
OpenTag: Open Attribute Value Extraction from Product Profiles

Guineng Zheng
§
, Subhabrata Mukherjee

†
, Xin Luna Dong

†
, Feifei Li

§

§
University of Utah

†
Amazon

{guineng, lifeifei}@cs.utah.edu, {subhomj, lunadong}@amazon.com

ABSTRACT
Extraction of missing attribute values is to find values describing

an attribute of interest from a free text input. Most past related

work on extraction of missing attribute values work with a closed

world assumption with the possible set of values known beforehand,

or use dictionaries of values and hand-crafted features. How can

we discover new attribute values that we have never seen before?

Can we do this with limited human annotation or supervision? We

study this problem in the context of product catalogs that often

have missing values for many attributes of interest.

In this work, we leverage product profile information such as

titles and descriptions to discover missing values of product at-

tributes. We develop a novel deep tagging model OpenTag for this

extraction problem with the following contributions: (1) we for-

malize the problem as a sequence tagging task, and propose a joint

model exploiting recurrent neural networks (specifically, bidirec-

tional LSTM) to capture context and semantics, and Conditional

Random Fields (CRF) to enforce tagging consistency; (2) we develop

a novel attention mechanism to provide interpretable explanation

for our model’s decisions; (3) we propose a novel sampling strategy

exploring active learning to reduce the burden of human annotation.

OpenTag does not use any dictionary or hand-crafted features as in

prior works. Extensive experiments in real-life datasets in different

domains show that OpenTag with our active learning strategy dis-

covers new attribute values from as few as 150 annotated samples

(reduction in 3.3x amount of annotation effort) with a high f-score

of 83%, outperforming state-of-the-art models.
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Figure 1: Snapshot of a product profile.

1 INTRODUCTION
Product catalogs are a valuable resource for eCommerce retailers

that allow them to organize, standardize, and publish information

to customers. However, this catalog information is often noisy and

incomplete with a lot of missing values for product attributes. An

interesting and important challenge is to supplement the catalog

with missing value for attributes of interest from product descrip-

tion and other related product information, especially with values

that we have never seen before.

Informal Problem 1. Given a set of target attributes (e.g., brand,
flavor, smell), and unstructured product profile information like titles,
descriptions, and bullets: how can we extract values for the attributes
from text?What if some of these values are new, like emerging brands?

For a concrete example, refer to Figure 1 showing a snapshot of

the product profile of a ‘dog food’ in Amazon.comwith unstructured

data such as title, description, and bullets. The product title “Variety

Pack Fillet Mignon and Porterhouse Steak Dog Food (12 Count)”

contains two attributes of interest namely size and flavor. We want

to discover corresponding values for the attributes like “12 count"

(size), “Fillet Mignon” (flavor) and “Porterhouse Steak” (flavor).

Challenges. This problem presents the following challenges:

Open World Assumption (OWA). Previous works for attribute
value extraction [8, 16, 24, 25] work with a closed world assumption
which uses a limited and pre-defined vocabulary of attribute values.

Therefore, these cannot discover emerging attribute values (e.g.,

new brands) of newly launched products that have not been en-

countered before. OWA renders traditional multi-class classification

techniques an unsuitable choice to model this problem.

Stacking of attributes and irregular structure. Product profile infor-
mation in title and description is unstructured with tightly packed

https://doi.org/10.1145/3219819.3219839
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details about the product. Typically, the sellers stack several prod-

uct attributes together in the title to highlight all the important

aspects of a product. Therefore, it is difficult to identify and segment

particular attribute values — that are often multi-word phrases like

“Fillet Mignon” and “Porterhouse Steak”. Lack of regular grammati-

cal structure renders NLP tools like parsers, part-of-speech (POS)

taggers, and rule-based annotators [3, 18] less useful. Additionally,

they also have a very sparse context. For instance, over 75% of

product titles in our dataset contain less than 15 words while over

60% bullets in descriptions contain less than 10 words.

Limited Annotated Data. State-of-the art performance in attribute

value extraction has been achieved by neural networks [11, 13, 15,

17] that are data hungry requiring several thousand annotated in-

stances. This does not scale up with thousands of product attributes

for every domain, each assuming several thousand different values.

This gives rise to our second problem statement.

Informal Problem 2. Can we develop supervised models that
require limited human annotation? Additionally, can we develop
models that give intepretable explanation for its decisions, unlike
black-box methods that are difficult to debug?

Contributions. In this paper, we propose several novel techniques

to address the above challenges. We formulate our problem as a

sequence tagging task similar to named entity recognition (NER) [4]

that have been traditionally used to identify attributes like names

of persons, organizations, and locations from unstructured text.

We leverage recurrent neural networks like Long Short Term

Memory Networks (LSTM) [10] to capture the semantics and context
of attributes through distributed word representations. LSTM’s are

a natural fit to this problem due to their ability to handle sparse

context and sequential nature of the data where different attributes

and values can have inter-dependencies. Although LSTM’s capture

sequential nature of tokens, they overlook the sequential nature of

tags. Therefore, we use another sequential model like conditional

random fields (CRF) [14] to enforce tagging consistency and extract

cohesive chunks of attribute values (e.g., multi-word phrases like ‘fil-

let mignon’) . Although state-of-the-art NER systems [11, 13, 15, 17]

exploit LSTM and CRF, they essentially use them as black box tech-

niques with no explanations. In order to address the interpretability
challenge, we develop a novel attention mechanism to explain the

model’s decisions that highlights importance of key concepts rel-

ative to their neighborhood context. Unlike prior works [11, 13]

OpenTag does not use any dictionary or hand-crafted features.

However, neural network models come with an additional chal-

lenge since they require much more annotated training data than

traditional machine learning techniques because of their huge pa-

rameter space; and annotation is an expensive task. Therefore, we

explore active learning to reduce the burden of human annotation.

Overall, we make the following novel contributions:

• Model:We model attribute value extraction as a sequence tag-

ging task that supports the Open World Assumption (OWA) and

works with unstructured text and sparse contexts as in product

profiles. We develop a novel model OpenTag leveraging CRF,

LSTM, and an attention mechanism to explain its predictions.

