
✬

✫

✩

✪

QUERY AND DATA SECURITY IN THE DATA

OUTSOURCING MODEL

FEIFEI LI

Dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

BOSTON

UNIVERSITY

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

QUERY AND DATA SECURITY IN THE DATA OUTSOURCING

MODEL

by

FEIFEI LI

B.S., Nanyang Technological University, Singapore, 2002

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2007

c© Copyright by
FEIFEI LI
2007

Approved by

First Reader

George Kollios, PhD
Associate Professor of Computer Science

Second Reader

Leonid Reyzin, PhD
Assistant Professor of Computer Science

Third Reader

Donghui Zhang, PhD
Assistant Professor of Computer Science

Acknowledgments

First of all I thank my advisor, George Kollios, for his continuous support and guidance

throughout my PhD studies. I am especially grateful to him for giving me the freedom to

pursue research topics that are interesting to me. My quest towards the PhD will not be

successful without his constant encouragement and valuable advice at various points in last

five years. I thank my thesis co-advisor, Leonid Reyzin, for his advice and discussion on

subjects related to cryptography. Without his insightful feedbacks I may not have found

this wonderful thesis topic.

I also thank Azer Bestavros for giving me a nice research problem in data stream

processing. This experience enabled me to identify and work on security issues in data

stream management systems. I thank John Byers and Shang-Hua Teng for collaborating

on interesting research problems which sharpened my research skills and also led to a lot

of fun moments. I am grateful to my other committee member, Donghui Zhang, for taking

time out of his schedule to participate in my defense. My thank also goes to Maithili

Narasimha and Gene Tsudik for pointing out a discrepancy associated with measuring the

cost of signing operations in the signature chaining approach in the early draft of this

dissertation.

My undergraduate advisors, Wee Keong Ng and Ee-Peng Lim, deserve special thanks

for their encouragement and advice during my final year project. This research introduced

me to the world database research and led me into the PhD program. My close friend,

Zehua Liu, shared this wonderful period with me and together we explored the interesting

world of computer science research.

I appreciate the joint work with the co-authors of my other research papers: Azer

Bestavros, Ching Chang, Dihan Cheng, Jeffrey Considine, Yanfeng Huang, Ee-Peng Lim,

Zehua Liu, George Mihaila, Wee Keong Ng, Dimitris Papadias, Spiros Papdimitriou, Divesh

Srivastava, Ioana Stanoi, Jimeng Sun, Yufei Tao and Philip S. Yu. I have enjoyed working

with all of you greatly! Although the papers that I have with them are not included in

iv

this thesis, they are an integral part of my PhD research, and lead me to many interesting

directions for future research. I would like to thank Ioana Stanoi, George Mihaila, Yuan-

Chi Chang, Marios Hadjieleftheriou, Divesh Srivastava and David Lomet, who served as my

mentors and gave me opportunities to work at the world’s leading industrial research labs.

All these valuable experience have helped me grow into a versatile scholar. In particular,

these experience enabled me to conduct practical research with impact on the real world.

I want to thank my close friends from the computer science department for providing me

with such an open and stimulating environment for both work and life. It is impossible to

name everyone who deserves a note. However, I especially thank Jingbin Wang for being

my roommate, Sa Cui, Vijay Erramilli, Nahur Fonseca, Rui Li, Panagiotis Papapetrou,

Michalis Potamias, Niky Riga, Rui Shi, Georgios Smaragdakis, Yangui Tao, Taipeng Tian,

Ashwin Thangali, Zheng Wu, Quan Yuan, Giorgos Zervas and Jing Zhong for leaving

me uncountable joyful memories. I also want to thank the students, professors, and staff,

especially, Joan Butler, Stephanie Cohen, Ellen Grady, Paul Stauffer and Jennifer Streubel,

that I have interacted with within the department, for all the times they have helped and

supported me.

I am grateful to my mother, father, and brother, for their unwavering support during my

studies. I am also grateful to Xing Ma, who accompanied me during the most challenging

part of my Phd studies.

Finally, I am especially thankful to Rui Li and Taipeng Tian for proof reading this

dissertation. I want to thank Marios Hadjieleftheriou and Ke Yi, my good friends and

primary research collaborators over the last two years. The core contributions of this thesis

have evolved through the numerous discussions with them. This thesis, and my entire

research work, would have been impossible without their valuable contribution. Thank

you!

v

QUERY AND DATA SECURITY IN THE DATA OUTSOURCING

MODEL

(Order No.)

FEIFEI LI

Boston University, Graduate School of Arts and Sciences, 2007

Major Professor: George Kollios, Department of Computer Science

ABSTRACT

An increasing number of applications adopts the model of outsourcing data to a third?

party for query and storage. Under this model, database owners delegate their database

management needs to third?arty data servers. These servers possess both the necessary

resources, in terms of computation, communication and storage, and the required expertise

to provide efficient and effective data management and query functionalities to data and

information consumers.

