
Simba: Efficient In-Memory Spatial Analytics

Dong Xie1, Feifei Li1, Bin Yao2, Gefei Li2, Liang Zhou2, Minyi Guo2

1University of Utah 2Shanghai Jiao Tong University
{dongx, lifeifei}@cs.utah.edu {yaobin@cs., oizz01@, nichozl@, guo-my@cs.}sjtu.edu.cn

ABSTRACT
Large spatial data becomes ubiquitous. As a result, it is critical to
provide fast, scalable, and high-throughput spatial queries and an-
alytics for numerous applications in location-based services (LBS).
Traditional spatial databases and spatial analytics systems are disk-
based and optimized for IO efficiency. But increasingly, data are
stored and processed in memory to achieve low latency, and CPU
time becomes the new bottleneck. We present the Simba (Spatial
In-Memory Big data Analytics) system that offers scalable and ef-
ficient in-memory spatial query processing and analytics for big
spatial data. Simba is based on Spark and runs over a cluster of
commodity machines. In particular, Simba extends the Spark SQL
engine to support rich spatial queries and analytics through both
SQL and the DataFrame API. It introduces indexes over RDDs
in order to work with big spatial data and complex spatial oper-
ations. Lastly, Simba implements an effective query optimizer,
which leverages its indexes and novel spatial-aware optimizations,
to achieve both low latency and high throughput. Extensive exper-
iments over large data sets demonstrate Simba’s superior perfor-
mance compared against other spatial analytics system.

1. INTRODUCTION
There has been an explosion in the amount of spatial data in re-

cent years. Mobile applications on smart phones and various in-
ternet of things (IoT) projects (e.g., sensor measurements for smart
city) generate humongous volume of data with spatial dimensions.
What’s more, spatial dimensions often play an important role in
these applications, for example, user and driver locations are the
most critical features for the Uber app. How to query and ana-
lyze such large spatial data with low latency and high throughput
is a fundamental challenge. Most traditional and existing spatial
databases and spatial analytics systems are disk-oriented (e.g., Or-
acle Spatial, SpatialHadoop, and Hadoop GIS [11, 22]). Since they
have been optimized for IO efficiency, their performance often de-
teriorates when scaling to large spatial data.

A popular choice for achieving low latency and high throughput
nowadays is to use in-memory computing over a cluster of com-
modity machines. Systems like Spark [38] have witnessed great
success in big data processing, by offering low query latency and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915237

high analytical throughput using distributed memory storage and
computing. Recently, Spark SQL [13] extends Spark with a SQL-
like query interface and the DataFrame API to conduct relational
processing on different underlying data sources (e.g., data from
DFS). Such an extension provides useful abstraction for supporting
easy and user-friendly big data analytics over a distributed mem-
ory space. Furthermore, the declarative nature of SQL also enables
rich opportunities for query optimization while dramatically sim-
plifying the job of an end user.

However, none of the existing distributed in-memory query and
analytics engines, like Spark, Spark SQL, and MemSQL, provide
native support for spatial queries and analytics. In order to use these
systems to process large spatial data, one has to rely on UDFs or
user programs. Since a UDF (or a user program) sits outside the
query engine kernel, the underlying system is not able to optimize
the workload, which often leads to very expensive query evaluation
plans. For example, when Spark SQL implements a spatial distance
join via UDF, it has to use the expensive cartesian product approach
which is not scalable for large data.

Inspired by these observations, we design and implement the
Simba (Spatial In-Memory Big data Analytics) system, which is
a distributed in-memory analytics engine, to support spatial queries
and analytics over big spatial data with the following main objec-
tives: simple and expressive programming interfaces, low query la-
tency, high analytics throughput, and excellent scalability. In par-
ticular, Simba has the following distinct features:
• Simba extends Spark SQL with a class of important spatial

operations and offers simple and expressive programming in-
terfaces for them in both SQL and DataFrame API.
• Simba supports (spatial) indexing over RDDs (resilient dis-

tributed dataset) to achieve low query latency.
• Simba designs a SQL context module that executes multiple

spatial queries in parallel to improve analytical throughput.
• Simba introduces spatial-aware optimizations to both logical

and physical optimizers, and uses cost-based optimizations
(CBO) to select good spatial query plans.

Since Simba is based on Spark, it inherits and extends Spark’s
fault tolerance mechanism. Different from Spark SQL that relies
on UDFs to support spatial queries and analytics, Simba supports
such operations natively with the help of its index support, query
optimizer, and query evaluator. Because these modules are tailored
towards spatial operations, Simba achieves excellent scalability in
answering spatial queries and analytics over large spatial data.

The rest of the paper is organized as follows. We introduce the
necessary background in Section 2 and provide a system overview
of Simba in Section 3. Section 4 presents Simba’s programming in-
terfaces, and Section 5 discusses its indexing support. Spatial oper-
ations in Simba are described in Section 6, while Section 7 explains

Simba’s query optimizer and fault tolerance mechanism. Extensive
experimental results over large real data sets are presented in Sec-
tion 8. Section 9 summarizes the related work in addition to those
discussed in Section 2, and the paper is concluded in Section 10.

2. BACKGROUND AND RELATED SYSTEMS
2.1 Spark Overview

Apache Spark [38] is a general-purpose, widely-used cluster com-
puting engine for big data processing, with APIs in Scala, Java and
Python. Since its inception, a rich ecosystem based on Spark for
in-memory big data analytics has been built, including libraries for
streaming, graph processing, and machine learning [6].

Spark provides an efficient abstraction for in-memory cluster
computing called Resilient Distributed Datasets (RDDs). Each RDD
is a distributed collection of Java or Python objects partitioned across
a cluster. Users can manipulate RDDs through the functional pro-
gramming APIs (e.g. map, filter, reduce) provided by Spark,
which take functions in the programming language and ship them
to other nodes on the cluster. For instance, we can count lines con-
taining “ERROR” in a text file with the following scala code:
lines = spark.textFile("hdfs://...")
errors = lines.filter(l => l.contains("ERROR"))
println(errors.count())

This example creates an RDD of strings called lines by read-
ing an HDFS file, and uses filter operation to obtain another
RDD errors which consists of the lines containing “ERROR”
only. Lastly, a count is performed on errors for output.

RDDs are fault-tolerant as Spark can recover lost data using lin-
eage graphs by rerunning operations to rebuild missing partitions.
RDDs can also be cached in memory or made persistent on disk ex-
plicitly to accelerate data reusing and support iteration [38]. RDDs
are evaluated lazily. Each RDD actually represents a “logical plan”
to compute a dataset, which consists of one or more “transforma-
tions” on the original input RDD, rather than the physical, materi-
alized data itself. Spark will wait until certain output operations
(known as “action”), such as collect, to launch a computa-
tion. This allows the engine to do some simple optimizations, such
as pipelining operations. Back to the example above, Spark will
pipeline reading lines from the HDFS file with applying the filter
and counting records. Thanks to this feature, Spark never needs
to materialize intermediate lines and errors results. Though
such optimization is extremely useful, it is also limited because the
engine does not understand the structure of data in RDDs (that can
be arbitrary Java/Python objects) or the semantics of user functions
(which may contain arbitrary codes and logic).

2.2 Spark SQL Overview
Spark SQL [13] integrates relational processing with Spark’s

functional programming API. Built with experience from its pre-
decessor Shark [35], Spark SQL leverages the benefits of relational
processing (e.g. declarative queries and optimized storage), and al-
lows users to call other analytics libraries in Spark (e.g. SparkML
for machine learning) through its DataFrame API.

Spark SQL can perform relational operations on both external
data sources (e.g. JSON, Parquet [5] and Avro [4]) and Spark’s
built-in distributed collections (i.e., RDDs). Meanwhile, it evalu-
ates operations lazily to get more optimization opportunities. Spark
SQL introduces a highly extensible optimizer called Catalyst, which
makes it easy to add data sources, optimization rules, and data types
for different application domains such as machine learning.

Spark SQL is a full-fledged query engine based on the underly-
ing Spark core. It makes Spark accessible to a wider user base and
offers powerful query execution and optimization planning.

Despite the rich support of relational style processing, Spark
SQL does not perform well on spatial queries over multi-dimensional
data. Expressing spatial queries is inconvenient or even impossible.
For instance, a relational query as below is needed to express a 10
nearest neighbor query for a query point q = (3.0, 2.0) from the
table point1 (that contains a set of 2D points):
SELECT * FROM point1
ORDERED BY (point1.x - 3.0) * (point1.x - 3.0) +

(point1.y - 2.0) * (point1.y - 2.0)
LIMIT 10.

To make the matter worse, if we want to retrieve (or do analyses
over) the intersection of results from multiple kNN queries, more
complex expressions such as nested sub-queries will be involved.
In addition, it is impossible to express a kNN join succinctly over
two tables in a single Spark SQL query. Another important obser-
vation is that most operations in Spark SQL require scanning the
entire RDDs. This is a big overhead since most computations may
not actually contribute to the final results. Lastly, Spark SQL does
not support optimizations for spatial analytics.

2.3 Cluster-Based Spatial Analytics Systems
There exists a number of systems that support spatial queries and

analytics over distributed spatial data using a cluster of commodity
machines. We will review them briefly next.
Hadoop based system. SpatialHadoop [22] is an extension of the
MapReduce framework [18], based on Hadoop, with native support
for spatial data. It enriches Hadoop with spatial data awareness in
language, storage, MapReduce, and operation layers. In the lan-
guage layer, it provides an extension to Pig [30], called Pigeon [21],
which adds spatial data types, functions and operations as UDFs in
Pig Latin Language. In the storage layer, SpatialHadoop adapts tra-
ditional spatial index structures, such as Grid, R-tree and R+-tree,
to a two-level index framework. In the MapReduce layer, Spatial-
Hadoop extends MapReduce API with two new components, Spa-
tialFileSplitter and SpatialRecordReader, for efficient and scalable
spatial data processing. In the operation layer, SpatialHadoop is
equipped with several predefined spatial operations including box
range queries, k nearest neighbor (kNN) queries and spatial joins
over geometric objects using conditions such as within and inter-
sect. However, only two-dimensional data is supported, and opera-
tions such as circle range queries and kNN joins are not supported
as well (according to the latest open-sourced version of Spatial-
Hadoop). SpatialHadoop does have good support on different ge-
ometric objects, e.g. segments and polygons, and operations over
them, e.g. generating convex hulls and skylines, which makes it a
distributed geometric data analytics system over MapReduce [20].

Hadoop GIS [11] is a scalable and high performance spatial data
warehousing system for running large scale spatial queries on Hadoop.
It is available as a set of libraries for processing spatial queries and
an integrated software package in Hive [33]. In its latest version,
the SATO framework [34] has been adopted to provide different
partition and indexing approaches. However, Hadoop GIS only
supports data up to two dimensions and two query types: box range
queries and spatial joins over geometric objects with predicates like
withind (within distance).
GeoSpark. GeoSpark [37] extends Spark for processing spatial
data. It provides a new abstraction called Spatial Resilient Dis-
tributed Datasets (SRDDs) and a few spatial operations. GeoSpark
supports range queries, kNN queries, and spatial joins over SRDDs.
Besides, it allows an index (e.g. quad-trees and R-trees) to be the
object inside each local RDD partition. Note that Spark allows
developers to build RDDs over objects of any user-defined types
outside Spark kernel. Thus essentially, an SRDD simply encapsu-

Core Features Simba GeoSpark SpatialSpark SpatialHadoop Hadoop GIS
Data dimensions multiple d ≤ 2 d ≤ 2 d ≤ 2 d ≤ 2

SQL X × × Pigeon ×
DataFrame API X × × × ×
Spatial indexing R-tree R-/quad-tree grid/kd-tree grid/R-tree SATO

In-memory X X X × ×
Query planner X × × X ×

Query optimizer X × × × ×
Concurrent thread pool in user-level user-level user-level user-level

query execution query engine process process process process
query operation support

Box range query X X X X X
Circle range query X X X × ×
k nearest neighbor X X only 1NN X ×

Distance join X X X via spatial join X
kNN join X × × × ×

Geometric object ×1 X X X X
Compound query X × × X ×

Table 1: Comparing Simba against other systems.