• Learning:We explore active learning and novel sampling strate-

gies to reduce the burden of human annotation.

• Experiments: We perform extensive experiments in real-life

datasets in different domains to demonstrate OpenTag’s efficacy.

It discovers new attribute values from as few as 150 annotated

samples (reduction in 3.3x amount of annotation effort) with a

high f-score of 83%, outperforming state-of-the-art models.

To the best of our knowledge, this is the first end-to-end frame-

work for open attribute value extraction addressing key real-world

challenges for modeling, inference, and learning.

The rest of the paper is organized as follows: Section 2 presents

a formal description and overview where we introduce sequence

tagging for open attribute value extraction. Section 3 presents a

detailed description of OpenTag using LSTM, CRF, and a novel at-

tention mechanism. We discuss active learning strategies in Section

4 followed by extensive evaluations in real-life datasets in Section

5. Lastly, Section 6 presents related work followed by conclusions.

2 OVERVIEW
2.1 Problem Definition
Given a set of product profiles presented as unstructured text data

(containing information like titles, descriptions, and bullets), and a

set of target attributes (e.g., brand, flavor, size), our objective is to
extract corresponding attribute values from unstructured text. We

have an OWA assumption where we want to discover new attribute

values that may not have been encountered before. For example,

given the following inputs,

• target attributes: brand, flavor, and size
• product title: “PACK OF 5 - CESAR Canine Cuisine Variety

Pack Fillet Mignon and Porterhouse Steak Dog Food (12

Count)"

• product description: “Variety pack includes: 6 trays of Fillet

mignon flavor in meaty juices ..."

we want to extract ‘Cesar’ (brand), ‘Fillet Mignon’ and ‘Porterhouse

Steak’ (flavor) , and ‘6 trays’ (size) as the corresponding values as
output from our model. Formally,

Open Attribute Value Extraction. Given a set of products I ,
corresponding profiles X = {xi : i ∈ I }, and a set of attributes A =
{a1, . . . ,am }, extract all attribute-valuesVi = ⟨{vi, j,1, . . . ,vi, j, ℓi, j },aj ⟩
for i ∈ I and j ∈ [1,m] with an open world assumption (OWA); we
usevi, j to denote the set of values (of size ℓi, j ) for attribute aj for the
ith product, and the product profile (title, description, bullets) consists
of a sequence of words/tokens xi = {wi,1,wi,2, · · ·wi,ni }.

Note that we want to discover multiple values for a given set of

attributes. For instance, in Figure 1 the target attribute is flavor and
it assumes two values ‘fillet mignon’ and ‘porterhouse steak’ for

the given product ‘cesar canine cuisine’.

2.2 Sequence Tagging Approach
A natural approach to cast this problem into a multi-class classifi-

cation problem [16] — treating any target attribute-value as a class

label — suffers from the following problems: (1) Label scaling prob-
lem: this method does not scale well with thousands of potential

values for any given attribute which increases the amount of anno-

tated training data; (2) Closed world assumption: it cannot discover
any new value outside the set of labels in the training data; (3) Label
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independence assumption: it treats each attribute-value independent

of the other, thereby, ignoring any dependency between them. This

is problematic as many attribute-values frequently co-occur, and

the presence of one of them may indicate the presence of the other.

For example, the flavor-attribute values ‘fillet mignon’ and ‘porter-

house steak’ often co-occur. Also, the brand-attribute value ‘cesar’
often appears together with the above flavor-attribute values.

Based on these observations, we propose a different approach

that models this problem as a sequence tagging task.

2.2.1 Sequence Tagging. In order to model the above dependen-

cies between attributes and values, we adopt the sequence tagging

approach. In particular, we associate a tag from a given tag-set to

each token in the input sequence. The objective is to jointly predict

all the tags in the input sequence. In case of named entity recogni-

tion (NER), the objective is to tag entities like (names of) persons,

locations, and organizations in the given input sequence. Our prob-

lem is a specific case of NER where we want to tag attribute values

given an input sequence of tokens. The idea is to exploit distribu-
tional semantics, where similar sequences of tags for tokens identify

similar concepts.

2.2.2 Sequence Tagging Strategies. There are several different
tagging strategies, where “BIOE" is the most popular one. In BIOE

tagging strategy, ‘B’ represents the beginning of an attribute, ‘I’

represents the inside of an attribute, ‘O’ represents the outside of

an attribute, and ‘E’ represents the end of an attribute.

Other popular tagging strategies include “UBIOE" and “IOB".

“UBIOE" has an extra tag ‘U’ representing the unit token tag that

separates one-word attributes from multi-word ones. While for

“IOB" tagging, ‘E’ is omitted since ‘B’ and ‘I’ are sufficient to express

the boundary of an attribute.

Table 1: Tagging Strategies

Sequence duck , fillet mignon and ranch raised lamb flavor
BIOE B O B E O B I E O

UBIOE U O B E O B I E O

IOB B O B I O B I I O

Table 1 shows an example of the above tagging strategies. Given

a sequence “duck, fillet mignon and ranch raised lamb flavor" com-

prising of 9 words/tokens (including the comma), the BIOE tagging

strategy extracts three flavor-attributes “duck", “fillet mignon" and

“ranch raised lamb" represented by ‘B’, ‘BE’ and “BIE" respectively.

2.2.3 Advantages of Sequence Tagging. The sequence tagging
approach enjoys the following benefits: (1) OWA and label scaling.
A tag is associated to a token, and not a specific attribute-value, and,

therefore scales well with new values. (2) Discovering multi-word
attribute values. The above strategy extracts sequence of tokens i.e.
multi-word values as opposed to identifying single-word values.

(3) Discovering multiple attribute values. The tagging strategy can

be extended to discover values of multiple attributes at the same

time if they are tagged differently from each other. For instance, to

discover two attributes ‘flavor’ and ‘brand’ jointly, we can tag the

given sequence with tags as ‘Flavor-B’, ‘Flavor-I’ ,‘Flavor-O’, and ‘Flavor-

E’ to distinguish from ‘Brand-B’, ‘Brand-I’, ‘Brand-O’, and ‘Brand-E’.