However, as servers might be untrusted or can be compromised, query and data security

issues must be addressed in order for this model to become more practical. An important

challenge in this realm is to enable the client to authenticate the query results returned

from a server. To authenticate is to verify that the query results are correctly computed

from the same data as the data owner has published and all results have been honestly

returned. Existing solutions for this problem concentrate mostly on static, relational data

scenarios and are based on idealistic properties for certain cryptographic primitives, look-

ing at the problem mostly from a theoretical perspective. This thesis proposes practical

and efficient solutions that address the above challenge for both relational and streaming

data. Specifically, this dissertation provides dynamic authenticated index structures for

authenticating range and aggregation queries in both one and multiple dimensional spaces.

The authentication of sliding window queries over data streams is then discussed to sup?

vi

port data streaming applications. We also study the problem of query execution assurance

over data streams where the data owner and the client are the same entity. A probabilistic

verification algorithm is presented that has minimal storage and update costs and achieves

a failure probability of at most δ, for any small δ > 0. The algorithm is generalized to

handle the scenarios of load shedding and multiple queries.

An extensive experimental evaluation for all the proposed methods over both synthetic

and real data sets is presented. The findings of this evaluation demonstrate both the

correctness and effectiveness of the proposed methods.

vii

Contents

1 Introduction 1

1.1 Query Authentication for Relational Databases 4

1.2 Authenticating Sliding Window Query over Data Streams 7

1.3 Continuous Query Execution Assurance on Data Streams 9

1.4 Summary of Contributions . 11

2 Background 13

2.1 Collision-resistant Hash Functions. 13

2.2 Public-key Digital Signature Schemes. 14

2.3 Aggregating Several Signatures. 15

2.4 The Merkle Hash Tree. 15

2.5 Cost Models for SHA1, RSA and Condensed-RSA. 16

3 Related Work 17

3.1 Query Authentication for Offline, Relational Data 17

3.2 Query Authentication for Streaming Data 20

3.3 Query Execution Assurance on Data Streams 21

4 Authenticated Index Structures for Relational Databases 24

4.1 Problem Definition . 24

4.2 Authenticated Index Structures for Selection Queries 25

4.3 Authenticated Index Structures for Aggregation Queries 42

4.4 Query Freshness . 60

4.5 Extensions . 61

viii

5 Enabling Authentication for Sliding Window Query over Data Streams 63

5.1 Problem Formulation . 63

5.2 The Tumbling Merkle Tree . 66

5.3 The Tumbling Mkd-tree . 70

5.4 Reducing One-shot Query Cost . 74

5.5 Discussions . 83

6 Query Execution Assurance on Data Streams 85

6.1 Problem Formulation . 85

6.2 Possible Solutions . 88

6.3 PIRS: Polynomial Identity Random Synopsis 91

6.4 Tolerance for Few Errors . 97

6.5 Tolerance for Small Errors . 104

6.6 Extensions . 106

7 Experiments 109

7.1 Experimental Evaluation on Authenticated Index Structures for Selection

Queries . 109

7.2 Performance Evaluation for Authenticated Aggregation Index Structures . . 118

7.3 Experiments Evaluation for Authenticating Sliding Window Queries on Data

Streams . 124

7.4 Empirical Evaluation for Query Execution Assurance on Data Streams . . . 131

8 Conclusion 137

References 141

Curriculum Vitae 149

ix

List of Tables

4.1 Notation used in Chapter 4. 25

5.1 Summary of the (asymptotic) results for various solutions. (*) For d di-

mensions, all the
√

b terms become b1−1/(d+1); all the
√

n + b terms become

(n+b)1−1/(d+1). (**) For aggregation queries, all the bounds hold by setting

k = 1. 82

7.1 Average update time per tuple. 132

7.2 Update time and memory usage of PIRS for multiple queries. 135

x

List of Figures

1·1 The outsourced stream model. 8

1·2 System architecture. 10

2·1 Example of a Merkle hash tree. 14

4·1 The signature-based approach. 27

4·2 An MB-tree node. 31

4·3 A query traversal on an MB-tree. At every level the hashes of the residual

entries on the left and right boundary nodes need to be returned. 31

4·4 An EMB-tree node. 35

4·5 The tree encoding scheme. 46

4·6 Merging the overlapping paths in the APS-tree. At every black node the

remaining hashes can be inserted in the VO only once for all verification

paths towards the root. 46

4·7 The AAB-tree. On the top is an index node. On the bottom is a leaf node.