Notation Description
R (resp. S) a table of a point set R (resp. S)
r (resp. s) a record (a point) r ∈ R (resp. s ∈ S)
|r, s| L2 distance from r to s
maxdist(q,B) maxp∈B |p, q| for point q and MBR B
maxdist(A,B) maxq∈A,p∈B |p, q| for MBRs A and B
mindist(q,B) minp∈B |p, q| for point q and MBR B
mindist(A,B) minq∈A,p∈B |p, q| for MBRs A and B
range(A,R) records from R within area A
knn(r, S) k nearest neighbors of r from S
R 1τ S R distance join of S with threshold τ
R 1knn S kNN join between R and S
Ri, Sj i-th (resp. j-th) partition of table R (resp. S)
mbr(Ri) MBR of Ri
cri centroid of mbr(Ri)
ui maxr∈Ri

|cri, r|

Table 2: Frequently used notations.
lates an RDD of spatial objects (which can be points, polygons or
circles) with some common geometry operations (e.g. calculating
the MBR of its elements). Moreover, even though GeoSpark is able
to use index to accelerate query processing within each SRDD par-
tition, it does not support flexible global index inside the kernel.
GeoSpark only supports two-dimensional data, and more impor-
tantly, it can only deal with spatial coordinates and does not allow
additional attributes in spatial objects (e.g. strings for description).
In other words, GeoSpark is a library running on top of and outside
Spark without a query engine. Thus, GeoSpark does not provide a
user-friendly programming interface like SQL or the DataFrame
API, and has neither query planner nor query optimizer.
SpatialSpark. SpatialSpark [36] implements a set of spatial oper-
ations for analyzing large spatial data with Apache Spark. Specifi-
cally, SpatialSpark supports range queries and spatial joins over ge-
ometric objects using conditions like intersect and within.
SpatialSpark adopts data partition strategies like fixed grid or kd-
tree on data files in HDFS and builds an index (outside the Spark
engine) to accelerate spatial operations. Nevertheless, SpatialSpark
only supports two-dimensional data, and does not index RDDs na-
tively. What’s more, same as GeoSpark, it is also a library running
on top of and outside Spark without a query engine and does not
support SQL and the DataFrame API.
Remarks. Note that all the systems mentioned above does not
support concurrent queries natively with a multi-threading mod-
ule. Thus, they have to rely on user-level processes to achieve this,
which introduce non-trivial overheads from the operating system
and hurt system throughput. In contrast, Simba employs a thread
pool inside the query engine, which provides much better perfor-
mance on concurrent queries. There are also systems like GeoMesa
and MD-HBase that are related and reviewed in Section 9. Table 1
compares the core features between Simba and other systems.

2.4 Spatial Operations
In this paper, we focus on spatial operations over point objects.

Our techniques and frameworks also support rectangular objects
(such as MBRs), and can be easily extended to support general ge-
ometric objects. Table 2 lists the frequently used notations.

Formally, consider a data set R ⊂ Rd with N records, where
d ≥ 1 is the dimensionality of the data set and each record r ∈ R
is a point in Rd. For any two points p, q ∈ Rd, |p, q| denotes their
L2 distance. We consider the following spatial operations in this
paper, due to their wide applications in practice [32].

Definition 1 (Range Query) Given a query area Q (either a rect-
angle or a circle) and a data set R, a range query (denoted as
1Simba is being extended to support general geometric objects.

range(Q,R)) asks for all records within Q from R. Formally,

range(Q,R) = {r|r ∈ R, r ∈ Q}.
Definition 2 (kNN Query) Given a query point q ∈ Rd, a data set
R and an integer k ≥ 1, the k nearest neighbors of q w.r.t. R,
denoted as knn(q, S), is a set of k records from R where

∀o ∈ knn(q,R), ∀r ∈ R− knn(q,R), |o, q| ≤ |r, q|.
Definition 3 (Distance Join) Given two data sets R and S, and a
distance threshold τ > 0, the distance join between R and S, de-
noted as R 1τ S, finds all pairs (r, s) within distance τ such that
r ∈ R and s ∈ S. Formally,

R 1τ S = {(r, s)|(r, s) ∈ R× S, |r, s| ≤ τ}.
Definition 4 (kNN Join) Given two data sets R and S, and an in-
teger k ≥ 1, the kNN join betweenR and S, denoted asR 1knn S,
pairs each object r ∈ R with each of its kNNs from S. Formally,

R 1knn S = {(r, s)|r ∈ R, s ∈ knn(r, S)}.

3. Simba ARCHITECTURE OVERVIEW
Simba builds on Spark SQL [13] and is optimized specially for

large scale spatial queries and analytics over multi-dimensional data
sets. Simba inherits and extends SQL and the DataFrame API, so
that users can easily specify different spatial queries and analytics
to interact with the underlying data. A major challenge in this pro-
cess is to extend both SQL and the DataFrame API to support a rich
class of spatial operations natively inside the Simba kernel.

Figure 1 shows the overall architecture of Simba. Simba fol-
lows a similar architecture as that of Spark SQL, but introduces
new features and components across the system stack. In particu-
lar, new modules different from Spark SQL are highlighted by or-
ange boxes in Figure 1. Similar to Spark SQL, Simba allows users
to interact with the system through command line (CLI), JDBC,
and scala/python programs. It can connect to a wide variety of data
sources, including those from HDFS (Hadoop Distributed File Sys-
tem), relational databases, Hive, and native RDDs.

An important design choice in Simba is to stay outside the core
spark engine and only introduce changes to the kernel of Spark
SQL. This choice has made a few implementations more challeng-
ing (e.g. adding the support for spatial indexing without modifying
Spark core), but it allows easy migration of Simba into new version
of Spark to be released in the future.
Programming interface. Simba adds spatial keywords and gram-
mar (e.g. POINT, RANGE, KNN, KNN JOIN, DISTANCE JOIN)
in Spark SQL’s query parser, so that users can express spatial queries
in SQL-like statements. We also extend the DataFrame API with a
similar set of spatial operations, providing an alternative program-
ming interface for the end users. The support of spatial operations

JDBCCLI

RDBMS Hive Native RDDHDFS

Scala/ Python Program

Extended DataFrame APISimba SQL Parser

Extended Query Optimizer

Cache Manager Physical Plan (with Spatial Operations)

Table Indexing

Apache Spark

Table Caching

Index Manager

Figure 1: Simba architecture.

in DataFrame API also allows Simba to interact with other Spark
components easily, such as MLlib, GraphX, and Spark Streaming.
Lastly, we introduce index management commands to Simba’s pro-
gramming interface, in a way which is similar to that in traditional
RDBMS. We will describe Simba’s programming interface with
more details in Section 4 and Appendix A.
Indexing. Spatial queries are expensive to process, especially for
data in multi-dimensional space and complex operations like spatial
joins and kNN. To achieve better query performance, Simba intro-
duces the concept of indexing to its kernel. In particular, Simba
implements several classic index structures including hash maps,
tree maps, and R-trees [14, 23] over RDDs in Spark. Simba adopts
a two-level indexing strategy, namely, local and global indexing.
The global index collects statistics from each RDD partition and
helps the system prune irrelevant partitions. Inside each RDD par-
tition, local indexes are built to accelerate local query processing
so as to avoid scanning over the entire partition. In Simba, user can
build and drop indexes anytime on any table through index manage-
ment commands. By the construction of a new abstraction called
IndexRDD, which extends the standard RDD structure in Spark, in-
dexes can be made persistent to disk and loaded back together with
associated data to memory easily. We will describe the Simba’s
indexing support in Section 5.
Spatial operations. Simba supports a number of popular spatial
operations over point and rectangular objects. These spatial oper-
ations are implemented based on native Spark RDD API. Multiple
access and evaluation paths are provided for each operation, so that
the end users and Simba’s query optimizer have the freedom and
opportunities to choose the most appropriate method. Section 6
discusses how various spatial operations are supported in Simba.
Optimization. Simba extends the Catalyst optimizer of Spark SQL
and introduces a cost-based optimization (CBO) module that tailors
towards optimizing spatial queries. The CBO module leverages
the index support in Simba, and is able to optimize complex spa-
tial queries to make the best use of existing indexes and statistics.
Query optimization in Simba is presented in Section 7.
Workflow in Simba. Figure 2 shows the query processing work-
flow of Simba. Simba begins with a relation to be processed, either
from an abstract syntax tree (AST) returned by the SQL parser or
a DataFrame object constructed by the DataFrame API. In both
cases, the relation may contain unresolved attribute references or
relations. An attribute or a relation is called unresolved if we do
not know its type or have not matched it to an input table. Simba
resolves such attributes and relations using Catalyst rules and a
Catalog object that tracks tables in all data sources to build log-
ical plans. Then, the logical optimizer applies standard rule-based
optimization, such as constant folding, predicate pushdown, and
spatial-specific optimizations like distance pruning, to optimize the
logical plan. In the physical planning phase, Simba takes a logical
plan as input and generates one or more physical plans based on
its spatial operation support as well as physical operators inherited

SQL Query

DataFrame
API

Optimized
Logical Plan

Logical Plan
Physical

Plans
Selected

Physical Plan
Simba Parser RDDs

Catalog

Index Manager

Cache Manager

Statistics

Analysis
Logical

Optimization
Physical
Planning

Cost-Based
Optimization

Figure 2: Query processing workflow in Simba.

RDBMS

Hive

HDFS

Native RDD

RDD[Row]

ColumnarRDD

IndexRDDDistributed
Indexing

In-Memory
Columnar Storage

Figure 3: Data Representation in Simba.
from Spark SQL. It then applies cost-based optimizations based
on existing indexes and statistics collected in both Cache Manager
and Index Manager to select the most efficient plan. The phys-
ical planner also performs rule-based physical optimization, such
as pipelining projections and filters into one Spark map operation.
In addition, it can push operations from the logical plan into data
sources that support predicate or projection pushdown. In Figure 2,
we highlight the components and procedures where Simba extends
Spark SQL with orange color.

Simba supports analytical jobs on various data sources such as
CVS, JSON and Parquet [5]. Figure 3 shows how data are rep-
resented in Simba. Generally speaking, each data source will be
transformed to an RDD of records (i.e., RDD[Row]) for further
evaluation. Simba allows users to materialize (often referred as
“cache”) hot data in memory using columnar storage, which can
reduce memory footprint by an order of magnitude because it re-
lies on columnar compression schemes such as dictionary encoding
and run-length encoding. Besides, user can build various indexes
(e.g. hash maps, tree maps, R-trees) over different data sets to ac-
celerate interactive query processing.
Novelty and contributions. To the best of our knowledge, Simba
is the first full-fledged (i.e., support SQL and DataFrame with a
sophisticated query engine and query optimizer) in-memory spa-
tial query and analytics engine over a cluster of machines. Even
though our architecture is based on Spark SQL, achieving efficient
and scalable spatial query parsing, spatial indexing, spatial query
algorithms, and a spatial-aware query engine in an in-memory, dis-
tributed and parallel environment is still non-trivial, and requires
significant design and implementation efforts, since Spark SQL is
tailored to relational query processing. In summary,
• We propose a system architecture that adapts Spark SQL to

support rich spatial queries and analytics.
• We design the two-level indexing framework and a new RDD

abstraction in Spark to build spatial indexes over RDDs na-
tively inside the engine.
• We give novel algorithms for executing spatial operators with

efficiency and scalability, under the constraints posed by the
RDD abstraction in a distributed and parallel environment.
• Leveraging the spatial index support, we introduce new logi-

cal and cost-based optimizations in a spatial-aware query op-
timizer; many such optimizations are not possible in Spark
SQL due to the lack of support for spatial indexes. We also
exploit partition tuning and query optimizations for specific
spatial operations such as kNN joins.