Formulation of our approach. Following the above discussions,

we can reduce our original problem of Open Attribute Value Extrac-
tion to the following Sequence Tagging Task:

LetY be the tag set containing all the tags decided by the tagging

strategy. If we choose BIOE as our tagging strategy, then Y =
{B, I ,O,E}. Tag set of other strategies can be derived following a

similar logic. Our objective is to learn a taggingmodel F (x )→y that

assigns each tokenwi j ∈W of the input sequence xi ∈ X of the ith

product profile with a corresponding tag yi j ∈ Y . The training set

for this supervised classification task is given by S =
{
(xi , yi )

}T
i=1.

This is a global tagging model that captures relations between

tags and models the entire sequences as a whole. We denote our

framework as OpenTag.

3 OPENTAGMODEL: EXTRACTION VIA
SEQUENCE TAGGING

OpenTag builds upon state-of-the-art named entity recognition

(NER) systems [11, 13, 15, 17] that use bidirectional LSTM and

conditional random fields, but without using any dictionary or

hand-crafted features as in [11, 13]. In the following section, we

will first review these building blocks, and how we adapt them
for attribute value extraction. Thereafter, we outline our novel

contributions of using Attention, end-to-end OpenTag architecture,

and active learning to reduce requirement of annotated data.

3.1 Bidirectional LSTM (BiLSTM) Model
Recurrent neural networks (RNN) capture long range dependencies

between tokens in a sequence. Long Short Term Memory Networks

(LSTM) were developed to address the vanishing gradient problems

of RNN. A basic LSTM cell consists of various gates to control the

flow of information through the LSTM connections. By construc-

tion, LSTM’s are suitable for sequence tagging or classification

tasks where it is insensitive to the gap length between tags unlike

RNN or Hidden Markov Models (HMM).

Given an input et (say, the word embedding of token xt ∈ X ), an

LSTM cell performs various non-linear transformations to generate

a hidden vector state ht for each token at each timestep t .
Bidirectional LSTM’s are an improvement over LSTM that cap-

ture both the previous timesteps (past features) and the future

timesteps (future features) via forward and backward states respec-

tively. In sequence tagging tasks, we often need to consider both the

left and right contexts jointly for a better prediction model. Corre-

spondingly, two LSTM’s are used, one with the standard sequence,

and the other with the sequence reversed. Correspondingly, there

are two hidden states that capture past and future information that

are concatenated to form the final output.

Using the hidden vector representations from forward and back-

ward LSTM (

−→
ht and

←−
ht respectively) along with a non-linear trans-

formation, we can create a new hidden vector as: ht = σ ([
−→
ht ,
←−
ht ]).

Finally, we add a softmax function to predict the tag for each

token xt in the input sequence x = ⟨xt ⟩ given hidden vector ⟨ht ⟩
at each timestep:

Pr(yt = k ) = softmax(ht ·Wh ), (1)

whereWh is the variable matrix which is shared across all the

tokens, and k ∈ {B, I ,O,E}. For each token, the tag with the highest
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probability is generated as the output tag. Using the ground-labels

we can train the above BiLSTM network to learn all the parameters

W ,H using backpropagation.

Drawbacks for sequence tagging: However, the above model

does not consider the coherency of tags during prediction. The

prediction for each tag is made independent of the other tags. The

BiLSTM model considers sequential nature of the given input se-
quence, but not the output tags. For example, given our set of tags

{B, I ,O,E} the model may predict a mis-aligned tag sequence like

{B,O, I ,E} leading to an incoherent attribute extraction. In order

to avert this problem, we use Conditional Random Fields (CRF) to

also consider the sequential nature of the predicted tags.

3.2 Tag Sequence Modeling with Conditional
Random Fields and BiLSTM

3.2.1 Conditional Random Fields (CRF). For sequence labeling
tasks, it is important to consider the association or correlation be-

tween labels in a neighborhood, and use this information to predict

the best possible label sequence given an input sequence. For exam-

ple, if we already know the starting boundary of an attribute (B),

this increases the likelihood of the next token to be an intermediate

(I) one or end of boundary (E), rather than being outside the scope

of the attribute (O). Conditional Random Fields (CRF) allow us to
model the label sequence jointly.

Given an input sequence x = {x1,x2, · · · xn } and corresponding

label sequence y = {y1,y2, · · ·yn }, the joint probability distribution

function for the CRF can be written as the conditional probability:

Pr(y |x ;Ψ) ∝ exp

( K∑
k=1

ψk fk (y,x )

)
,

where fk (y,x ) is the feature function, ψK is the corresponding

weight to be learned, K is the number of features, and Y is the set

of all possible labels. Traditional NER leverages several user defined

features based on the current and previous token like the presence

of determiner (‘the’), presence of upper-case letter, POS tag of the

current token (e.g., ‘noun’) and the previous (e.g., ‘adjective’) etc.

Inference for general CRF is intractable with a complexity of

|Y |n where n is the length of the input sequence and |Y | is the

cardinality of the label set. We use linear-chain CRF’s to avoid this

problem. We constrain the feature functions to depend only on

the neighboring tags yt and yt−1 at timestep t . This reduces the
computational complexity to |Y |2. We can write the above equation

as:

Pr(y |x ;Ψ) ∝
T∏
t=1

exp

( K∑
k=1

ψk fk (yt−1,yt ,x )

)
.

3.2.2 Bidirectional LSTMandCRFModel. Aswe described above,
traditional CRF models use several manually defined syntactic fea-

tures for NER tasks. In this work, we combine LSTM and CRF to

use semantic features like the distributed word representations. We

do not use any hand-crafted features like in prior works [11, 13]. In-

stead, the hidden states generated by the BiLSTMmodel are used as

input features for the CRF model. We incorporate an additional non-

linear layer to weigh the hidden states that capture the importance

of different states for the final tagging decision.