ki is a key, αi the aggregate value, pi the pointer, and ηi the hash value

associated with the entry. 50

4·8 Labelling scheme and the MCS entries. 51

4·9 AAR-tree. 57

5·1 The Tumbling Merkle Tree. 66

5·2 A kd-tree. 71

5·3 The DMkd-tree. Trees with boundaries outside of the maximum window

can be discarded. A one-shot query can be answered by accessing only a

logarithmic number of trees. 75

xi

5·4 Querying the EMkd-tree. 78

5·5 Initializing and updating the EMkd-tree. 79

6·1 The PIRSγ synopsis. 98

6·2 False negatives for the CM sketch approach. 106

7·1 Index parameters. 110

7·2 Index construction cost. 111

7·3 Hash computation overhead. 112

7·4 Performance analysis for range queries. 113

7·5 The effect of the LRU buffer. 114

7·6 Authentication cost. 115

7·7 Performance analysis for insertions. 115

7·8 One-dimensional queries. Server-side cost. 119

7·9 One-dimensional queries. Communication and verification cost. 119

7·10 One-dimensional queries. Storage and update cost. 120

7·11 3-dimensional queries. Server-side cost. 121

7·12 3-dimensional queries. Communication and verification cost. 122

7·13 3-dimensional queries. Storage and update cost. 123

7·14 Tumbling trees: update cost and size. 126

7·15 b = 1, 000, Query cost per period. 127

7·16 b = 1, 000, VO size per period. 128

7·17 Update cost and size for DMkd-tree and EMkd-tree, b = 1, 000. 129

7·18 One-shot window query b = 1, 000, γ = 0.1 and N = 20, 000. 129

7·19 PIRSγ ,PIRS±γ : running time. 134

7·20 PIRSγ , PIRS±γ: memory usage. 134

7·21 Detection with tolerance for limited number of errors. 135

xii

List of Abbreviations

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

AAB Tree Authenticated Aggregation B+ Tree

AAR Tree Authenticated Aggregation R Tree

APS Tree Authenticated Prefix Sum Tree

ASB Tree Aggregated Signature B+ Tree

CM Sketch Count-Min Sketch

CQV Continuous Query Verification

DBMS Database Management System

DSMS Data Stream Management System

EMB Tree Embedded Merkle B+ Tree

DMkd Tree Dyadic Merkle kd-tree

EMkd Tree Exponential Merkle kd-tree

LC Label Cover

LCA Least Covering Ancestor

LRU Least Recent Used

MB Tree Merkle B+ Tree

MCS Minimum Covering Set

MHT Merkle Hash Tree

NIST National Institute of Standards and Technology

xiii

ODB Outsourced Databases

PK Public Key

PIRS Polynomial Identity Random Summation

PS Prefix Sums

SK Secret Key

TM Tree Tumbling Merkle Tree

TMkd Tree Tumbling Merkle kd-tree

VO Verification Object

WORM Write-Once-Read-Many

xiv

1

Chapter 1

Introduction

The latest decade has witnessed tremendous advances in computer systems, networking

technologies and, as a consequence, the Internet, sparkling a new information age where

people can access and process data remotely, accomplish critical tasks from the leisure of

their own home, or do business on the go. In order to guarantee availability, reliability

and good performance for a variety of network services, service providers are forced to

distribute and replicate both data and services across multiple servers at the edge of the

network, not necessarily placed under their direct control. Advantages of distributing and

replicating data include bringing the data closer to the users and reducing network latency,

increasing fault tolerance, making the services more resilient to denial of service attacks. As

a concrete example, according to the Census Bureau of the U.S. Department of Commerce,

Electronic Commerce in the United States generated sales of approximately 100 billion

USD in the year 2006 [Bureau, 2006]. Today, there is a large number of corporations that

use electronic commerce as their primary means of conducting business. As the number of

customers using the Internet for acquiring services increases, the demand for providing fast,

reliable and secure transactions increases accordingly. But overwhelming data management

and information processing costs typically outgrow the capacity of individual businesses

to provide the level of service required. This naturally requires the business owner to

outsource its data to a third party for the guaranteed level of quality in providing services

to its clients.

Database outsourcing [Hacigümüs et al., 2002b] is a new paradigm that has been pro-

posed recently and received considerable attention for addressing the issues outlined above.

The basic idea is that data owners delegate their database needs and functionalities to a

2

third-party provider. There are three main entities in the data outsourcing model: the

data owner, the database service provider (a.k.a. server) and the client. In general, many

instances of each entity might exist. In practice, usually there is a single or a few data

owners, a few servers, and many clients. The data owner first creates the database, along

with the associated index and authentication structures and uploads it to the servers. It

is assumed that the data owner might update the database periodically or in an ad-hoc

manner, and that the data management and retrieval happens only at the servers. Clients

submit queries about the owner’s data to the servers and get back results through the

network. In certain scenarios, the data owner and the clients could be the same entity.

Remotely accessing data through the network, under both a centralized or a distributed

setting, inherently raises important security issues, as the third party can be untrusted

or can be compromised. Servers are prone to hacker attacks that can compromise the

legitimacy of the data residing therein and the processing performed. The chances of

even a meticulously maintained server being compromised by an adversary should not be

underestimated, especially as the application environment and interactions become more

complex and absolute security is harder, if not impossible, to achieve. This problem is

exacerbated by the fact that time is in favor of attackers, since scrutinizing a system in

order to find exploits proactively is an expensive and difficult task not commonly employed

in practice. The hardness of enforcing a given level of security measures explodes in widely

distributed settings, where many servers and diverse entities are involved. Furthermore,

communication between the servers and the clients are vulnerable to various man-in-middle

types of attacks as well.