4. PROGRAMMING INTERFACE
Simba offers two programming interfaces, SQL and the DataFrame

API [13], so that users can easily express their analytical queries
and integrate them into other components of the Spark ecosystem.
Simba’s full programming interface is discussed in Appendix A.
Points. Simba introduces the point object in its engine, through
a scala class. Users can express a multi-dimensional point using
keyword POINT. Not only constants or attributes of tables, but
also arbitrary arithmetic expressions can be used as the coordinates
of points, e.g., POINT(x + 2, y - 3, z * 2) is a three-
dimensional point with the first coordinate as the sum of attribute
x’s value and constant 2. This enables flexible expression of spatial
points in SQL. Simba will calculate each expression in the state-
ment and wrap them as a point object for further processing.
Spatial predicates. Simba extends SQL with several new pred-
icates to support spatial queries, such as RANGE for box range
queries, CIRCLERANGE for circle range queries, and KNN for k
nearest neighbor queries. For instance, users can ask for the 3-
nearest neighbors of point (4, 5) from table point1 as below:
SELECT * FROM point1
WHERE POINT(x, y) IN KNN(POINT(4, 5), 3).

A box range query as follows asks for all points within the two-
dimensional rectangle defined by point (10, 5) (lower left corner)
and point (15, 8) (top right corner) from table point2 :
SELECT * FROM point2
WHERE POINT(x, y) IN RANGE(POINT(10, 5), POINT(15, 8)).

Spatial joins. Simba supports two types of spatial joins: distance
joins and kNN joins. Users can express these spatial joins in a θ-
join like manner. Specifically, a 10-nearest neighbor join between
two tables, point1 and point2, can be expressed as:
SELECT * FROM point1 AS p1 KNN JOIN point2 AS p2
ON POINT(p2.x, p2.y) IN KNN(POINT(p1.x, p1.y), 10).

A distance join with a distance threshold 20, between two tables
point3 and point4 in three-dimensional space, is expressed as:
SELECT * FROM point3 AS p3 DISTANCE JOIN point4 AS p4
ON POINT(p4.x, p4.y, p4.z) IN

CIRCLERANGE(POINT(p3.x, p3.y, p3.z), 20).

Index management. Users can manipulate indexes easily with in-
dex management commands introduced by Simba. For example,
users can build an R-Tree index called pointIndex on attributes
x, y, and z for table sensor using command:
CREATE INDEX pointIndex ON sensor(x, y, z) USE RTREE.

Compound queries. Note that Simba keeps the support for all
grammars (including UDFs and UDTs) in Spark SQL. As a result,
we can express compound spatial queries in a single SQL state-
ment. For example, we can count the number of restaurants near a
POI (say within distance 10) for a set of POIs, and sort locations
by the counts, with the following query:
SELECT q.id, count(*) AS c
FROM pois AS q DISTANCE JOIN rests AS r
ON POINT(r.x, r.y) IN CIRCLERANGE(POINT(q.x, q.y), 10.0)
GROUP BY q.id ORDER BY c.

DataFrame support. In addition to SQL, users can also perform
spatial operations over DataFrame objects using a domain-specific
language (DSL) similar to data frames in R [10]. Simba’s DataFrame
API supports all spatial operations extended to SQL described above.
Naturally, all new operations are also compatible with the exiting
ones from Spark SQL, which provides the same level flexibility as
SQL. For instance, we can also express the last SQL query above
in the following scala code:
pois.distanceJoin(rests, Point(pois("x"), pois("y")),

Point(rest("x"), rest("y")), 10.0)
.groupBy(pois("id"))
.agg(count("*").as("c")).sort("c").show().

5. INDEXING
Indexing is important for the efficient processing of spatial queries

and analytics, especially for multi-dimensional data and complex
spatial operations such as kNN and spatial joins. In particular, in-
dexing is a critical component towards building an effective op-
timizer in Simba. Since Simba is an in-memory analytical en-
gine, reducing disk IOs is not a main focus of indexing. Rather,
Simba leverages indexes to reduce query latency and improve query
throughput via cutting down CPU costs. For example, indexing
can help Simba prune irrelevant RDD partitions when processing
a range query, which frees more CPU resources for the underlying
Spark engine, leading to higher query throughput.

Simba builds (spatial) indexes directly over RDDs to speed up
query processing. Specifically, tables are represented as RDDs
of records (i.e., RDD[Row]). Thus, indexing records of a table
becomes indexing elements in an RDD. However, RDDs are de-
signed for sequential scan, thus random access is very expensive as
it may become a full scan on the RDD. An extra complexity is that
we want to introduce indexing support without changing the Spark
core for the reasons explained in Section 3. To overcome these
challenges, we change the storage format of an indexed table by
introducing a new abstraction called IndexRDD[Row], and em-
ploy a two-level indexing strategy which can accommodate various
index structures to support different queries in Simba.
IndexRDD. Recall that records from a table are stored as Row ob-
jects (Row objects), and each tables is stored as a RDD of Row that
contains multiple partitions. To add index support over a table, we
pack all records (i.e., Row objects) within an RDD partition into an
array, which gives each record a unique subscript as its index. Such
change makes random access inside RDD partitions an efficient op-
eration with O(1) cost. To achieve this in Simba, we introduce the
IPartition data structure as below:
case class IPartition[Type](Data: Array[Type], I: Index)

Index is an abstract class that we have designed, and can be in-
stantiated as: HashMap (a hash index), TreeMap (a one-dimensional
index), and RTree (a multi-dimensional index). IndexRDD[Row]
is simply defined as RDD[IPartition[Row]] by setting Type
= Row in the following type declaration:
type IndexRDD[Type] = RDD[IPartition[Type]]

Records from a table are partitioned by a partitioner (that will be
described next), and then packed into a set of IPartition ob-
jects. Since we pack all records within a partition to an array object
inside IPartition, Simba does introduce small space overhead
which may slow down table scanning operation compared to Spark
SQL’s in-memory columnar storage and the original RDD[Row]
structure. Experiments in Appendix D.3 have validated that the
overhead of our design is insignificant.

Each IPartition object contains a local index over the records
in that partition. Furthermore, each IPartition object emits the
partition boundary information to construct a global index. In gen-
eral, index construction in Simba consists of three phases: parti-
tion, local index, and global index, as shown in Figure 4.
Partition. In the partition phase, Simba partitions the input table
(i.e., RDD[Row]) according to three main concerns: (1) Partition
Size. Each partition should have a proper size so as to avoid mem-
ory overflow. (2) Data Locality. Records that locate close to each
other (with respect to the indexing attributes) should be assigned
to the same partition. (3) Load Balancing. Partitions should be
roughly of the same size.

Spark allows users to define their own partition strategies by im-
plementing an abstract class called Partitioner. A customized
partitioner should specify how many partitions it will generate and
how an element maps to a partition ID according to its partition

Partition

Packing
&

Indexing

Array[Row] Local Index

IPartition[Row] Partition Info

Local Index Global Index

Global Index

 Row

IndexRDD[Row]

On Master Node

Figure 4: Two-level indexing strategy in Simba.
key. Spark provides two predefined partitioners, range partitioner
and hash partitioner, which is sufficient when the partition key is
one-dimensional, but does not fit well to multi-dimensional cases.

To address this problem, we have defined a new partitioner named
STRPartitioner in Simba. STRPartitioner takes a set of
random samples from the input table and runs the first iteration
of Sort-Tile-Recursive (STR) algorithm [26] to determine partition
boundaries. Note that the boundaries generated by the STR algo-
rithm are minimum bounded rectangles (MBRs) of the samples.
Thus, we need to extend theses MBRs so that they can properly
cover the space of the original data set. Finally, according to these
extended boundaries, STRPartitioner specifies which parti-
tion each record belongs to.

Simba makes no restriction on partition strategies. Instead of
using STRPartitioner, an end user can always supply his/her
own partitioner to Simba. We choose STRPartitioner as the
default partitioner of Simba due to its simplicity and proven effec-
tiveness by existing studies [19]. As shown in Figure 4, we assume
the input tableR is partitioned into a set of partitions {R1, . . . , Rm}
by the partitioner. The number of partitions, m, is determined by
Simba’s optimizer which will be discussed in Section 7.
Local index. In this phase, Simba builds a user-specified index
(e.g. R-tree) over data in each partition Ri as its local index. It
also alters the storage format of the input table from RDD[Row]
to IndexRDD[Row], by converting each RDD partition Ri to an
IPartition[Row] object, as shown in Figure 4.

Specifically, for each partition Ri, records are packed into an
Array[Row] object. Then, Simba builds a local index over this
Array[Row], and co-locates them in the IPartition[Row]
object. As we can see, the storage format of the input table is no
longer an RDD of Row objects, but an RDD of IPartition[Row]
objects, which is an IndexRDD of Row objects by the definition
above. While packing partition data and building local indexes,
Simba also collects several statistics from each partition, such as
the number of records and the partition boundaries, to facilitate the
construction of the global index as illustrated in Figure 4.
Global index. The last phase of index construction is to build a
global index which indexes all partitions. The global index enables
us to prune irrelevant partitions for an input query without invoking
many executors to look at data stored in different partitions.

In this phase, partition boundaries generated by the partitioner
and other statistics collected in the local index phase are sent to
the master node. Such information is utilized to bulk load an in-
memory index, which is stored in the driver program on the master
node. Users can specify different types of global indexes: When in-
dexing one-dimensional data, a sorted array of the range boundaries
is sufficient (the record count and other statistics for each partition
are also stored in each array element). In multi-dimensional cases,
more complex index structures, such as R-tree [14, 23] or KD-tree,
can be used. By default, Simba keeps the global indexes for differ-
ent tables in the memory of the master node at all time (i.e., in its

(a) Loose Pruning Bound

(b) Refined Pruning Bound
Figure 5: Pruning bound for kNN query at global index.

driver program). Nevertheless, Simba also allows users to persist
global indexes and corresponding statistics to the file system.

Even for big data, the number of partitions is not very large (from
several hundreds to tens of thousands). Thus, global index can eas-
ily fit in the memory of the master node. As shown in Figure 9(b) of
our experiments, the global index only consumes less than 700KB
for our largest data set with 4.4 billion records.

6. SPATIAL OPERATIONS
Simba introduces new physical execution plans to Spark SQL for

spatial operations. In particular, the support for local and global in-
dexes enables Simba to explore and design new efficient algorithms
for classic spatial operations in the context of Spark. Since range
query is the simplest, we present its details in Appendix B.

6.1 kNN Query
In Spark SQL, a kNN query can be processed in two steps: (1)

calculate distances from all points in the table to the query point;
(2) take k records with minimum distances. This procedure can
be naturally expressed as an RDD action takeOrdered, where
users can specify a comparison function and a value k to select k
minimum elements from the RDD. However, this solution involves
distance computation for every record, a top k selection on each
RDD partition, and shuffling of large intermediate results.

In Simba, kNN queries achieve much better performance by uti-
lizing indexes. It leverages two observations: (1) inside each parti-
tion, fast kNN selection over the local data is possible by utilizing
the local index; (2) a tight pruning bound that is sufficient to cover
the global kNN results can help pruning irrelevant partitions using
the global index. The first observation is a simple application of
classic kNN query algorithms using spatial index like R-tree [31].
The second observation deserves some discussion.