The BiLSTM-CRF network can use (i) features from the previous

as well as future timesteps, (ii) semantic information of the given

input sequence encoded in the hidden states via the BiLSTM model,

and (iii) tagging consistency enforced by the CRF that captures

dependency between the output tags. The objective now is to predict

the best possible tag sequence of the entire input sequence given the

hidden state information ⟨ht ⟩ as features to the CRF. The BiLSTM-

CRF network forms the second component for our model.

Pr(y |x ;Ψ) ∝
T∏
t=1

exp

( K∑
k=1

ψk fk (yt−1,yt , ⟨ht ⟩)

)
.

3.3 OpenTag: Attention Mechanism
In this section, we describe our novel attention mechanism that can

be used to explain the model’s tagging decision unlike the prior

NER systems [11, 13, 15, 17] that use BiLSTM-CRF as black-box.

In the above BiLSTM-CRF model, we consider all the hidden

states generated by the BiLSTM model to be important when they

are used as features for the CRF. However, not all of these states are

equally important, and some mechanism to make the CRF aware of

the important ones may result in a better prediction model. This is

where attention comes into play.

The objective of the attention mechanism is to highlight impor-

tant concepts, rather than focusing on all the information. Using

such mechanism, we can highlight the important tokens in a given

input sequence responsible for the model’s predictions as well as

performing feature selection. This has been widely used in the

vision community to focus on a certain region of an image with

“high resolution” while perceiving the surrounding image in “low

resolution” and then adjusting the focal point over time.

In the Natural Language Processing domain, attention mecha-

nism has been used with great success in Neural Machine Transla-

tion (NMT) [1]. NMT systems comprise of a sequence-to-sequence

encoder and decoder. Semantics of a sentence is mapped into a

fixed-length vector representation by an encoder, and then the

translation is generated based on that vector by a decoder. In the

original NMT model, the decoder generates a translation solely

based on the last hidden state. But it is somewhat unreasonable to

assume all information about a potentially very long sentence can

be encoded into a single vector, and that the decoder will produce a

good translation solely based on that. With an attention mechanism

instead of encoding the full source sequence into a fixed-length vec-

tor, we allow the decoder to attend to different parts of the source

sentence at each step of the output generation. Importantly, we let

the model learn what to attend to based on the input sentence and

what it has produced so far.

We follow a similar idea. In our setting, the encoder is the un-

derlying BiLSTM model generating the hidden state representation

⟨ht ⟩. We introduce an attention layer with an attention matrix A to

capture the similarity of any token with respect to all the neighbor-

ing tokens in an input sequence. The element αt,t ′ ∈ A captures

the similarity between the hidden state representations ht and ht ′

of tokens xt and xt ′ at timesteps t and t ′ respectively. The attention
mechanism is implemented similar to an LSTM cell as follows:
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дt,t ′ = tanh(Wдht +Wд′ht ′ + bд ), (2)

αt,t ′ = σ (Waдt,t ′ + ba ), (3)

where, σ is the element-wise sigmoid function.Wд andWд′ are

the weight matrices corresponding to the hidden states ht and

ht ′ . Wa is the weight matrix corresponding to their non-linear

combination. bд and ba are the bias vectors.

The attention-focused hidden state representation lt of a token
at timestep t is given by the weighted summation of the hidden

state representation ht ′ of all other tokens at timesteps t ′, and their
similarity αt,t ′ to the hidden state representation ht of the current
token. Essentially, lt dictates how much to attend to a token at any

timestep conditioned on their neighborhood context, and, therefore,
is a measure of its importance. This can be used to highlight the

model’s final tagging decision based on token importance.

lt =
n∑

t ′=1
αt,t ′ · ht ′ . (4)

In Section 5.4, we discuss how OpenTag generates interpretable

explanations of its tagging decision using this attention matrix.

3.4 Word Embeddings
Neural word embeddings map words that co-occur in a similar con-

text to nearby points in the embedding space [19]. This forms the

first layer of our architecture. Compared to bag-of-words (BOW)

features, word embeddings capture both syntactic and semantic

information with low-dimensional and dense word representations.

The most popular tools for this purpose are Word2Vec [19] and

GloVe [22] which are trained over large unlabeled corpus. Pre-

trained embeddings have a single representation for each token.

This does not serve our purpose as the same word can have a differ-

ent representation in different contexts. For instance, ‘duck’ (bird)

as a flavor-attribute value should have a different representation

than ‘duck’ as a brand-attribute value. Therefore, we learn the word

representations conditioned on the attribute tag (e.g., ‘flavor’) which

generates different representations for different attributes. In our

setting, each token at time t is associated with a vector et ∈ Rd

where d is the embedding dimension. The elements in the vector

are latent, and considered as parameters to be learned.

3.5 OpenTag Architecture: Putting All Together
Figure 2 shows the overall architecture of OpenTag. The first layer
is the word embedding layer that generates an embedding vector et
for each token xt in the input sequence x . This vector is used as an

input to the bidirectional LSTM layer that generates its hidden state

representation ht as a concatenation of the forward and backward

LSTM states. This captures its future and previous timestep features.

This goes as input to the attention layer that learns which states

to focus or attend to in particular — generating the attention-focused

hidden state representation ⟨lt ⟩ for the input sequence ⟨xt ⟩. These
are used as input features in the CRF that enforces tagging con-

sistency — considering dependency between output tags and the

hidden state representation of tokens at each timestep. The joint

Figure 2: OpenTag Architecture: BiLSTM-CRF with Attention.

probability distribution of the tag sequence is given by:

Pr(y |x ;Ψ) ∝
T∏
t=1

exp

( K∑
k=1

ψk fk (yt−1,yt , ⟨lt ⟩)

)
. (5)

For training this network, we use the maximum conditional

likelihood estimation: where we maximize the log-likelihood of the

above joint distribution with respect to all the parameters Ψ over

m training instances

{
(xi , yi )

}m
i=1:

L(Ψ) =
m∑
i=1

log Pr(yi |xi ;Ψ). (6)

The final output is the best possible tag sequence y∗ with the

highest conditional probability given by:

y∗ = argmaxy Pr(y |x ;Ψ). (7)

4 OPENTAG: ACTIVE LEARNING
In this section, we present our novel active learning framework for

OpenTag to reduce the burden of human annotation.

