 39-48.

11. A. Caulfield, L. Grupp, and S. Swanson,
“Gordon: Using Flash Memory to Build
Fast, Power-Efficient Clusters for Data-
Intensive Applications,” Proc. 14th Int’| Conf.
Architectural Support for Programming Lan-
guages and Operating Systems, 2009,
pp. 217-228.

12. A. Gutierrez et al., “Integrated 3D-Stacked
Server Designs for Increasing Physical Den-
sity of Key-Value Stores,” Proc. 19th Int’l
Conf. Architectural Support for Program-
ming Languages and Operating Systems,
2014, pp. 485-498.

13. N. Chatterjee et al., USIMM: The Utah
Simulated Memory Module, tech. report
UUCS-12-002, Univ. of Utah, 2012.

14. M. Arlitt and T. Jin, 7998 World Cup Web
Site Access Logs, Aug. 1998, ftp://ita.ee.lbl.
gov/html/contrib/WorldCup.html.

15. F. Ahmad, "PUMA Benchmarks and Data-
set Downloads,” https://sites.google.com/
site/farazahmad/pumadatasets.

Seth H. Pugsley is a PhD candidate in com-
puter science at the University of Utah. His
research focuses on memory system design,
including caching policies, hardware pre-
fetching, main memory system organiza-
tion, and near-data processing. Pugsley has a

JuLy/Aucust 2014 5]

BIG DATA

BS in computer science from the University

of Utah.

Jeffrey Jestes is a senior software engineer
at Cerner. His research interests include
summarizing massive data in distributed
and parallel frameworks; ranking, monitor-
ing, and tracking big data; and scalable
query processing in large databases. Jestes
has a PhD in computing from the Univer-

sity of Utah.

Rajeev Balasubramonian is an associate
professor in the School of Computing at the
University of Utah. His research focuses on
memory systems and interconnects. Balasu-
bramonian has a PhD in computer science
from the University of Rochester. He is a
member of IEEE.

Vijayalakshmi Srinivasan is a research staff
member at the IBM Thomas J. Watson Re-

DVERTISER SALES INFORMATION

Advertising Personnel

Marian Anderson

Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 816 2139
Fax:+1714 821 4010

Sandy Brown

Sr. Business Development Mgr.
Email: sbrown@computer.org
Phone: +1 714 816 2144

Fax: +1 714 821 4010

Advertising Sales Representatives
(display)

Central, Northwest, Far East:

Eric Kincaid

Email: e kincaid@computer.org
Phone: +1 214 673 3742

Fax: +1 888 886 8599

Northeast, Midwest, Europe,
Middle East:

Ann & David Schissler

Email: a.schissler@computer.org,
d.schissler@computer.org
Phone: +1 508 394 4026

Fax: +1 508 394 1707

Southwest, California:

Mike Hughes

Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast:

Heather Buonadies

Email: h.buonadies@computer.org
Phone: +1 973 585 7070

Fax: +1 973 585 7071

Advertising Sales
Representative

(Classified Line)

Heather Buonadies

Email: h.buonadies@computer.org
Phone: +1 973 304 4123

Fax: +1 973 585 7071

Advertising Sales
Representative (Jobs Board)
Heather Buonadies

Email: h.buonadies@computer.org
Phone: +1 973 304 4123

Fax: +1 973 585 7071

IEEE MICRO

search Center. Her research focuses on com-
puter architecture, particularly processor and
memory microarchitecture, data-center archi-
tectures, and big data analytics. Srinivasan has
a PhD in computer science from the Univer-
sity of Michigan. She is a senior member of
IEEE.

Alper Buyuktosunoglu is a research staff
member in the Reliability and Power-Aware
Microarchitecture department at the IBM
Thomas J. Watson Research Center. His
research focuses on high-performance and
power- and reliability-aware computer archi-
tectures. Buyuktosunoglu has a PhD in elec-
trical and computer engineering from Univer-
sity of Rochester. He is an IBM Master
Inventor, a senior member of IEEE, and an
editorial board member of /EEE Micro.

Al Davis is a professor in the School of
Computing at the University of Utah. He is
also a part-time visiting scholar at HP Labo-
ratories. His research interests include com-
puter architecture, VLSI, and photonics.
Davis has a PhD in computer science from
the University of Utah.

Feifei Li is an associate professor in the
School of Computing at the University of
Utah. His research interests include database
and data management systems and big data
analytics. Li has a PhD in computer science
from Boston University.

Direct questions and comments about this
article to Seth H. Pugsley, 50 S. Central Cam-
pus Drive, Room 3190, Salt Lake City, Utah
84112; pugsley@cs.utah.edu.

. Selected CS articles and columns are also
Cn available for free at hitp;//ComputingNozw.

computer.org.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