Intuitively, any circle centered at the query point q covering at
least k points from R is a safe pruning bound. To get a tighter
bound, we shrink the radius γ of this circle. A loose pruning bound
can be derived using the global index. Simba finds the nearest par-
tition(s) to the query point q, which are sufficient to cover at least
k data points. More than one partition will be retrieved if the near-
est partition does not have k points (recall global index maintains
the number of records in each partition). The distance between q
and a partition Ri is defined as maxdist(q,mbr(Ri)) [31]. With-
out loss of generality, assume the following MBRs are returned:
{mbr(R1), . . . ,mbr(R`)}. Then γ = max{maxdist(q,mbr(R1)),
. . . ,maxdist(q,R`)} is a safe pruning bound. Figure 5(a) shows
an example of this bound as a circle centered at q. The dark boxes
are the nearest MBRs retrieved to cover at least k points which
help deriving the radius γ. The dark and gray boxes are partitions
selected by the global index according to this pruning bound.

To tighten this bound, Simba issues a kNN query on the ` par-
titions selected from the first step (i.e., two partitions with dark
boxes in Figure 5(a)), and takes the k-th minimum distance from
q to the k` candidates returned from these partitions as γ. Figure
5(b) shows this new pruning bound which is much tighter in prac-

tice. Note that ` is small for typical k values (often ` = 1), thus,
this step has very little overhead.

Global index returns the partition IDs whose MBRs intersect
with the circle centered at q with radius γ, Simba marks these par-
titions using PartitionPruningRDD and invokes local kNN
queries using the aforementioned observation (1). Finally, it merges
the k candidates from each of such partitions and takes the k records
with minimum distances to q using RDD action takeOrdered.

6.2 Distance Join
Distance join is a θ-join between two tables. Hence, we can

express a distance join R 110.0 S in Spark SQL as:
SELECT * FROM R JOIN S
ON (R.x - S.x) * (R.x - S.x) + (R.y - S.y) * (R.y - S.y)

<= 10.0 * 10.0

Spark SQL has to use the Cartesian product of two input tables
for processing θ-joins. It then filters from the Cartesian product
based on the join predicates. Producing the Cartesian product is
rather costly in Spark: If two tables are roughly of the same size, it
leads to O(n2) cost when each table has n partitions.

Most systems reviewed in Section 2 did not study distance joins.
Rather, they studied spatial joins: it takes two tablesR and S (each
is a set of geometric objects such as polygons), and a spatial join
predicate θ (e.g., overlaps, contains) as input, and returns
the set of all pairs (r, s) where r ∈ R, s ∈ S such that θ(r, s) is
true; θ(r, s) is evaluated as object r ‘θ’ (e.g., overlaps) object s.

That said, we design the DJSpark algorithm in Simba for dis-
tance joins. DJSpark consists of three steps: data partition, global
join, and local join, as shown in Figure 6.
Data partition. Data partition phase is to partition R and S so as
to preserve data locality where records that are close to each other
are likely to end up in the same partition. We also need to consider
partition size and load balancing issues. Therefore, we can re-use
the STRPartitioner introduced in Section 5. The main difference
is how we decide the partition size for R and S. Simba has to
ensure that it can keep two partitions (one from R and one from
S) rather than one (when handling single-relation operations like
range queries) in executors’ heap memory at the same time.

Note that the data partition phase can be skipped for R (or S) if
R (or S) has been already indexed.
Global join. Given the partitions of table R and table S, this step
produces all pairs (i, j) which may contribute any pair (r, s) such
that r ∈ Ri, s ∈ Sj , and |r, s| ≤ τ . Note that for each record s ∈
S, s matches with some records in Ri only if mindist(s,Ri) ≤
τ . Thus, Simba only needs to produce the pairs (i, j) such that
mindist(Ri, Sj) ≤ τ . After generating these candidate pairs of
partition IDs, Simba produces a combined partition P = {Ri, Sj}
for each pair (i, j). Then, these combined partitions are sent to
workers for processing local joins in parallel.
Local join. Given a combined partition P = {Ri, Sj} from the
global join, local join builds a local index over Sj on the fly (if S
is not already indexed). For each record r ∈ Ri, Simba finds all
s ∈ Sj such that |s, r| ≤ τ by issuing a circle range query centered
at r over the local index on Sj .

6.3 kNN Join
Several solutions [27,39] for kNN join were proposed on MapRe-

duce. In Simba, we have redesigned and implemented these meth-
ods with the RDD abstraction of Spark. Furthermore, we design a
new hash-join like algorithm, which shows the best performance.

6.3.1 Baseline methods
The most straightforward approach is the BKJSpark-N method

(block nested loop kNN join in Spark).

…

Global Join Local Join

Local Index
of

Figure 6: The DJSpark algorithm in Simba.
Producing buckets. R (and S) is divided into n1 (n2) equal-sized
blocks, which simply puts every |R|/n1 (or |S|/n2) records into a
block. Next, every pair of blocks, i.e., (Ri, Sj) for i ∈ [1, n1], j ∈
[1, n2] are shuffled to a bucket (so a total of n1n2 buckets).
Local kNN join. Buckets are processed in parallel. Within each
bucket (Ri, Sj), Simba performs knn(r, Sj) for every r ∈ Ri
through a nested loop over Ri and Sj .
Merge. This step finds the global kNN of every r ∈ R among
its n2k local kNNs found in the last step (a total of |R|n2k candi-
dates). Simba runs reduceByKey (where the key is a record in
R) in parallel to get the global kNN of each record in R.

A simple improvement is to build a local R-tree index over Sj
for every bucket (Ri, Sj), and use the R-tree for local kNN joins.
We denoted it as BKJSpark-R (block R-tree kNN join in Spark).

6.3.2 Voronoi kNN Join and z-Value kNN Join
The baseline methods need to check roughly n2 buckets (when

O(n1) = O(n2) = O(n)), which is expensive for both compu-
tation and communication in distributed systems. A MapReduce
algorithm leveraging a Voronoi diagram based partitioning strategy
was proposed in [27]. It executes only n local joins by partition-
ing both R and S into n partitions respectively, where the partition
strategy is based on the Voronoi diagram for a set of pivot points
selected from R. In Simba, We adapt this approach and denote it
as the VKJSpark method (Voronoi kNN join in Spark).

Another MapReduce based algorithm for kNN join was pro-
posed in [39], which exploits z-values to map multi-dimensional
points into one dimension and uses random shift to preserve spatial
locality. This approach also produces n partitions for R and S re-
spectively, such that for any r ∈ Ri and i ∈ [1, n], knn(r, S) ⊆
knn(r, Si) with high probability. Thus, it is able to provide high
quality approximations using only n local joins. The partition step
is much simpler than the Voronoi kNN join, but it only provides
approximate results and there is an extra cost for producing exact
results in a post-processing step. We adapt this approach in Simba,
and denote it as ZKJSpark (z-value kNN join in Spark).

6.3.3 R-Tree kNN Join
We leverage indexes in Simba to design a simpler yet more effi-

cient method, the RKJSpark method (R-tree kNN join in Spark).
RKJSpark partitionsR into n partitions {R1, . . . , Rn} using the

STR partitioning strategy (as introduced in Section 5), which leads
to balanced partitions and preserves spatial locality. It then takes a
set of random samples S′ from S, and builds an R-tree T over S′

in the driver program on the master node.
The key idea in RKJSpark is to derive a distance bound γi for

each Ri, so that we can use γi, Ri, and T to find a subset Si ⊂ S
such that for any r ∈ Ri, knn(r, S) = knn(r, Si). This partition-
ing strategy ensures that R 1knn S = (R1 1knn S1)

⋃
(R2 1knn

S2)
⋃
· · ·

⋃
(Rn 1knn Sn), and allows the parallel execution of

only n local kNN joins (on each (Ri, Si) pair for i ∈ [1, n])).
We use cri to denote the centroid of mbr(Ri). First, for each

Ri, Simba finds the distance ui from the furthest point in Ri to cri

(i.e., ui = maxr∈Ri |r, cri|) in parallel. Simba collects these ui
values and centroids in the driver program on the master node.

Next, Simba finds knn(cri, S′) using the R-tree T for i ∈ [1, n].
Without loss of generality, suppose knn(cri, S

′) = {s1, . . . , sk}
(in ascending order of their distances to cri). Finally, Simba sets:

γi = 2ui + |cri, sk| for partition Ri, (1)
and finds Si = {s|s ∈ S, |cri, s| ≤ γi} using a circle range query
centered at cri with radius γi over S. This guarantees the desired
property described above, due to:
Theorem 1 For any partition Ri where i ∈ [1, n], we have:
∀r ∈ Ri, knn(r, S) ⊂ {s|s ∈ S, |cri, s| ≤ γi}, for γi defined in (1).
The proof is shown in Appendix C. This leads to the design of
RKJSpark. Specifically, for every s ∈ S, RKJSpark includes a
copy of s in Si if |cri, s| ≤ γi. Theorem 1 guarantees that for any
r ∈ Ri, knn(r, S) = knn(r, Si).

Then, Simba invokes a zipPartitions operation for each
i ∈ [1, n] to place Ri and Si together into one combined RDD par-
tition. In parallel, on each combined RDD partition, Simba builds
an R-tree over Si and executes a local kNN join by querying each
record from Ri over this tree. The union of these n outputs is the
final answer for R 1knn S.

7. OPTIMIZER AND FAULT TOLERANCE
7.1 Query Optimization

Simba tunes system configurations and optimizes complex spa-
tial queries automatically to make the best use of existing indexes
and statistics. We employed a cost model for determining a proper
number of partitions in different query plans. We also add new log-
ical optimization rules and cost-based optimizations to the Catalyst
optimizer and the physical planner of Spark SQL.

The number of partitions plays an important role in performance
tuning for Spark. A good choice on the number of partitions not
only guarantees no crashes caused by memory overflow, but also
improves system throughput and reduces query latency. Given the
memory available on a slave node in the cluster and the input table
size, Simba partitions the table so that each partition can fit into the
memory of a slave node and has roughly equal number of records
so as to ensure load balancing in the cluster.

Simba builds a cost model to estimate the partition size under
a given schema. It handles two cases: tables with fixed-length
records and tables with variable-length records. The first case is
easy and we omit its details. The case for variable-length record
is much harder, since it is difficult to estimate the size of a parti-
tion even if we know how many records are going into a partition.
Simba resolves this challenge using a sampling based approach,
i.e., a small set of samples (using sampling without replacement)
is taken to build estimators for estimating the size of different par-
titions, where the sampling probability of a record is proportional
to its length. This is a coarse estimation depending on the sam-
pling rate; but it is possible to formally analyze the performance of
this estimator with respect to a given partitioning strategy, and in
practice, this sampling approach is quite effective.

Using the cost model and a specified partition strategy, Simba
then computes a good value for the number of partitions such that:
1) partitions are balanced in size; 2) size of each partition fits the
memory size of a worker node; and 3) the total number of partitions
is proportional to the number of workers in the cluster. Note that
the size of different partitions should be close but not greater than
a threshold, which indicates how much heap memory Spark can
reserve for query processing. In Spark, on each slave node, a frac-
tion of memory is reserved for RDD caching, which is specified as
a system configuration spark.storage.memoryFraction

Filter By:

Full Table Scan

Table Scan using Index Operators
With Predicate:

Filter By:

Result Result

Transform to DNF

Optimize

Figure 7: Index scan optimization in Simba.
(we denote this value as α). In our cost model, the remaining mem-
ory will be evenly split to each processing core.

Suppose the number of cores is c and total memory reserved for
Spark on each slave node is M . The partition size threshold β is
then calculated as: β = λ((1 − α)M/c), where λ is a system pa-
rameter, whose default value is 0.8, to take memory consumption of
run-time data structures into consideration. With such cost model,
Simba can determine the number of records for a single partition,
and the numbers of partitions for different data sets.