An essential requirement of supervised machine learning algo-

rithms is annotated data. However, manual annotation is expensive

and time consuming. In many scenarios, we have access to a lot of

unlabeled data. Active learning is useful in these scenarios, where

we can allow the learner to select samples from the un-labeled pool

of data, and request for labeling.

Starting with a small set of labeled instances as an initial training

setL, the learner iteratively requests labels for one ormore instances

from a large unlabeled pool of instancesU using some query strategy

Q . These instances are labeled, and added to the base set L, and
the process is repeated till some stopping criterion is reached. The

challenge is to design a good query strategy Q that selects the

most informative samples from U given the learner’s hypothesis

space. This aims to improve the learner’s performance with as
little annotation effort as possible. This is particularly useful for

sequence labeling tasks, where the annotation effort is proportional

to the length of a sequence, in contrast to instance classification

tasks. OpenTag employs active learning with a similar objective

to reduce manual annotation efforts, while making judicious use
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of the large number of unlabeled product profiles. There are many

different approaches to formulate a query strategy to select the

most informative instances to improve the active learner.

As our baseline strategy, we consider the method of least confi-

dence (LC) [6] which is shown to perform quite well in practise [28].

It selects the sample for which the classifier is least confident. In

our sequence tagging task, the confidence of the CRF in tagging an

input sequence is given by the conditional probability in Equation 5.

Therefore, the query strategy selects the sample x with maximum

uncertainty given by:

Qlc (x ) = 1 − Pr(y∗ |x ;Ψ), (8)

where y∗ is the best possible tag sequence for x .
However, this strategy has the following drawbacks: (1) The

conditional probability of the entire sequence is proportional to

the product of (potential of) successive tag (⟨yt−1,yt ⟩) transition
scores. Therefore, a false certainty about any token’s tagyt can pull

down the probability of the entire sequence — leading to missing a

valuable query. (2) When the oracle reveals the tag of a token, this

may impact only a few other tags, having a relatively low impact

on the entire sequence. For instance, in Table 2 knowing the tag of

‘raised’ impacts the overall sequence more than that of ‘duck’.

Table 2: Sampling Strategies. LC: Least confidence. TF: Tag flip.

duck , fillet mignon and ranch raised lamb flavor

Gold-Label (G) B O B E O B I E O

Strategy: LC (S1) O O B E O B I E O

Strategy: TF (S2) B O B O O O O B O

4.1 Method of Tag Flips
In order to address these limitations, we formulate a new query

strategy to identify informative sequences based on how difficult it
is to assign tags to various tokens in a sequence.

In this setting, we simulate a committee of OpenTag learners

C = {Ψ(1) ,Ψ(2) , · · ·Ψ(E ) } to represent different hypotheses that are

consistent with labeled set L. Most informative sample is the one

for which there is major disagreement among committee members.

We trainOpenTag for a preset number of epochs E using dropout

[29] regularization technique. Dropout prevents overfiting during

network training by randomly dropping units in the network with

their connections. Therefore, for each epoch e , OpenTag learns a
different set of models and parameters Ψ(e )

— thereby simulating a

committee of learners due to the dropout mechanism.

After each epoch, we apply Ψ(e )
to the unlabeled pool of samples

and record the best possible tag sequence y∗ (Ψ(e ) ) assigned by the

learner to each sample.

We define a flip to be a change in the tag of a token of a given

sequence across successive epochs, i.e., the learners Ψ(e−1)
and Ψ(e )

assign different tags y∗t (Ψ
(e−1) ) , y∗t (Ψ

(e ) ) to token xt ∈ x . If the
tokens of a given sample sequence frequently change tags across

successive epochs, this indicates OpenTag is uncertain about the

sample, and not stable. Therefore, we consider tag flips (TF) to be a

measure of uncertainty for a sample and model stability, and query
for labels for the samples with the highest number of tag flips.

Algorithm 1: Active learning with tag flips as query strategy.

Given: Labeled set L, unlabeled pool U , query strategy Q , query batch

size B
repeat

for each epoch e ∈ E do
// simulate a committee of learners using current L
Ψ(e )

= train(L)
//apply Ψ(e )

to unlabeled pool U and record tag flips

for each query b ∈ B do
// find the instances with most tag flips over E epochs

x ∗ = argmaxx∈U Q t f (x )
// label query and move from unlabeled pool to labeled set

L = L ∪ {x ∗, label (x ∗) }
U = U − x ∗

until some stopping criterion

For instance, consider Table 2 and the tag sequence S2 corre-

sponding to the TF sampling strategy. Contrasting the tag sequence

S2 with the gold sequence G, we observe 4 flips corresponding to
mismatch in tags of ‘mignon’ and ‘ranch raise lamb’.

Given an unlabeled pool of instances, the strategy for least con-

fidence may pick sequence S1 that the learner is most uncertain

about in terms of the overall probability of the entire sequence. We

observe this may be due to mis-classifying ‘duck’ that is an im-

portant concept at the start of the sequence. However, the learner

gets the remaining tags correct. In this case, if the oracle assigns

the tag for ‘duck’, it does not affect any other tags of the sequence.

Therefore, this is not an informative query to be given to the oracle

for labeling.

On the other hand, the tag flip strategy selects sequence S2 based
on the number of flips of token-tags that the model has grossly

mis-tagged. Labeling this query has a much more impact on the

learner to tune its parameters than the other sequence S1.
Note that we do not use the ground labels for computing tag-flips

during learning; instead we use predictions from OpenTag across

successive epochs. The flip based sampling strategy is given by:

Qt f (x ) =
E∑
e=1

n∑
t=1
I (y∗t (Ψ

(e−1) ) , y∗t (Ψ
(e ) )), (9)

where y∗t (Ψ
(e ) ) is the best possible tag sequence for x assigned by

the learner Ψ(e )
in epoch e and I (·) is an indicator function that

assumes the value 1 when the argument is true, and 0 otherwise.