An adversary gaining access to the data is free to deceive users who query and process

the data, possibly remaining unobserved for a substantial amount of time. For non-critical

applications, simple audits and inspections will eventually expose any attack. On the other

hand, for business critical or life critical applications such sampling based solutions are not

good enough. For example, consider a client taking business critical decisions concerning

financial investments (e.g., mutual funds and stocks) by accessing information from what

3

he considers to be a trusted financial institution. A single illegitimate piece of information

might have catastrophic results when large amounts of money are at stake. Similar threats

apply to online banking applications and more. Most importantly, use of illegitimate

information has dire consequences when health issues are involved. For example, planning

future vaccination strategies for a subpopulation in Africa based on recent vaccination

history, or deciding a course of action for a given individual based on patients with similar

profiles. Notice that in these examples information can be tampered with not only due

to a compromised sever, but also due to insecure communication channels and untrusted

entities that already have access to the data (e.g., system administrators).

It is reasonable to assume that in critical applications users should be provided with

absolute security guarantees on a per transaction basis, even at a performance cost. Such

demands cannot be satisfied by putting effort and money into developing more stringent

security measures and audits — in the long run subversion is always possible. Hence, a

fail-safe solution needs to be engineered for tamper-proofing the data against all types of

manipulation from unauthorized individuals at all levels of a given system, irrespective

of where the data resides or how it was acquired, as long as it has been endorsed by

the originator. Techniques for guaranteeing against illegitimate processing need to be

put forth. It is exactly in this direction that this work focuses on, and more precisely,

on query authentication: Assuring end-users that query execution on any server, given

a set of authenticated data, returns correct results, i.e., unaltered and complete answers

(no answers have been modified, no answers have been dropped, no spurious answers

have been introduced). Towards that goal, the owner must give the clients the ability to

authenticate the answers they receive without having to trust the servers. In that respect,

query authentication means that the client must be able to validate that the returned

records do exist in the owner’s database and have not been modified in any way, i.e., they

are the correct query results as if the data owner answers the query itself.

Existing work concentrate on offline, relational databases and study the problem mostly

from a theoretical perspective. In this work, we address the query authentication prob-

4

lems for the relational database with an emphasis on combining cryptographic primitives

with efficient disk-based indexing structures without compromising query efficiency. Addi-

tional challenges are posted by new models of databases emerging recently, such as the im-

portant streaming database [Chandrasekaran and et al., 2003, Hammad and et al., 2004,

Arasu and et al., 2003, Cranor et al., 2003a]. We extend our discussions to streaming

databases that has not been studied before. In addition, query execution assurance, as

a special form of the query authentication problem for outsourced database (ODB) sys-

tems where the data owner and the clients are the same entity, has been studied for the

offline, relational data model [Sion, 2005], however, there is no prior work addressing this

issue in the context of the streaming database. This thesis closes the gap in this important

area as well.

Furthermore, similar security concerns must be addressed in data publishing using con-

tent delivery networks [Saroiu et al., 2002], peer-to-peer computing [Huebsch et al., 2003]

and network storage [Fu et al., 2002]. We would like to point out that there are other

security issues in ODB systems that are orthogonal to the problems considered here. Ex-

amples include privacy-preservation issues [Hore et al., 2004, Agrawal and Srikant, 2000,

Evfimievski et al., 2003], private query execution [Hacigümüs et al., 2002a] and security in

conjunction with access control requirements [Miklau and Suciu, 2003, Rizvi et al., 2004,

Pang et al., 2005].

1.1 Query Authentication for Relational Databases

The relational database is the most common and important type of model for represent-

ing, storing and querying large scale of structured data. A remarkable amount of effort has

been coordinated in providing query authentication capability for relational databases1.

However, as we will soon point out, existing work look at the problem mostly from a the-

oretical perspective and assume idealistic properties for certain cryptographic primitives,

which makes them suitable for main-memory based, small scaled data. There is a lack of

1Readers are referred to Chapter 3 for a detailed review.

5

study for disk-based, large scale datasets, where the main challenge is how to incorporate

cryptographic techniques into existing disk-based indexing structures so that query effi-

ciencies are not dramatically compromised by enabling query authentication. That is the

first focus of this thesis.

In the current framework, the owner creates a database along with the necessary query

authentication structures and forwards the data to the servers. The clients issue queries,

which are answered by the servers using the query authentication structures to provide

provably correct results. Correctness is evaluated on a per query basis. Every answer

is accompanied by a verification proof — an object that can be used to reconstruct the

endorsement of the data originator, and build in a way that any tampering of the answer

will invalidate an attempt to verify the endorsement. Verification objects are constructed

using a form of chained hashing, using ideas borrowed from Merkle trees [Merkle, 1978]

(cf. Chapter 2). A by-product of ensuring query authentication is that the data is also

protected from unauthorized updates, i.e., changes made by individuals that do not have

access to the secret key used to endorse the data. Data owners may update their databases

periodically and, hence, authentication structures should support dynamic updates. An

important dimension of query authentication in a dynamic environment is result freshness.

Notice that an adversary acquiring an older version of an authenticated database can

provide what may appear to be correct answers, that contain in reality outdated results.