To better utilize the indexing support in Simba, we add new rules
to the Catalyst optimizer to select those predicates which can be op-
timized by indexes. First, we transform the original select condition
to Disjunctive Normal Form (DNF), e.g. (A∧B)∨C∨(D∧E∧F).
Then, we get rid of all predicates in the DNF clause which cannot
be optimized by indexes, to form a new select condition θ. Simba
will filter the input relation with θ first using index-based operators,
and then apply the original select condition to get the final answer.

Figure 7 shows an example of the index optimization. The select
condition on the input table is (A∨(D∧E))∧((B∧C)∨(D∧E)).
Assuming that A, C and D can be optimized by utilizing existing
indexes. Without index optimization, the engine (e.g., Spark SQL)
simply does a full scan on the input table and filters each record by
the select condition. By applying index optimization, Simba works
out the DNF of the select condition, which is (A∧B ∧C)∨ (D ∧
E), and invokes a table scan using index operators under a new
condition (A ∧ C) ∨D. Then, we filter the resulting relation with
original condition once more to get the final results.

Simba also exploits various geometric properties to merge spa-
tial predicates, to reduce the number of physical operations. Simba
merges multiple predicates into segments or bounding boxes, which
can be processed together without involving expensive intersec-
tions or unions on intermediate results. For example, x > 3 AND
x < 5 AND y > 1 AND y < 6 can be merged into a range
query on (POINT(3, 1), POINT(5, 6)), which is natively
supported in Simba as a single range query. Simba also merges
query segments or bounding boxes prior to execution. For instance,
two conjunctive range queries on (POINT(3, 1), POINT(5,
6)) and (POINT(4, 0), POINT(9, 3)) can be merged into
a single range query on (POINT(4, 1), POINT(5, 3)).

Index optimization improves performance greatly when the pred-
icates are selective. However, it may cause more overheads than
savings when the predicate is not selective or the size of input ta-
ble is small. Thus, Simba employs a new cost based optimization
(CBO), which takes existing indexes and statistics into considera-
tion, to choose the most efficient physical plans. Specifically, we
define the selectivity of a predicate for a partition as the percentage
of records in the partition that satisfy the predicate.

If the selectivity of the predicate is higher than a user-defined
threshold (by default 80%), Simba will choose to scan the parti-
tion rather than leveraging indexes. For example, for range queries,
Simba will first leverage the local index to do a fast estimation on
the predicate selectivity for each partition whose boundary inter-
sects the query area, using only the top levels of local indexes for

selectivity estimation (we maintain a count at each R-tree node u
that is the number of leaf level entries covered by the subtree rooted
at u, and assume uniform distribution in each MBR for the purpose
of selectivity estimation,). Selectivity estimation for other types of
predicates can be similarly made using top levels of local indexes.

CBO is also used for joins in Simba. When one of the tables
to be joined is small (much smaller than the other table), Simba’s
optimizer will switch to broadcast join, which skips the data par-
tition phase on the small table and broadcasts it to every partition
of the large table to do local joins. For example, if R is small and
S is big, Simba does local joins over (R,S1), . . . , (R,Sm). This
optimization can be applied to both distance and kNN joins.

For kNN joins in particular, CBO is used to tune RKJSpark. We
increase the sampling rate used to generate S′ and/or partition ta-
ble R with finer granularity to get a tighter bound for γi. Simba’s
optimizer adjusts the sampling rate of S′ according to the master
node’s memory size (and the max possible query value kmax so that
|S′| > kmax; k is small for most kNN queries). Simba’s optimizer
can also invoke another STR partitioner within each partition to get
partition boundaries locally on each worker with finer granularity
without changing the global partition and physical data distribu-
tion. This allows RKJSpark to compute tighter bounds of γi using
the refined partition boundaries, thus reduces the size of Si’s.

Lastly, Simba implements a thread-safe SQL context (by creat-
ing thread-local instances for conflict components) to support the
concurrent execution of multiple queries. Hence, multiple users
can issue their queries concurrently to the same Simba instance.

7.2 Fault Tolerance
Simba’s fault tolerance mechanism extends that of Spark and

Spark SQL. By the construction of IndexRDD, table records and
local indexes in Simba are still encapsulated in RDD objects! They
are persisted at the storage level of MEM_AND_DISK_SER, thus
are naturally fault tolerant because of the RDD abstraction of Spark.
Any lost data (records or local indexes) will be automatically re-
covered by RDD’s fault tolerance mechanism (based on the lineage
graph). Thus, Simba can tolerate any worker node failures at the
same level that Spark provides. This also allows local indexes to
be reused when data are loaded back into memory from disk, and
avoids repartitioning and rebuilding of local indexes.

For the fault tolerance of the master node (or the driver program),
Simba adopts the following mechanism. A Spark cluster can have
multiple masters managed by zookeeper [7]. One will be elected
“leader” and the others will remain in standby mode. If current
leader fails, another master will be elected, recover the old mas-
ter’s state, and then continue scheduling. Such mechanism would
recover all system states and global indexes that reside in the driver
program, thus ensures that Simba can survive after a master failure.

In addition, user can also choose to persist IndexRDD and global
indexes to the file system, and have the option of loading them back
from the disk. This enables Simba to load constructed index struc-
tures back to the system even after power failures.

Lastly, note that all user queries (including spatial operators) in
Simba will be scheduled as RDD transformations and actions in
Spark. Therefore, fault tolerance for query processing is naturally
guaranteed by the underlying lineage graph fault tolerance mecha-
nism provided in Spark kernel and consensus model of zookeeper.

8. EXPERIMENT
8.1 Experiment Setup

All experiments were conducted on a cluster consisting of 10
nodes with two configurations: (1) 8 machines with a 6-core Intel
Xeon E5-2603 v3 1.60GHz processor and 20GB RAM; (2) 2 ma-

chines with a 6-core Intel Xeon E5-2620 2.00GHz processor and
56GB RAM. Each node is connected to a Gigabit Ethernet switch
and runs Ubuntu 14.04.2 LTS with Hadoop 2.4.1 and Spark 1.3.0.
We select one machine of type (2) as the master node and the rest
are slave nodes. The Spark cluster is deployed in standalone mode.
Our cluster configuration reserved up to 180GB of main memory
for Spark. We used the following real and synthetic datasets:

OSM is extracted from OpenStreetMap [9]. The full OSM
data contains 2.2 billion records in 132GB, where each record has a
record ID, a two-dimensional coordinate, and two text information
fields (with variable lengths). We took uniform random samples of
various sizes from the full OSM, and also duplicated the full OSM
to get a data set 2×OSM. These data sets range from 1 million to
4.4 billion records, with raw data size up to 264GB (in 2×OSM).

GDELT stands for Global Data on Events, Language and Tone
[8], which is an open database containing 75 million records in to-
tal. In our experiment, each record has 7 attributes: a timestamp
and three two-dimensional coordinates which represent the loca-
tions for the start, the terminal, and the action of an event.

RC: We also generated synthetic datasets of various sizes (1 mil-
lion to 1 billion records) and dimensions (2 - 6 dimensions) us-
ing random clusters. Specifically, we randomly generate different
number of clusters, using a d-dimensional Gaussian distribution in
each cluster. Each record in d-dimension contains d+1 attributes:
namely, a record ID and its spatial coordinates.

For single-relation operations (i.e. range and kNN queries), we
evaluate the performance using throughput and latency. In particu-
lar, for both Simba and Spark SQL, we start a thread pool of size 10
in the driver program, and issue 500 queries to the system to calcu-
late query throughput. For other systems that we reviewed in Sec-
tion 2, since they do not have a multi-threading module, we submit
20 queries at the same time and run them as 20 different processes
to ensure full utilization of the cluster resources. The throughput
is calculated by dividing the total number of queries over the run-
ning time. Note that this follows the same way these systems had
used to measure their throughput [22]. For all systems, we used
100 randomly generated queries to measure the average query la-
tency. For join operations, we focus on the average running time of
10 randomly generated join queries for all systems.

In all experiments, HDFS block size is 64MB. By default, k =
10 for a kNN query or a kNN join. A range query is characterized
by its query area, which is a percentage over the entire area where
data locate. The default query area for range queries is 0.01%. The
default distance threshold τ for a distance join is set to 5 (each di-
mension is normalized into a domain from 0 to 1000). The default
partition size is 500 × 103 (500k) records per partition for single-
relation operations and 30×103 (30k) records per partition for join
operations. The default data set size for single-relation operations
is 500 million records on OSM data sets and 700 million on RC
data sets. For join operations, the default data size is set to 3 mil-
lion records in each input table. The default dimensionality is 2.

8.2 Cost of Indexing
We first investigate the cost of indexing in Simba and other dis-

tributed spatial analytics systems, including GeoSpark [37], Spa-
tialSpark [36], SpatialHadoop [22], Hadoop GIS [11], and Ge-
omesa [24]. A commercial single-node parallel spatial database
system (denoted as DBMS X) running on our master node is also
included. Figure 8(a) presents the index construction time of dif-
ferent systems on the OSM data set when the data size varies from
30 million to 4.4 billion records (i.e., up to 2×OSM). Note that
DBMS X took too much time when building an R-tree index over
4.4 billion records in 2×OSM; hence its last point is omitted.

0 1000 2000 3000 4000
10

1

10
3

10
5

10
7

Data size (×10
6
)

In
d

e
x
 c

o
n
s
tr

u
c
ti
o
n

 t
im

e
 (

s
)

Simba GeoSpark SpatialSpark

SpatialHadoop Hadoop GIS
Geomesa DBMS X

(a) Effect of data size, OSM.

2 3 4 5 6
500

750

1000

1250

1500

1750

Dimension

In
d

e
x
 c

o
n
s
tr

u
c
ti
o
n

 t
im

e
 (

s
)

Simba

(b) Effect of dimension, RC.
Figure 8: Index construction time.

0 1000 2000 3000 4000
10

−1

10
0

10
1

10
2

10
3

10
4

Data size (×10
6
)

L
o
c
a
l
In

d
e
x
 S

iz
e
 (

G
B

)

Simba GeoSpark SpatialHadoop

Hadoop GIS Geomesa

DBMS X Raw Index Key

(a) Local index.

0 1000 2000 3000 4000
10

−1

10
0

10
1

10
2

10
3

10
4

Data size (×10
6
)

G
lo

b
a
l
In

d
e
x
 S

iz
e
 (

K
B

)

Simba SpatialSpark

SpatialHadoop Hadoop GIS

(b) Global index.
Figure 9: Index storage overhead on OSM.

Simba and GeoSpark show the best index construction time, and
both scale linearly to the data size. For example, Simba builds
its index (which uses R-tree for both local indexes and the global
index) over 1 billion records (60GB in file size) in around 25 min-
utes, which is 2.5x faster than SpatialHadoop, 3x faster than Spa-
tialSpark, 12x faster than Hadoop GIS, and 15x faster than Ge-
omesa. GeoSpark is slightly faster than Simba in building its in-
dexes, because it uses a sampling partition strategy and it only
builds a local index for each partition without building global in-
dexes. Simba indexes RDDs natively, while Hadoop based systems
index HDFS file blocks. Even though SpatialSpark is also based
on Spark, it indexes HDFS files rather than native RDDs. Geomesa
builds a hash based index over Apache Accumulo.

We then investigated Simba’s indexing support in higher dimen-
sions. Figure 8(b) shows the index construction time in Simba
against number of dimensions on the RC data set. The cost in-
creases linearly with the increase in dimensionality. Note that all
other systems can only support up to two dimensions.