Algorithm 1 outlines our active learning process. The batch-size

indicates how many samples we want to query for labels. Given a

batch-size of B, the top B samples with the highest number of flips

are manually annotated with tags. We continue the active learning

process until the validation loss converges within a threshold.
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Table 3: Data sets.

Domain Profile Attribute Training Testing

Samples Extractions Samples Extractions

Dog Food (DS) Title Flavor 470 876 493 602

Dog Food Title Flavor 470 716 493 762

Desc Flavor 450 569 377 354

Bullet Flavor 800 1481 627 1179

Title Brand 470 480 497 607

Title Capacity 470 428 497 433

Title Multi 470 1775 497 1632

Camera Title Brand 210 210 211 211

Detergent Title Scent 500 487 500 484

5 EXPERIMENTS
5.1 OpenTag: Training
We implemented OpenTag using Tensorflow, where some basic

layers are brought from Keras.
1
. We run our experiments within

docker containers on a 72 core machine powered by Ubuntu Linux.

We use 100-dimensional pre-trainedword vectors fromGloVe [22]

for initializing our word embeddings that are optimized during

training. Embeddings for words not in GloVe are randomly initial-

ized and re-trained. Masking is adopted to support variable length

input. We set the hidden size of LSTM to 100 which generates a 200

dimensional output vector for BiLSTM after concatenation. The

dropout rate is set to 0.4. We use Adam [12] for parameter optimiza-

tion with a batch size of 32. We train the models for 500 epochs,

and report the averaged evaluation measures for the last 20 epochs.

5.2 Data Sets
We perform experiments in 3 domains, namely, (i) dog food, (ii)

detergents, and (iii) camera. For each domain, we use the product

profiles (like titles, descriptions, and bullets) from Amazon.com pub-
lic pages. The set of applicable attributes are defined per-domain.

For each product in a domain, OpenTag figures out the set of ap-

plicable attribute-values. We perform experiments with different

configurations to validate the robustness of our model.

Table 3 gives the description of different data sets and experimen-

tal settings. It shows the (i) domain, (ii) type of profile, (iii) target

attribute, (iv) number of samples or products we consider, and (v)

lastly the number of extractions in terms of attribute values. ‘Desc’

denotes description whereas ‘Multi’ refers to multiple attributes

(e.g., flavor, capacity, and brand). ‘DS’ represents a disjoint training

and test set with no overlapping attribute values. For all other data

sets, we randomly split them into training and test instances.

Evaluation measure.We evaluate the precision, recall, and f-score
of all models. In contrast to prior works evaluating tag-level mea-

sures — we evaluate extraction quality of our model with either full

or no credit. E.g., given a target flavor-extraction of “ranch raised

lamb”, a model gets credit only when it extracts the full sequence.

After a model assigns the best possible tag decision, attribute values

are extracted and compared with ground truth.

5.3 Performance: Attribute Value Extraction
Baselines. The first baseline we consider is the BiLSTMmodel [10].

The second one is the state-of-the-art sequence tagging model for

1
Note that we do not do any hyper-parameter tuning. Most default parameter values

come from Keras. It may be possible to boost OpenTag performance by careful tuning.

Table 4: Performance comparison of different models on at-
tribute value extraction for different product profiles and
datasets. OpenTag outperforms other state-of-the-art NER
systems [11, 13, 15, 17] based on BiLSTM-CRF.

Datasets/Attribute Models Precision Recall Fscore

Dog Food: Title BiLSTM 83.5 85.4 84.5

Attribute: Flavor BiLSTM-CRF 83.8 85.0 84.4

OpenTag 86.6 85.9 86.3

Camera: Title BiLSTM 94.7 88.8 91.8

Attribute: Brand name BiLSTM-CRF 91.9 93.8 92.9

OpenTag 94.9 93.4 94.1

Detergent: Title BiLSTM 81.3 82.2 81.7

Attribute: Scent BiLSTM-CRF 85.1 82.6 83.8

OpenTag 84.5 88.2 86.4

Dog Food: Description BiLSTM 57.3 58.6 58

Attribute: Flavor BiLSTM-CRF 62.4 51.5 56.9

OpenTag 64.2 60.2 62.2

Dog Food: Bullet BiLSTM 93.2 94.2 93.7

Attribute: Flavor BiLSTM-CRF 94.3 94.6 94.5

OpenTag 95.7 95.7 95.7

Dog Food: Title BiLSTM 71.2 67.4 69.3

Multi Attribute: BiLSTM-CRF 72.9 67.3 70.1

Brand, Flavor, Capacity OpenTag 76.0 68.1 72.1

named entity recognition (NER) tasks using BiLSTM and CRF [11,

13, 15, 17] but without using any dictionary or hand-crafted features

as in [11, 13] . We adopt these models for attribute value extraction.

Training and test data are the same for all the models.

Tagging strategy. Similar to the above works, we also adopt the

{B, I ,O,E} tagging strategy. We experimented other tagging strate-

gies, where {B, I ,O,E} performed marginally better than the others.

Attribute value extraction results.We compare the performance

ofOpenTagwith the above baselines for identifying attribute values
from different product profiles (like title, description and bullets)

and different sets of attributes (like brand, flavor and capacity) in

different domains like dog food, detergent and camera. Table 4

summarizes the results, where all experiments were performed on

random train-test splits. The first column in the table shows the

domain, profile type, and attribute we are interested in. We observe

that OpenTag consistently outperforms competing methods with a

high overall f-score of 82.8%.

We also observe the highest performance improvement (5.3%)

of OpenTag over state-of-the-art BiLSTM-CRF model on product

descriptions — that are more structured and provide more context

than either titles or bullets. However, overall performance of Open-
Tag for product descriptions is much worse. Although descriptions

are richer in context, the information present is also quite diverse

in contrast to titles or bullets that are short, crisp and focused.