Authenticated structures should protect against this type of attack as well. It should be

noted here that query authentication mechanisms do not guard against corrupt individuals

at the originator side who, for example, could introduce phony updates to the data. In the

rest, we assume that the originator is trusted and there are no corrupt insiders with access

to the secret key. This also implies that the internal systems where data processing and

endorsement is taking place have not been compromised.

Clearly, security does not come for free. Any security measure has an associated cost.

There are a number of important metrics for evaluating query authentication mechanisms:

1. The computation overhead for the owner for constructing authentication structures;

6

2. The owner-server communication cost; 3. The storage overhead for the server; 4. The

computation overhead for the server; 5. The client-server communication cost; and 6. The

computation cost for the client to verify the answers.

Previous work has addressed the problem of query authentication for selection and

projection queries only (e.g., “Find all stocks with bids between $50 and $500 within the

last hour”), mostly for static scenarios. Existing solutions take into account only a subset

of the metrics proposed here. Furthermore, previous work was mostly of theoretical nature,

analyzing the performance of the proposed techniques using analytical cost models and not

taking into account the fact that certain cryptographic primitives do not feature idealistic

properties in practice. For example, trying to minimize the size of verification object does

not take into account the fact that the time to generate a signature using popular public

signature schemes is very costly and it also incurs additional I/Os due to the large size of

individual signature. Our first contribution is to introduce novel disk-based authenticated

indexing structures based on Merkle trees [Merkle, 1989] and B-trees [Comer, 1979] for

authenticating selection and projection queries in static and dynamic settings.

Another important aspect of query authentication that has not been considered in the

past is handling efficiently aggregation queries (e.g., “Retrieve the total number of stocks

with bids between $50 and $500 within the last hour”). Currently available techniques

for selection and projection queries can be straightforwardly applied for answering aggre-

gation queries on a single selection attribute. Albeit, they exhibit very poor performance

in practice and cannot be generalized to multiple selection attributes without incurring

even higher querying cost. Our second contribution is to formally define the aggregation

authentication problem and provide efficient solutions that can be deployed in practice,

both for dynamic and static scenarios. Concentrating on SUM aggregates, we show that

in static scenarios authenticating aggregation queries is equivalent to authenticating pre-

fix sums [Ho et al., 1997]. For dynamic scenarios, maintaining the prefix sums and the

corresponding authentication structure becomes expensive. Hence, we propose more in-

volved techniques for efficiently handling updates, which are based on authenticated B-

7

trees [Comer, 1979] and R-trees [Guttman, 1984]. Finally, we extend the techniques for

aggregates other than SUM, and discuss some issues related to result freshness and data

encryption for privacy preservation.

1.2 Authenticating Sliding Window Query over Data Streams

Online services, like electronic commerce and stock market applications, are now permeat-

ing our modern way of life. Due to the overwhelming volume of data that can be produced

by these applications, the amount of required resources, as the market grows, exceeds

the capacity of a relational database that stores and queries all historical data. To deal

with such challenges, data stream has been proposed as a new model of data management

[Babcock et al., 2002] where emphasis is put on recent data and requiring fast and reliable

query processing using limited system resources, in terms of both the memory consumption

and the CPU computation. Outsourced data stream processing is even more appealing as

the large amount of data generated by a streaming source could easily exceed the capac-

ity of individual businesses to provide fast and reliable services. Consider the following

example. A stock broker needs to provide a real-time stock trading monitoring service to

clients. Since the cost of multicasting this information to a large audience might become

prohibitive, as many clients could be monitoring a large number of individual stocks, the

broker could outsource the stock feed to third-party providers, who would be in turn re-

sponsible for forwarding the appropriate sub-feed to clients (see Figure 1·1). Evidently,

especially in critical applications, the integrity of the third-party should not be taken for

granted, as the latter might have malicious intent or might be temporarily compromised by

other malicious entities. Deceiving clients can be attempted for gaining business advantage

over the original service provider, for competition purposes against important clients, or

for easing the workload on the third-party servers, among other motives. In that respect,

assuming that the original service provider can be trusted, an important consideration is to

give clients the ability to prove the service furnished by the third-party (a.k.a. the server).

Consider an end-user that issues a monitoring query for the moving average of a specific

8

0110..011

ServersProvider

. . .

Clients

Figure 1·1: The outsourced stream model.

stock within a sliding window. This monitor can be viewed as a selection-aggregation query

over the original stock feed. A third-party server is assigned to forward the aggregate over

all qualifying trades to this client. Given that the server has total access over the feed,

it can 1. drop trades; 2. introduce spurious trades; or 3. modify existing trades. Similar

threats apply for selection queries, e.g., reporting all bids larger than a threshold within the

last hour, and group by queries, e.g., reporting the potential value per market of a given

portfolio. It will be the job of the stock broker to proof-infuse the stream such that the

clients are guarded against such threats, guaranteeing both correctness and completeness

of the results.