Next, we investigate the storage overhead (memory footprint or
disk space used) of indexes in different systems, using OSM data of
various sizes. Since Geomesa utilizes a hash based indexing strat-
egy without global indexing, and DBMS X constructs its spatial
index on a single node, we show their results with the local index
size of the other systems in Figure 9(a), as local indexes dominate
the index size of indexing in distributed systems. As a reference, we
included the total size of all indexed keys (i.e., spatial coordinates)
in Figure 9(a), denoted as “Raw Index Key”. SpatialSpark was not
included in Figure 9(a) since local indexes are not supported.

As shown in Figure 9(a), Simba, SpatialHadoop and Hadoop GIS
have the lowest storage overhead in their local indexes, while those
of GeoSpark, Geomesa and DBMS X are much higher (roughly
4-5x). Global indexing is only supported by Simba, SpatialSpark,
SpatialHadoop and Hadoop GIS. As shown in Figure 9(b), all sys-
tems have small global index storage overhead (only in the order
of KB). In particular, the global index size in Simba is very small,
which can easily fit in the memory of the master node. For ex-
ample, it only consumes 653KB for the largest dataset (4.4 billion
records with 264GB in raw data) in Simba. This is because that the
number of partitions is not a large number (in the order of hundreds
to tens of thousands) even for very large data.

Overall, Simba’s index storage overhead is acceptable, for ex-
ample, for 1×OSM with 2.2 billion indexed keys, Simba’s local in-
dexes use only 67GB, and its global index uses only 323KB, while
the raw key size is about 40GB and the data itself is 132GB.

Range kNN
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

× ×

T
h
ro

u
g
h
p
u
t
(j
o
b
s
/m

in
)

Simba GeoSpark SpatialSpark

SpatialHadoop Hadoop GIS

Geomesa DBMS X

(a) Throughput
Range kNN

10
−1

10
0

10
1

10
2

10
3

10
4

× ×

L
a
te

n
c
y
 (

s
)

Simba GeoSpark SpatialSpark

SpatialHadoop Hadoop GIS

Geomesa DBMS X

(b) Latency
Figure 10: Single-relation operations on different systems.

8.3 Comparison with Existing Systems
In this section, we tested different systems using various spatial

operations with the default settings described in Section 8.1 over
the 0.25×OSM data set (500 million records). A red cross mark in
the following bar charts indicates that the corresponding operation
is not supported in a system.

Figure 10 shows the performance of single-relation operations
on both range and kNN queries. Simba achieves 5-100x better
performance (on both throughput and latency) than other existing
cluster-based spatial analytics systems and the single-node paral-
lel spatial database. Only DBMS X has outperformed Simba on
kNN queries, as when k is small a single-node approach with in-
dex support is very efficient for finding kNNs. But its range query
performance is worse than Simba.

Note that the performance of GeoSpark in this case is even worse
than Hadoop based systems because GeoSpark has not utilized global
indexes for query processing, which can help pruning large num-
bers of useless partitions (more than 90%) before scanning them.

DistanceJoin kNNJoin
10

1

10
2

10
3

10
4

10
5

× × ×××××

R
u
n
n
in

g
 t
im

e
 (

s
)

Simba GeoSpark SpatialSpark

SpatialHadoop Hadoop GIS

Geomesa DBMS X VKJHadoop

Figure 11: Join operations
on different systems.

For join operations (using 3
million records in each table), as
shown in Figure 11, Simba runs
distance join 1.5x faster than Spa-
tialSpark, 25x faster than Hadoop
GIS, and 26x faster than DBMS
X. Note that distance join over
point objects is not natively sup-
ported in SpatialHadoop. Never-

theless, SpatialHadoop supports spatial joins over geometric ob-
jects. We use RC(τ/2) 1intersects SC(τ/2) to work out the orig-
inal distance join (by mapping two points to two circles with τ/2
radius centered at them). kNN join is only supported by Simba and
DBMS X. For a better comparison with existing distributed meth-
ods, we also compared Simba against the Voronoi-based kNN join
implemented on Hadoop [1] (denoted as VKJHadoop). By Figure
11, Simba (using its RKJSpark algorithm) is 18x faster than DBMS
X and 7x faster than VKJHadoop.

Simba is more efficient than GeoSpark [37] and SpatialSpark
[36] because of its indexing support inside the query engine and
its query optimizer. GeoSpark and SpatialSpark are only libraries
running on top of Spark without a query engine. Compared with
Hadoop based systems like SpatialHadoop [22] and Hadoop GIS
[11], Simba extends the engine of Spark SQL to support spatial op-
erations natively with a sophisticated, RDBMS-like query engine,
and uses Spark for in-memory computation, hence, is much more
efficient. For example, Simba provides 51x lower latency and 45x
higher throughput than SpatialHadoop for kNN queries. Hadoop
based systems will be useful when data is so large that they cannot
fit into the cluster’s memory space.

Geomesa is a distributed key-value storage system with support
for spatial operations. Thus, its analytical performance is not as
nearly good as Simba. DBMS X is a single-node parallel database,
thus, does not scale well for expensive join operations and large
datasets (as evident from its index construction cost).

0 1000 2000 3000 4000
10

−1

10
0

10
1

10
2

10
3

Data size (×10
6
)

T
h

ro
u

g
h
p
u

t
(j
o

b
s
/m

in
)

Simba Spark SQL

0 1000 2000 3000 4000

10
0

10
1

10
2

10
3

Data size (×10
6
)

L
a
te

n
c
y
 (

s
)

Sibma Spark SQL

(a) Effect of data size.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Query area (%)

L
a
te

n
c
y
 (

s
)

Simba Spark SQL

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Query area (%)

L
a
te

n
c
y
 (

s
)

Simba Spark SQL

(b) Effect of query area size (percentage of total area).
Figure 12: Range query performance on OSM.

Simba is also much more user-friendly with the native support
on both SQL and the DataFrame API over both spatial and non-
spatial operations within a single query, which are not supported
by other systems (except that SpatialHadoop supports a SQL-like
query language Pigeon). Simba is a full-fledged query engine with
native support for query planning, query optimization, and concur-
rent query processing through thread pooling. Whereas, GeoSpark
and SpatialSpark are user programs running on top of Spark (i.e.,
Spark libraries). What’s more, all these systems can only support
up to two dimensions. Hence, in the following, we focus on com-
paring Simba with Spark SQL, which is also a full fledged analytics
engine based on Spark but without native support for spatial opera-
tions, to see the benefit of extending Spark SQL to Simba for spatial
analytics. We support various spatial operations in Spark SQL by
directly expressing a spatial operation in its standard SQL syntax if
it is possible, or using UDFs in SQL when it is not possible.

8.4 Comparison against Spark SQL
In this comparison we assume that tables are pre-loaded (i..e, we

excluded the time of loading tables in both Simba and Spark SQL).
Range queries. Figure 12 shows the performance of range queries
in both engines using the OSM data set. Queries are centered at
random points sampled from the input data. As a result, the query
workload fits well to the distribution of the data, where dense areas
will be queried with higher probabilities.

Figure 12(a) shows that Simba outperforms Spark SQL by about
one order of magnitude on both query throughput and query latency
when data size increases from 30 million to 4.4 billion records
(2×OSM). The performance of both Simba and Spark SQL drops
when the data size increases while that of Simba drops much slower,
which implies Simba has much better scalability. This is due to
the spatial index pruning and spatial-aware optimizations in Simba:
larger data size does lead to more partitions to process and larger
output size, but it also brings more pruning and optimization op-
portunities for its indexes and optimizer. In contrast, Spark SQL
has to scan the whole table regardless.

Figure 12(b) shows how throughput and latency are influenced
by the size of the query area. As the query area enlarges, perfor-
mance of Simba becomes closer to that of Spark SQL. The reason
for this is the result size becomes so large that there are less op-
timization opportunities for Simba’s query optimizer. Spark SQL
has to scan the whole table regardless.
kNN queries. Figure 13 shows the performance of kNN queries on
Spark SQL and Simba over the OSM data set, where query points
are also randomly sampled from the input data as range queries.

0 1000 2000 3000 4000
10

−1

10
0

10
1

10
2

10
3

Data size (×10
6
)

T
h

ro
u

g
h
p
u

t
(j
o

b
s
/m

in
)

Simba Spark SQL

0 1000 2000 3000 4000

10
0

10
1

10
2

10
3

Data size (×10
6
)

L
a
te

n
c
y
 (

s
)

Simba Spark SQL

(a) Effect of data size.

0 10 20 30 40 50
10

0

10
1

10
2

10
3

k

T
h
ro

u
g
h

p
u
t

(j
o
b

s
/m

in
)

Simba Spark SQL

0 10 20 30 40 50
10

−1

10
0

10
1

10
2

k

L
a
te

n
c
y
 (

s
)

Simba Spark SQL

(b) Effect of k.
Figure 13: kNN query performance on OSM.

1 3 5 7 10
10

1

10
2

10
3

10
4

Data size (x ×10
6
⊲⊳τ x ×10

6)
R

u
n
n

in
g

 t
im

e
 (

s
) × Spark SQL crashes after 10 hours

DJSpark BDJSpark−R

(a) Effect of data size.

1 3 5 7 9 11
10

1

10
2

10
3

Distance threshold τ

R
u

n
n

in
g
 t

im
e
 (

s
)

DJSpark BDJSpark−R

(b) Effect of τ .
Figure 14: Distance join performance on OSM.

Figure 13(a) measures system throughput and query latency when
data size increases from 30 million to 4.4 billion records (2×OSM).
Simba achieves one to two orders of magnitude better performance
on both metrics. Spark SQL’s performance drops significantly as
the data size grows, since it requires scanning the whole table for
each kNN query. In contrast, Simba’s performance is almost not
affected by the data size, because Simba is able to narrow the input
table down quickly to just a few indexed partitions (typically one
or two), which are sufficient to cover the global kNN.

Next, we study the impact of k. As k varies from 1 to 50 in
Figure 13(b), Simba maintains a speedup of two orders of mag-
nitude. Both Simba and Spark SQL’s performance are not really
affected by k: Spark SQL needs to scan the data regardless of k
values; whereas Simba’s performance will not change much when
the change on k is much smaller compared with the partition size.
Distance join. Figure 14 shows the results for distance join using
two tables sampled from the OSM data set. We tried expressing
and running a distance join as a θ-join in Spark SQL (an example
was shown in Section 6.2). However, it did not finish in 10 hours
when joining two tables of only 1 million records, and crashed, due
to the expensive Cartesian product it has to perform.

For Simba, we compared Simba’s DJSpark algorithm with a nested
loop join approach BDJSpark-R leveraging R-trees as local indexes
(which is a simple variation of BKJSpark-R discussed in Section
6.3 by replacing each local kNN join with a local distance join).

Naturally, the cost of both algorithms increase with larger in-
put size (Figure 14(a)) and larger distance threshold (Figure14(b)).
Note that the performance of DJSpark drops fast as the distance
threshold grows. This is because the power of global pruning be-
comes weaker, which will finally cause more overheads than sav-
ings when compared with BDJSpark-R. Nevertheless, DJSpark is
always more efficient than the baseline method BDJSpark-R, un-
less the threshold grows to a relatively large value (say x = 11 in
this case; roughly 1% of the space).
kNN join. It is impossible to express kNN join in Spark SQL in a

1 3 5 7 10
10

1

10
2

10
3

10
4

Data size (x ×106
⊲⊳knn x ×106)

R
u

n
n

in
g

 t
im

e
 (

s
)

RKJSpark VKJSpark BKJSpark−R

(a) Effect of data size.

0 10 20 30 40 50
10

1

10
2

10
3

10
4

k

R
u

n
n

in
g

 t
im

e
 (

s
)

RKJSpark VKJSpark BKJSpark−R

(b) Effect of k.
Figure 15: kNN join performance on OSM.