Discovering new attribute values with open world assump-
tion (OWA). In this experiment (see Table 5), we want to find the

performance of OpenTag in discovering new attribute values it has

never seen before. Therefore, we make a clear separation between

training and test data such that they do not share any attribute

value. Compared with the earlier random split setting, OpenTag
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Table 5: OpenTag results on disjoint split; where it discovers
new attribute values never seen before with 82.4% f-score.

Train-Test Framework Precision Recall F-score

Disjoint Split (DS) 83.6 81.2 82.4

Random Split 86.6 85.9 86.3

Table 6: OpenTag has improved performance on extracting
values of multiple attributes jointly vs. single extraction.

Attribute Precision Recall F-Score

Brand: Single 52.6 42.6 47.1

Brand: Multi 58.4 44.7 50.6

Flavor: Single 83.6 81.2 82.4
Flavor: Multi 83.7 77.5 80.5

Capacity: Single 81.5 86.4 83.9

Capacity: Multi 87.0 87.2 87.1
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Figure 3: OpenTag shows interpretable explanation for its tagging
decision as shown by this heatmap of learned attentionmatrixA for
two product titles. Each map element highlights importance (indi-
cated by light color) of a word with respect to neighboring context.

still performs well in the disjoint setting with a f-score of 82.4% in

discovering new attribute values for flavors from dog food titles.

However, it is worse than random split – where it had the chance to

see some attribute values during training leading to better learning.

Joint extraction of multi-attribute values. As we discussed in

Section 2.2.2,OpenTag is able to extract values of multiple attributes

jointly by modifying the tagging strategy. In this experiment, we

extract values for brand name, flavor and capacity jointly. Using

{B, I ,O,E, } as the tagging strategy, each attribute a has its own

{Ba , Ia ,Ea } tag withO shared among them – with a total of 10 tags

for three attributes. From Table-4, we observe OpenTag to have a

2% f-score improvement over our strongest BiLSTM-CRF baseline.

As we previously argued, joint extraction of multiple attributes

can help leverage their distributional semantics together, thereby,

improving the extraction of individual ones as shown in Table 6.

Although the performance in extracting brand and capacity values

improve in the joint setting, the one for flavor marginally degrades.

(a) Distribution of word vectors before attention (b) Distribution of important words

chickenturkey
beef

cans

lb ounce

bag

pound

and&with

freerealhealth

blue

complete

food

pedigree

(c) Projection to new space by attention 

nutro

small
turkey

slices

(d) Distribution of word vectors after attention

Figure 4: Sub-figures in order show how OpenTag uses attention to
cluster concepts and tags similar to each other in embedding space.
Color scheme for tags. B: Green, I : Gold, O : Maroon, E : Violet.

5.4 OpenTag: Interpretability via Attention
Interpretable explanation using attention. Figure-3 shows the
heat map of the attention matrixA— as learned byOpenTag during
training — of two product titles. Each element of the heat map

highlights the importance (represented by a lighter color) of a word

with respect to its neighboring context, and, therefore how it affects

the tagging decision. To give an example, consider the left sub-figure

where we observe four white boxes located in the center. They

demonstrate that the two corresponding words “with” and “and”

(in columns) are important for deciding the tags of the tokens “beef”

and “liver” (in rows) which are potential values for the target flavor-
attribute. It makes sense since these are conjunctions connecting

two neighboring flavor segments. Similarly, in the right sub-figure,

the white box in the center corresponds to the word “and” that

plays a key role in assigning the tag B (representing beginning of

attribute) to the word “whole” — where “whole barley” is extracted

as one of the flavors. This concrete example shows that our model

has learned the semantics of conjunctions and their importance

for attribute value extraction. This is interesting since we do not

use any part-of-speech tag, parsing, or rule-based annotation as

commonly used in NER tasks.

OpenTag achieves better concept clustering. The following dis-
cussions refer to Figure-4. The corresponding experiments were

performed with dog food titles. For visualizing high-dimensional

word embeddings in a 2-d plane, we use t-SNE to reduce the dimen-

sionality of the BiLSTM hidden vector (of size 200) to 2.

Figure-4 (a) shows the distribution of word embeddings before
they are operated by attention — where each dot represents a word

token and its color represents a tag ({B, I ,O,E}). We use four dif-

ferent colors to distinguish the tags. We observe that words with

different tags are initially spread out in the embedding space.

We calculate two importance measures for each word by ag-

gregating corresponding attention weights: (i) its importance to

the attribute words (that assume any of the {B, I ,E} tags for tokens
located within an attribute-value), and (ii) its importance to the
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outer words (that assume the tag O for tokens located outside the

attribute-value). For each measure, we sample top 200 important

words and plot them in figure-4 (b). We observe that all semanti-

cally related words are located close to each other. For instance,

conjunctions like “with”, “and” and “&” are located together in the

right bottom; whereas quantifiers like “pound”, “ounce” and “lb”

are located together in the top.

We observe that the red dots — representing the most important

words to the attribute words — are placed at the boundary of the

embedding space by the attention mechanism. It indicates that the

attention mechanism is smart enough to make use of the most dis-

tinguishable words located in the boundary. On the other hand, the

blue dots — denoting the most important words to the outer words
— are clustered within the vector space. We observe that quantifiers

like “pound", “ounce" and “lb" help to locate the outer words. It is

also interesting that attribute words like “turkey", “chicken" and

“beef” that are extracted as values of the flavor-attribute assume an

important role in tagging outer words.

Figure-4 (c) shows how attention mechanism projects the hidden

vectors into a new space. Consider the following example: “nutro

natural choice small breed turkey slices canned dog food, 3.5 oz. by

nutro", where “small breed turkey slices" is the extracted value of

the flavor-attribute. Each blue dot in the figure represents a word

of the example in the original hidden space. Red dots denote the

word being projected into a new space by the attention mechanism.

Again, we observe that similar concepts (red dots corresponding to

four sample words) come closer to each other after projection.
Figure-4 (d) shows the distribution of word vectors after being

operated by the attention mechanism. Comparing this with Figure-

4 (a), we observe that similar concepts (tags) now show a better

grouping and separability from different ones after using attention.