In the second part of our thesis we concentrate on authenticated one-shot and sliding

window queries on data streams. To the best of our knowledge, no work has studied

the authentication of exact selection and aggregation queries over streaming outsourced

data. We introduce a variety of authentication algorithms for answering multi-dimensional

(i.e., on multiple attributes) selection and aggregation queries. One-shot window queries

report answers computed once over a user defined temporal range. Sliding window queries

report answers continuously as they change, over user defined window sizes and update

intervals. We assume that clients register a multiplicity of ad-hoc queries with the servers,

which in turn compute the results and forward the answers back to the clients along with

the necessary signatures and authentication information needed to construct a proof of

correctness. For one-shot queries the servers construct answers and proofs, and send the

results back to clients. For sliding window queries, the servers update the query results

incrementally, communicating only authenticated changes to the clients. By ad-hoc queries

9

we mean that clients can register and cancel queries at any time, using arbitrary window

sizes (sliding or not) and update intervals.

It should be emphasized here that one-shot queries are not only interesting in their own

right, but also because they are an essential building block for answering sliding window

queries: The initial answer of a sliding window query is constructed using a one-shot

algorithm. We design one set of authentication structures optimized for one-shot window

queries, and another for ad-hoc sliding window queries. Then, we combine both solutions

to provide efficient algorithms for all settings. Our solutions are based on Merkle hash trees

over a forest of space partitioning data structures, and balance key features, like update,

query, signing and authentication cost, from the perspective of the service provider, the

server and the client.

1.3 Continuous Query Execution Assurance on Data Streams

A large number of commercial Data Stream Management Systems (DSMS) have been

developed recently [Chandrasekaran et al., 2003, Hammad et al., 2004, Arasu et al., 2003,

Cranor et al., 2003b, Carney et al., 2003, Abadi et al., 2005], mainly driven by the con-

tinuous nature of the data being generated by a variety of real-world applications, like

telephony and networking, and the stock trading example we have provided in last Sec-

tion. Many companies deploy such DSMSs for the purpose of gathering invaluable statistics

about their day-to-day operations. Not surprisingly, due to the overwhelming data flow

observed in most data streams, some companies do not possess and are not willing to

acquire the necessary resources for deploying a DSMS. Hence, in these cases outsourcing

the data stream and the desired computations to a third-party is the only alternative.

For example, an Internet Service Provider (e.g. Verizon) outsources the task of performing

essential network traffic analysis to another company (e.g. AT&T) that already posses the

appropriate tools for that purpose (e.g. Gigascope). Clearly, data outsourcing and remote

computations intrinsically raise issues of trust. As a consequence, outsourced query execu-

tion assurance on data streams is a problem with important practical implications. This

10

...

...

...
answer
exact
maintains
Server

synopsis X
maintains
Client

Source of stream

the same stream
server monitor
Both client and

1. Client registers query
2. Server reports answer

Group 1

Group 2

Group 3
upon request

Figure 1·2: System architecture.

problem is a special form of the query authentication problem where the data owner and

the clients are the same entity and it has been studied before in the context of static out-

sourced data [Sion, 2005]. To the best of our knowledge, this is the first work to address

query execution assurance on data streams.

Consider a setting where continuous queries on a data stream are processed using a re-

mote, untrusted server (that can be compromised, malicious, running faulty software, etc).

A client with limited processing capabilities observing exactly the same input as the server,

registers queries on the DSMS of the server and receives results upon request (Figure 1·2).

Assuming that the server charges clients according to the computation resources consumed

and the volume of traffic processed for answering the queries, the former has an incentive

to deceive the latter for increased profit. Furthermore, the server might have a competing

interest to provide fraudulent answers to a particular client. Hence, a passive malicious

server can drop query results or provide random answers in order to reduce the compu-

tation resources required for answering queries, while a compromised or active malicious

server might be willing to spend additional computational resources to provide fraudulent

results (by altering, dropping, or introducing spurious answers). In other cases, incorrect

answers might simply be a result of faulty software, or due to load shedding strategies,

which are essential tools for dealing with bursty streaming data [Tatbul and Zdonik, 2006,

Arasu and Manku, 2004, Babcock et al., 2004, Tatbul et al., 2003].

11

Ideally, the client should be able to verify the integrity of the computations performed by

the server using significantly fewer resources than evaluating the queries locally. Moreover,

the client should have the capability to tolerate errors caused by load shedding algorithms

or other non-malicious operations, while at the same time being able to identify mal-

intended attacks. To the best of our knowledge, this is the first work to address outsourced

query execution assurance on streams, introducing a novel problem and proposing efficient

solutions for a wide range of queries and failure models.

The present work concentrates on selection queries and aggregate queries, like sum and

count. We develop solutions for verifying such aggregates on any type of grouping imposed

on the input data (e.g., as a GROUP BY clause in standard SQL). First, we provide a solution

for verifying the absolute correctness of queries in the presence of any error, and second,

an algorithm for supporting semantic load shedding, which allows the server to drop tuples

in a selected small number of groups. In the latter case we need to design techniques that

can tolerate a small number of inconsistent answers while guaranteeing that the rest are

correct. We also discuss the hardness of supporting random load shedding, where small

errors are allowed for a wide range of answers.

Clearly, if a client wants to verify the query results with absolute confidence the only

solution is to compute the answers exactly, which obviates the need of outsourcing. Hence,

we investigate high-confidence probabilistic solutions and develop verification algorithms

that significantly reduce resource consumption.