2 3 4 5 6 7
10

1

10
2

10
3

Dimension

T
h
ro

u
g

h
p
u
t

(j
o
b

s
/m

in
)

Simba Spark SQL

(a) Throughput

2 3 4 5 6 7
10

0

10
1

10
2

Dimension

L
a
te

n
c
y
 (

s
)

Simba Spark SQL

(b) Latency
Figure 16: Range query performance on GDELT: dimensionality.

single SQL statement. One has to union N SQL statements where
N is the number of records in the first input table, which is clearly
not a practical solution for large tables. Hence, we focused on com-
paring different kNN join algorithms in Simba.

Figure 15 shows the performance over OSM data (default is 3
million records in each input table and k = 10). Clearly, RKJSpark
shows the best performance and the best scalability (w.r.t. both data
size and k). As an example, for a kNN join between two tables
with 5 million records, RKJSpark join is 3x faster than VKJSpark
and 70x faster than BKJSpark-R. Note that BKJSpark-R strictly
dominates BKJSpark-N, hence, the latter is omitted.
Remarks. Spark still works when the dataset does not fit in main
memory due to its disk persistence mechanism, Simba still has rea-
sonable performance when data does not fit in memory. Clearly,
performance will hurt in this case, but in principle, as long as each
individual partition can fit in the heap memory of an executor, Spark
is able to handle it, so is Simba (and its indexing support is even
more important in these cases).

8.5 Support for Multi-Dimensions
In this section, we evaluate the performance of Simba and Spark

SQL when handling data in higher dimensions. Note that other
spatial analytics systems (GeoSpark, SpatialSpark, SpatialHadoop,
and Hadoop GIS) do not support more than two dimensions.

For single-relation operations, as shown in Figures 16 and 17,
both Simba and Spark SQL shows higher query latency and lower
system throughput on the GDELT data set, as dimensionality in-
creases from 2 to 6. Nevertheless, Simba outperforms Spark SQL
by 1-2 orders of magnitude in all cases.

Figure 18 shows the impact of dimensionality on different join
algorithms in Simba, by joining two tables with 3 million records
from the RC data set as dimensionality goes from 2 to 6. DJSpark
and RKJSpark remain the best performance in all dimensions.

9. RELATED WORK
We have already reviewed the most closely related systems in

Sections 2 and 8, which Simba has significantly outperformed.
In addition, MD-HBase [29] extends HBase to support location

services. It adds KD-tree and quad-tree indexes to HBase to support
range and kNN queries. GeoMesa [24] builds a distributed spatial-
temporal database on top of Apache Accumulo [3]. It uses Geo-
Hash indexes to provide spatial queries over data stored in Apache
Accumulo. Both HBase and Accumulo are modeled after Google’s
BigTable [16], hence, both MD-HBase and GeoMesa are essen-

2 3 4 5 6 7
10

1

10
2

10
3

Dimension

T
h
ro

u
g

h
p
u
t

(j
o
b

s
/m

in
)

Simba Spark SQL

(a) Throughput

2 3 4 5 6 7
10

0

10
1

10
2

Dimension

L
a
te

n
c
y
 (

s
)

Simba Spark SQL

(b) Latency
Figure 17: kNN query performance on GDELT: dimensionality.

2 3 4 5 6
10

1

10
2

10
3

Dimension

R
u
n
n
in

g
 t
im

e
 (

s
)

DJSPark BDJSpark−R

(a) Distance join

2 3 4 5 6
10

1

10
2

10
3

10
4

Dimension

R
u
n

n
in

g
 t

im
e

 (
s
)

RKJSpark VKJSpark BKJSpark−R

(b) kNN join
Figure 18: Join operations performance on RC: dimensionality.

tially key-value stores with support for spatial operations. As a
result, both the design and the objective of the system are very dif-
ferent from an in-memory spatial analytical engine like Simba.

Most existing systems design indexing structures for the MapRe-
duce framework (e.g., Hadoop and HDFS), and they work with in-
dexed data from HDFS. An open source project [2] provides an
approach that builds index directly on Spark’s RDD abstraction.
However, it only supports one-dimensional ART index [25] on key-
value RDDs, which doesn’t extend to spatial query processing.

In addition to system efforts, indexing and query processing for
spatial data in MapReduce were explored, for example, z-value
based indexing [15], range queries and kNN queries [12,28,40,40],
kNN joins [27, 39], and spatial join over geometric objects [41].

Various spatial partitioning strategies were explored in MapRe-
duce (using Hadoop). A survey and performance comparison can
be found in [19,34]. Simba primarily explored the Sort-Tile-Recursive
(STR) partitioning scheme [26] for its indexing module, which has
shown to be one of the best spatial partitioning methods (e.g., see
latest results in [19]). That said, other spatial partitioning methods
can be easily employed and supported by Simba.

Lastly, the general principle of Simba’s query optimizer is no
different from those found in classic relational query engines [17],
such as selectivity estimation, CBO, and pushing down predicates.
But we have to adopt those principles to an in-memory, distributed
and parallel environments, and to spatial operations. The cost mod-
els developed for partitioning and cost-based spatial query evalua-
tion in the context of Spark are new. Merging and pushing down
spatial predicates based on geometric properties in such a distributed
and parallel in-memory query engine was also not explored before.

10. CONCLUSION
This paper describes Simba, a distributed in-memory spatial query

and analytics engine based on Spark. Simba offers simple and ex-
pressive query language in both SQL and DataFrame API. Simba
extends Spark SQL with native support to spatial operations, intro-
duces indexes on RDDs, and adds spatial-aware (logical and cost-
based) optimizations to select good query plans. Extensive experi-
ments reveal its superior performance compared to other systems.

For future work, we plan to add native support on more geomet-
ric objects (e.g., polygons) and spatial operators (e.g., spatial join
over polygons), and data in very high dimensions. We will also
design more sophisticated CBOs for effective auto-tuning.

11. ACKNOWLEDGMENT
Feifei Li and Dong Xie were supported in part by NSF grants

1200792, 1302663, 1443046. Bin Yao, Gefei Li, Liang Zhou, and
Minyi Guo were supported by the National Basic Research Pro-
gram (973 Program, No.2015CB352403), and the Scientific Inno-
vation Act of STCSM (No.13511504200, 15JC1402400). Feifei Li
and Bin Yao were also supported in part by NSFC grant 61428204.

12. REFERENCES
[1] http://www.comp.nus.edu.sg/ dbsystem/source.html.
[2] https://github.com/amplab/spark-indexedrdd.
[3] Apache accumulo. http://accumulo.apache.org.
[4] Apache avro project. http://avro.apache.org.
[5] Apache parquet project. http://parquet.incubator.apache.org.
[6] Apache spark project. http://spark.apache.org.
[7] Apache zookeeper. https://zookeeper.apache.org/.
[8] Gdelt project. http://www.gdeltproject.org.
[9] Openstreepmap project. http://www.openstreetmap.org.

[10] R project for statistical computing. http://www.r-project.org.
[11] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.

Hadoop gis: a high performance spatial data warehousing system
over mapreduce. In VLDB, 2013.

[12] A. Akdogan, U. Demiryurek, F. Banaei-Kashani, and C. Shahabi.
Voronoi-based geospatial query processing with mapreduce. In
CouldCom, 2010.

[13] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark sql:
Relational data processing in spark. In SIGMOD, 2015.

[14] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The r*-tree:
An efficient and robust access method for points and rectangles. In
SIGMOD, 1990.

[15] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on
processing spatial data with mapreduce. In Scientific and Statistical
Database Management, 2009.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. TOCS, 2008.

[17] S. Chaudhuri. An overview of query optimization in relational
systems. In PODS, pages 34–43, 1998.

[18] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI, 2004.

[19] A. Eldawy, L. Alarabi, and M. F. Mokbel. Spatial partitioning
techniques in spatial hadoop. PVLDB, 2015.

[20] A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan. Cg_hadoop:
computational geometry in mapreduce. In SIGSPATIAL, 2013.

[21] A. Eldawy and M. F. Mokbel. Pigeon: A spatial mapreduce
language. In ICDE, 2014.

[22] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce
framework for spatial data. In ICDE, 2015.

[23] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD, 1984.

[24] J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert, and
M. Ronquest. Geomesa: a distributed architecture for
spatio-temporal fusion. In SPIE Defense+ Security, 2015.

[25] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful
indexing for main-memory databases. In ICDE, 2013.

[26] S. T. Leutenegger, M. Lopez, J. Edgington, et al. STR: A simple and
efficient algorithm for R-tree packing. In ICDE, 1997.

[27] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient processing of k
nearest neighbor joins using mapreduce. In VLDB, 2012.

[28] Q. Ma, B. Yang, W. Qian, and A. Zhou. Query processing of massive
trajectory data based on mapreduce. In Proceedings of the first
international workshop on Cloud data management, 2009.

[29] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi. MD-hbase:
design and implementation of an elastic data infrastructure for
cloud-scale location services. In DAPD, 2013.

[30] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In SIGMOD,
2008.

[31] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In SIGMOD, 1995.

[32] H. Samet. Foundations of Multidimensional and Metric Data
Structures (The Morgan Kaufmann Series in Computer Graphics and
Geometric Modeling). Morgan Kaufmann Publishers Inc., 2005.

[33] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: A warehousing solution
over a map-reduce framework. In PVDLB, 2009.

[34] H. Vo, A. Aji, and F. Wang. Sato: A spatial data partitioning
framework for scalable query processing. In SIGSPATIAL, 2014.

[35] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and
I. Stoica. Shark: Sql and rich analytics at scale. In SIGMOD, 2013.

[36] S. You, J. Zhang, and L. Gruenwald. Large-scale spatial join query
processing in cloud. In IEEE CloudDM workshop (To Appear), 2015.

[37] J. Yu, J. Wu, and M. Sarwat. Geospark: A cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL
GIS, 2015.

[38] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[39] C. Zhang, F. Li, and J. Jestes. Efficient parallel knn joins for large
data in mapreduce. In EDBT, 2012.

[40] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial queries
evaluation with mapreduce. In ICGCC, 2009.

[41] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. Sjmr: Parallelizing
spatial join with mapreduce on clusters. In IEEE ICCC, 2009.

APPENDIX
A. FULL PROGRAMMING INTERFACE
A.1 SQL
Points. Simba introduces the point object inside the Spark SQL
engine, through a scala class. Users can use keyword POINT fol-
lowed by a list of expressions to express multi-dimensional points,
where the number of expressions indicates the number of dimen-
sions. For example, we can use Point(x - 1, y * 2) to ex-
press a two dimensional point with the value of x − 1 as the first
dimension and the value of y ∗ 2 as the second dimension. Note
that it is easy to extend Simba with additional spatial and geomet-
ric objects by adding more scala classes inside its engine.
Range predicates. Simba supports box range query and circle
range query. For a box range query, user uses the following predi-
cate to check if points are inside a bounding box:
p IN RANGE(low, high)

In the predicate above, parameters p, low and high represent
three point objects expressed by the grammar for points described
above. Specifically, p indicates an input point for the predicate to
check, while low and high specify the bounding box (lower-left
and higher-right points) for the range query. Points p, low and
high can reside in arbitrary dimensions.

Similarly, user specifies a circle range query as below:
p IN CIRCLERANGE(c, rd)

Note that p is again an input point for the predicate to check, while
the point object c and the constant rd indicate a circle centered at
point c with radius rd which specifies a circle range.
kNN predicates. Similar to the range query predicates, Simba pro-
vides the kNN predicate as follows:
p IN KNN(q, k)

It checks if p is in the set of k nearest neighbors of a query point
q, with respect to an input table. The input table is indicated by
the relation after the FROM clause. A kNN predicate is a select
condition in the WHERE clause. A kNN predicate can also serve as
the join condition for a kNN join operation.