5.5 OpenTag with Active Learning: Results
5.5.1 Active Learning with Held-Out Test Set. In order to have a

strict evaluation for the active learning framework: we use a blind

held-out test set H that OpenTag cannot access during training.

The original test set in Table 3 is randomly split into unlabeled

pool U and held-out test set H with the ratio of 2 : 1. We start

with a very small number of labeled instances, namely 50 randomly

sampled instances, as our initial labeled set L. We employ 20 rounds

of active learning for this experiment. Figure-5 shows the results

on two tasks: (i) extracting values for scent-attribute from titles of

detergent products, and (ii) extracting values for multiple attributes

brand, capacity and flavor from titles of dog food products.

OpenTagwith tag flip sampling strategy for single attribute value

extraction improves the precision from 59.5% (on our initial labeled

set of 50 instances) to 91.7% and recall from 70.7% to 91.5%. This is

also better than the results reported in Table 4, where OpenTag ob-

tained 84.5% precision and 88.2% recall – trained on the entire data

set. Similar results hold true for multi-attribute value extraction.

We also observe that the tag flip strategy (TF) outperforms least

confidence (LC) [6] strategy by 5.6% in f-score for single attribute

value extraction and by 2.2% for multi-attribute value extraction.

5.5.2 Active Learning from Scratch. Next we explore to what ex-
tent can active learning reduce the burden of human annotation. As

before, we start with a very small number (50) of labeled instances
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Figure 5: OpenTag active learning results on held-out test set. Open-
Tag with tag flip (TF) outperforms least confidence (LC) [6] strategy,
as well as OpenTag without active learning.
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Figure 6: Results of active learning from scratchwith tagflip.
OpenTag reduces burden of human annotation by 3.3x .

as initial training set L. We want to find: how many rounds of active

learning are required to match the performance of OpenTag as in
original training data of 500 labeled instances. We deem this as

“learning from scratch". In contrast to the previous setting with a

held-out test set, in this experiment OpenTag can access all of the

unlabeled data to query for their labels. Figure-6 shows its results.

For this setting, we use the best performing query strategy from

the last section i.e. tag flips (TF). We achieve almost the same level of

performance with only 150 training instances that we had initially

obtained with 500 training instances in the previous section. Figure-

6 (b) shows a similar result for the second task as well. This shows

that OpenTag with the TF query strategy for active learning can

drastically cut down on the requirement of labeled training data.

6 RELATEDWORK
Rule-based extraction techniques [21] make use of domain-specific

vocabulary or dictionary to spot key phrases and attributes. These

suffer from limited coverage and closed world assumptions. Simi-

larly, rule-based and linguistic approaches [3, 18] leveraging syn-

tactic structure of sentences to extract dependency relations do not

work well on irregular structures like titles.

An NER system was built [25] to annotate brands in product

listings of apparel products. Comparing results of SVM, MaxEnt,

and CRF, they found CRF to perform the best. They used seed

dictionaries containing over 6, 000 known brands for bootstrapping.

A similar NER system was built [20] to tag brands in product titles

leveraging existing brand values. In contrast to these, we do not use

any dictionaries for bootstrapping, and can discover new values.

There has been quite a few works on applying neural networks

for sequence tagging. A multi-label multi-class Perceptron classifier

for NER is used by [16]. They used linear chain CRF to segment text

with BIO tagging. An LSTM-CRF model is used [13] for product
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attribute tagging for brands and models with a lot of hand-crafted

features. They used 37, 000manually labeled search queries to train

their model. In contrast, OpenTag does not use hand-crafted fea-

tures, and uses active learning to reduce burden of annotation.

Early attempts include [9, 23], which apply feed-forward neural

networks (FFNN) and LSTM to NER tasks. Collobert et al. [5] com-

bine deep FFNN and word embedding [19] to explore many NLP

tasks including POS tagging, chunking and NER. Character-level

CNNs were integrated [26] to augment feature representation, and

their model was later enhanced by LSTM [4]. Huang et al. [11]

adopts CRF with BiLSTM for jointly modeling sequence tagging.

However they use heavy feature engineering. Lample et al. [15]

use BiLSTM to encode both character-level and word-level feature,

thus constructing an end-to-end BiLSTM-CRF solution for sequence

tagging. Ma et al.[17] replace the character-level model with CNNs.

Currently, BiLSTM-CRF models as above is state-of-the-art for NER.

Unlike prior works, OpenTag uses attention to improve feature

representation and gives interpretable explanation of its decisions.

[1] successfully applied attention for alignment in NMT systems.

Similar mechanisms have recently been applied in other NLP tasks

like machine reading and parsing [2, 30].

Early active learning for sequence labeling research [7, 27] em-

ploy least confidence (LC) sampling strategies. Settles and Craven

made a thorough analysis over other strategies and propose their

entropy based strategies in [28]. However, the sampling strategy of

OpenTag is different from them.

7 CONCLUSION
We presented OpenTag — an end-to-end tagging model leveraging

BiLSTM, CRF and Attention — for imputation of missing attribute

values from product profile information like titles, descriptions

and bullets. OpenTag does not use any dictionary or hand-crafted

features for learning. It also does not make any assumptions about

the structure of the input data, and, therefore, could be applied to

any kind of textual data. The other advantages of OpenTag are:

(1) Open World Assumption (OWA): It can discover new attribute

values (e.g., emerging brands) that it has never seen before, as well

as multi-word attribute values and multiple attributes. (3) Irregular
structure and sparse context: It can handle unstructured text like

profile information that lack regular grammatical structure with

stacking of several attributes, and a sparse context. (4) Limited an-
notated data: Unlike other supervised models and neural networks,

OpenTag requires less training data. It exploits active learning to re-
duce the burden of human annotation. (5) Interpretability: OpenTag
exploits an attention mechanism to generate explanations for its

verdicts that makes it easier to debug. We presented experiments

in real-life datasets in different domains where OpenTag discovers

new attribute values from as few as 150 annotated samples (reduc-

tion in 3.3x amount of annotation effort) with a high f-score of 83%,

outperforming state-of-the-art models.
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