1.4 Summary of Contributions

This thesis answers the challenges, as we have illustrated above, posed by various aspects

of the query authentication problem in the ODB system. We provide practical solutions

that either improve existing approaches or closing the gap in important fields that no prior

solutions exist. In summary the contributions of this thesis are: 1. Novel authentication

structures for selection, projection and aggregation queries that best leverage all cost met-

rics; 2. Designing a variety of authentication algorithms for multi-dimensional selection

12

and aggregation queries on data streams, concentrating on both one-shot and variable-

sized sliding window queries; 3. Detailed analytical cost models for existing and proposed

approaches across all metrics, that take into account not only the structural maintenance

overheads of the indices but the cost of cryptographic operations as well; 4. A probabilis-

tic synopsis for query execution assurance over data streams that raises an alarm with

very high confidence if there exists at least one error in the query results. This algorithm

has constant space cost (three words) and low processing cost per update (O(1) for count

queries and O(log n) or O(log µ) for sum queries, where n is the number of possible groups

and µ is the update amount per tuple), for an arbitrarily small probability of failure δ (as

long as n/δ fits in one word). We also provide a theoretical analysis of the algorithm that

proves its space optimality on the bits level; 5. Extensions of this synopsis for handling

multiple simultaneous queries, raising alarms when the number of errors exceeds a pre-

defined threshold, e.g., when semantic load shedding needs to be supported, and dealing

with random load shedding; 6. Finally, a fully working prototype and an comprehensive

experimental evaluation and comparison of all solutions using both synthetic and real life

datasets, showing that our algorithms not only provide strong theoretical guarantees, but

also work extremely well in practice.

13

Chapter 2

Background

Existing solutions for the query authentication problem work as follows. The data owner

creates specialized authenticated data structures over the original database and uploads

them at the servers together with the database itself. These structures are used by the

servers for answering queries, as well as providing special verification objects VO which

clients can use for authenticating the results. Verification usually occurs by means of using

collision-resistant hash functions and digital signature schemes. Note that in any solution,

some information that is known to be authentically published by the owner must be made

available to the client directly; otherwise, from the client’s point of view, the owner cannot

be differentiated from any other potentially malicious entity. For example, this information

could be the owner’s public key of any public signature scheme. For any authentication

method to be successful it must be computationally infeasible for a malicious server to

produce an incorrect query answer along with a verification object that will be accepted

by a client that holds the correct authentication information of the owner.

2.1 Collision-resistant Hash Functions.

For our purposes, a hash function H is an efficiently computable function that takes a

variable-length input x to a fixed-length output y = H(x). Collision resistance states

that it is computationally infeasible to find two inputs x1 6= x2 such that H(x1) = H(x2).

Collision-resistant hash functions can be built provably based on various cryptographic as-

sumptions, such as hardness of discrete logarithms [McCurley, 1990]. However, in this work

we concentrate on using heuristic hash functions that have the advantage of being very fast

to evaluate, and focus on SHA1 [National Institute of Standards and Technology, 1995],

14

h34=H(h3|h4)

r1 r2 r3 r4

h3=H(r3)h2=H(r2)h1=H(r1) h4=H(r4)

stree=S(hroot)hroot=H(h12|h34),

h12=H(h1|h2)

Figure 2·1: Example of a Merkle hash tree.

which takes variable-length inputs to 160-bit (20-byte) outputs. SHA1 is currently consid-

ered collision-resistant in practice. We also note that any eventual replacement to SHA1

developed by the cryptographic community can be used instead of SHA1 in our solution.

2.2 Public-key Digital Signature Schemes.

A public-key digital signature scheme, formally defined in [Goldwasser et al., 1988], is a tool

for authenticating the integrity and ownership of the signed message. In such a scheme,

the signer generates a pair of keys (SK ,PK), keeps the secret key SK secret, and publishes

the public key PK associated with her identity. Subsequently, for any message m that

she sends, a signature sm is produced by sm = S(SK ,m). The recipient of sm and m

can verify sm via V(PK ,m, sm) that outputs “valid” or “invalid.” A valid signature on a

message assures the recipient that the owner of the secret key intended to authenticate the

message, and that the message has not been modified. The most commonly used public

digital signature scheme is RSA [Rivest et al., 1978]. Existing solutions [Pang et al., 2005,

Pang and Tan, 2004, Mykletun et al., 2004a, Narasimha and Tsudik, 2005] for the query

authentication problem chose to use this scheme, hence we adopt the common 1024-bit

(128-byte) RSA. Its signing and verification cost is one hash computation and one modular

exponentiation with 1024-bit modulus and exponent.