Distance joins. User expresses a distance join between two tables
R and S with a distance threshold τ as follows:
R DISTANCE JOIN S ON s IN CIRCLERANGE(r, τ)

Here s (resp. r) are points built from a record in table S (resp. R).
kNN joins. A kNN join between table R and table S is expressed
as follows:
R KNN JOIN S ON s IN KNN(r, k)

Similar to distance join, s (resp. r) are built from a record in S
(resp. R). User can also invoke approximate kNN join using ZKJS-
park (Section 6.3.2) by replacing KNN JOIN with ZKNN JOIN.
Index management. Simba allows users to manipulate indexes
easily with its index management keywords. Specifically, user is
able to create an index through:
CREATE INDEX idx_name ON R(x1, ..., xm) USE

idx_type

It builds a new index overm attributes {x1, . . . , xm} in table R us-
ing a specific index type as indicated by idx_type (which can be
R-tree, tree map or hash map). The index is named as idx_name.
User can show the indexes already built on table R at anytime:
SHOW INDEX ON R

In addition, user can drop an index through the index name, or drop
all indexes on a table through the table name:
DROP INDEX idx_name ON table_name
DROP INDEX table_name

Lastly, Simba’s SQL commands are fully integrated with Spark
SQL’s SQL query interface. In other words, user can easily use
these keywords and commands together with arbitrary sql predi-
cates from the standard SQL library supported by Spark SQL.

A.2 DataFrame API
Points. Simba also introduces the point object in the DataFrame
API, which wraps a list of expressions into a multi-dimensional
point that can be processed by Simba’s query engine. For example,
we can express a three dimensional point as follows:
Point(tb("x"), tb("y"), tb("z"))

Specifically, the code above wraps three attributes x, y and z from
table tb into a point object for further processing.
Single-relation operations. User can apply (box or circle) range
queries and kNN queries directly on data frames. Specifically, in
the DataFrame API, Simba provides the following functions:
range(base: Point, low: Point, high: Point)
circleRange(base: Point, center: Point, r: Double)
knn(base: Point, q: Point, k: Int)

In the APIs described above, base indicates the point objects to
be filtered, while the other parameters give filter conditions.
Join operations. In the DataFrame API of Simba, distance joins
and kNN joins can be expressed with following functions:
distanceJoin(target: DataFrame, left_key: Point,

right_key: Point, τ: Double)
knnJoin(target: DataFrame, left_key: Point,

right_key: Point, k: Int)

These functions will join the current data frame with another data
frame target using the join condition (either distance join with
threshold τ , or kNN join with value k) over left_key (a point
from the first data frame) and right_key (a point from the sec-
ond data frame).
Index management. User can easily create and drop indexes on
an input data frame through:
index(index_type: IndexType, index_name: String,

attrs: Seq[Attribute])
dropIndex()

Finally, note that Simba’s data frame API is integrated with, and
can call the data frame API, from Spark SQL, and other spark-
based systems that support the data frame API such as MLLib.

A.3 Limitations of the Programming Model
Simba’s main programming and user interface is SQL and the

DataFrame API, both of which only provide declarative seman-
tics. As a result, Simba does not have native support for conditional
branching (e.g. If. . .Else), looping (For and While loops), and re-
cursion. That said, because Simba is based on Spark which allows
users to develop and submit a customized Java or Scala program for
execution, users can always overcome the aforementioned hurdles
in Simba through a user program in Java or Scala and submit the
program to Simba for execution.

B. RANGE QUERY
Two types of range queries are supported in Simba, namely box

and circle range queries. They can be expressed by standard SQL
queries in Spark SQL by using filters with properly constructed
range conditions. But without Simba’s programming interfaces
described in Section 4, the statement becomes clumsy and error-
prone. More importantly, without indexes, the engine has to scan
all records, which is quite inefficient and resource intensive.

In contrast, Simba allows users to express range queries natively
as shown in Section 4, and it can handle range queries using indexes
(assuming that the spatial attributes are indexed):
Global filtering. In this step, Simba uses the global index to prune
partitions that do not overlap with the query range. In particu-
lar, Simba inspects the global index to obtain IDs of the partitions
which intersect the query area. Next, Simba calls a Spark internal
developer API PartitionPruningRDD, which can filter parti-
tions by ID, to mark required partitions.
Local processing. For each selected partitions from global filter-
ing, Simba use its local index to quickly return matching records
from local data. If mbr(Ri) is completely inside the query area, all
records in Ri can be returned even without checking the index.

C. PROOF OF THEOREM 1
Theorem 1 For any partition Ri where i ∈ [1, n], we have:

∀r ∈ Ri, knn(r, S) ⊂ {s|s ∈ S, |cri, s| ≤ γi}, for γi defined in (1).

PROOF. Recall that knn(cri, S′) = {s1, . . . , sk} (in ascending
order of their distances to cri), and ui = maxr∈Ri |r, cri|. Hence,
for any r ∈ Ri, and for any t ∈ [1, k], we have:

|r, st| ≤ |r, cri|+ |cri, st| (triangle inequality)
≤ ui + |cri, sk|. (by construction)

This implies that a circle centered at r with radius (ui + |cri, sk|)
will cover at least k points (i.e., at least s1, s2, s3, ..sk) in S′ ⊂
S. In other words, knn(r, S) ⊂ Sr = {s|s ∈ S, |r, s| ≤ ui +
|cri, sk|}. We denote this set as the cover set of record r.

For each element e ∈ Sr , we have:

|e, cri| ≤ |e, r|+ |r, cri| (∀r ∈ Ri, triangle inequality)
≤ ui + |cri, sk|+ ui

= γi,

which implies Sr is a subset of {s|s ∈ S, |cri, s| ≤ γi}. Thus,
∀r ∈ Ri, knn(r, S) ⊂ Sr ⊂ {s|s ∈ S, |cri, s| ≤ γi}.

D. ADDITIONAL EXPERIMENTS
D.1 Impact of partition size

Figure 19 shows that Simba’s index construction cost grows roughly
linearly with respect to partition size. This is because it is more
costly to build local indexes over larger partitions (which outweighs
the savings resulted from processing less number of partitions).

100 300 500 700
440

460

480

500

520

540

Partition size (×10
3
)

In
d

e
x
 c

o
n

s
tr

u
c
ti
o

n
 t

im
e

 (
s
)

Simba

Figure 19: Index construction cost: effect of partition size.

100 300 500 700
10

0

10
1

10
2

10
3

Partition size (×10
3
)

T
h

ro
u

g
h
p
u

t
(j
o

b
s
/m

in
)

Simba Spark SQL

(a) Throughput

100 300 500 700
10

0

10
1

10
2

10
3

Partition size (×10
3
)

L
a
te

n
c
y
 (

s
)

Simba Spark SQL

(b) Latency
Figure 20: Range query performance on OSM: partition size.

Figure 20 shows the effect of partition size (from 1 × 105 to
7 × 105 records per partition). As it increases, the pruning power
of global index in Simba shrinks and so does Simba’s performance.
Spark SQL’s performance slightly increases as it requires fewer
partitions to process. Nevertheless, Simba is still much more ef-
ficient due to its local indexes and spatial query optimizer.

100 300 500 700
10

0

10
1

10
2

10
3

Partition size (×10
3
)

T
h
ro

u
g

h
p

u
t

(j
o
b

s
/m

in
)

Simba Spark SQL

(a) Throughput

100 300 500 700
10

−1

10
0

10
1

10
2

Partition size (×10
3
)

L
a

te
n

c
y
 (

s
)

Simba Spark SQL

(b) Latency
Figure 21: kNN query performance on OSM: partition size.
In Figure 21, as the partition size increases, the performance of

Simba decreases as the pruning power of global index drops when
the partitions become larger.

Figure 22(a) shows the effect of partition size on different dis-
tance join algorithms. As the partition size grows, the running time
of DJSpark increases slightly, as the pruning power of global join
phase reduces when the partition granularity is decreasing. In con-
trast, BDJSpark-R becomes faster because fewer local join tasks
are required in the algorithm.

10 30 50 70 90
10

1

10
2

10
3

10
4

Partition size (×10
3
)

R
u
n
n
in

g
 t
im

e
 (

s
)

DJSpark BDJSpark−R

(a) Distance Join

10 30 50 70 90
10

1

10
2

10
3

10
4

Partition size (×10
3
)

R
u
n
n
in

g
 t
im

e
 (

s
)

RKJSpark VKJSpark BKJSpark−R

(b) kNN Join
Figure 22: Effect of partition size for join operations.

Figure 22(b) presents how partition size affects the performance
of different kNN join approaches. With the increase of partition
size, BKJSpark-R and RKJSpark grow faster since fewer local join
tasks are required for join processing. VKJSpark becomes slightly
slower as the partition size increases because the power of its dis-
tance pruning bounds weakens when the number of pivots decreases.

D.2 Influence of Dimensionality on RC
Figures 23 and 24 show the results for range and kNN queries

when dimensionality increases from 2 to 6 on the RC data set. The

2 3 4 5 6
10

0

10
1

10
2

10
3

Dimension

T
h
ro

u
g

h
p
u
t

(j
o
b

s
/m

in
)

Simba Spark SQL

(a) Throughput

2 3 4 5 6
10

0

10
1

10
2

10
3

Dimension

L
a
te

n
c
y
 (

s
)

Simba Spark SQL

(b) Latency
Figure 23: Range query performance on RC: dimensionality.

2 3 4 5 6
10

0

10
1

10
2

10
3

Dimension

T
h
ro

u
g
h

p
u
t

(j
o
b

s
/m

in
)

Simba Spark SQL

(a) Throughput

2 3 4 5 6
10

0

10
1

10
2

10
3

Dimension

L
a
te

n
c
y
 (

s
)

Simba Spark SQL

(b) Latency
Figure 24: kNN query performance on RC: dimensionality.

trends are similar to that on the GEDLT data set as in Figures 16 and
17: Simba significantly outperforms Spark SQL in all dimensions.

D.3 Impact of the Array Structure
In this section, we experimentally validated our choice of pack-

ing all records in a partition to an array object. Specifically, we
compare three different data representation strategies as below:

• Alternative 1 (A1): packing all Row objects in a partition into
an array.
• Alternative 2 (A2): cache RDD[Row] directly.
• Alternative 3 (A3): in-memory columnar storage strategy.

We demonstrate their space consumption and scanning time on our
default dataset (OSM data with 500 million records) in Figure 25.
Note that these records are variable-length records (as each record
contains two variable-length string attributes, the two text informa-
tion fields in OSM).

A1 A2 A3
0

20

40

60

S
p
a
c
e
 c

o
n
s
u
m

p
ti
o
n
 (

G
B

)

(a) Space Consumption
A1 A2 A3

0

40

80

120

S
c
a
n
n
in

g
 t
im

e
 (

s
)

(b) Scanning Time
Figure 25: Comparison between table representations.

Figure 25(a) shows the space consumption of different strategies.
Packing all Row objects within a partition to an array object (A1 in
Figure 25) consumes slightly more space than directly caching the
RDD[Row] in Spark SQL (A2 in Figure 25). Such overhead is
caused by additional meta information kept in array objects. On
the other hand, the in-memory columnar storage (A3 in Figure 25)
clearly saves space due to its columnar storage with compression.

The table scan time is shown in Figure 25(b). Caching RDD[Row]
directly shows the best performance. The array structure adopted
by Simba has slightly longer scanning time, due to the small space
overhead and the additional overhead from flattening members out
of the array objects. Lastly, the in-memory columnar storage gives
the worst performance since it requires joining multiple attributes
to restore the original Row object (and the potential overhead from
decompression), whose overhead outweighs the savings resulted
from its less memory footprint.

That said, Simba can also choose to use the in-memory columnar
storage (and with compression) to represent its data.