15

2.3 Aggregating Several Signatures.

In the case when t signatures s1, . . . , st on t messages m1, . . . ,mt signed by the same signer

need to be verified all at once, certain signature schemes allow for more efficient commu-

nication and verification than t individual signatures. Namely, for RSA it is possible to

combine the t signatures into a single aggregated signature s1,t that has the same size as

an individual signature and that can be verified (almost) as fast as an individual signa-

ture. This technique is called Condensed-RSA [Mykletun et al., 2004b]. The combining

operation can be done by anyone, as it does not require knowledge of SK ; moreover, the

security of the combined signature is the same as the security of individual signatures. In

particular, aggregation of t RSA signatures can be done at the cost of t−1 modular multi-

plications, and verification can be performed at the cost of t− 1 multiplications, t hashing

operations, and one modular exponentiation (thus, the computational gain is that t − 1

modular exponentiations are replaced by modular multiplications). Note that aggregating

signatures is possible only for some digital signature schemes.

2.4 The Merkle Hash Tree.

The straightforward solution for verifying a set of n values is to generate n digital signatures,

one for each value. An improvement on this straightforward solution is the Merkle hash

tree (see Figure 2·1), first proposed by [Merkle, 1989]. It solves the simplest form of the

query authentication problem for point queries and datasets that can fit in main memory.

The Merkle hash tree is a binary tree, where each leaf contains the hash of a data value, and

each internal node contains the hash of the concatenation of its two children. Verification

of data values is based on the fact that the hash value of the root of the tree is authentically

published (authenticity can be established by a digital signature). To prove the authenticity

of any value, the prover provides the verifier with the data value itself and the hash values

of the siblings of the nodes that lie in the path that connects the root of the tree with

the data value. The verifier, by iteratively computing and concatenating the appropriate

16

hashes, can recompute the hash of the root and verify its correctness using the owner’s

signature. Correctness is guaranteed due to the collision-resistance of the hash functions.

By hashing a given node, it becomes computationally infeasible for an adversary to modify

the node in a way that ultimately preserves the hash value of the root. The correctness

of any data value can be proved at the cost of computing log n hash values. Extensions

for dynamic environments have appeared as well, such that insertions and deletions can

be handled in O(log n) time [Naor and Nissim, 1998]. The Merkle tree concept can also

be used to authenticate range queries using binary search trees (where data entries are

sorted), and it has been shown how to guarantee completeness of the results as well (by

including boundary values in the results) [Martel et al., 2004]. External memory Merkle

B-trees have also been proposed [Pang and Tan, 2004]. Finally, it has been shown how to

apply the Merkle tree concepts to more general data structures [Martel et al., 2004].

2.5 Cost Models for SHA1, RSA and Condensed-RSA.

Since all existing authenticated structures are based on SHA1 and RSA, it is impera-

tive to evaluate the relative cost of these operations, in order to design efficient solu-

tions in practice. Based on experiments with two widely used cryptography libraries,

Crypto++ [Crypto++ Library, 2005] and OpenSSL [OpenSSL, 2005], we obtained results

for hashing, signing, verifying and performing modulo multiplications. Evidently, one hash-

ing operation for input up to 500 bytes on our testbed computer takes approximately 1

to 2 µs. Modular multiplication, signing and verifying are, respectively, approximately 50,

1000 and 100 times slower than hashing.

Thus, it is clear that multiplication, signing and verification operations are very ex-

pensive. The cost of these operations needs to be taken into account when designing

authenticated index structures. In addition, since the cost of hashing is orders of magni-

tude smaller than that of singing, it is essential to design structures that use as few signing

operations as possible, and hashing instead.

17

Chapter 3

Related Work

We have presented the essential cryptographic tools in Chapter 2. This Chapter provides

a detailed review of other related work to different topics covered by our thesis.

3.1 Query Authentication for Offline, Relational Data

General issues for outsourced databases first appeared in [Hacigümüs et al., 2002b]. A large

corpus of related work has appeared on authenticating queries for outsourced databases ever

since [Devanbu et al., 2003, Martel et al., 2004, Bertino et al., 2004, Pang and Tan, 2004,

Pang et al., 2005, Mykletun et al., 2004a, Sion, 2005, Goodrich et al., 2003, Miklau, 2005,

Narasimha and Tsudik, 2005, Cheng et al., 2006]. The first set of attempts to address

query authentication in ODB systems appeared in [Devanbu et al., 2000, Martel et al., 2004,

Devanbu et al., 2003]. The focus of these works is on designing solutions for query correct-

ness only, creating main memory structures that are based on Merkle trees. The work

of [Martel et al., 2004] generalized the Merkle hash tree ideas to work with any DAG (di-

rected acyclic graph) structure. With similar techniques, the work of [Bertino et al., 2004]

uses the Merkle tree to authenticate XML documents in the ODB model. The work

of [Pang and Tan, 2004] further extended the idea to the disk-based indexing structure

and introduced the VB-tree which was suitable for datasets stored on secondary stor-

age. However, this approach is expensive and was later subsumed by [Pang et al., 2005].

Several proposals for signature-based approaches appear in [Narasimha and Tsudik, 2005,

Mykletun et al., 2004a, Pang et al., 2005]. Furthermore, most of previous work focused

on the one dimensional queries except [Narasimha and Tsudik, 2005, Cheng et al., 2006].

Both works utilize the signature chaining idea developed in [Pang et al., 2005] and ex-

18

tend it for multi-dimensional range selection queries. There has been a lot of work on

main memory authenticated data structures following the work in [Naor and Nissim, 1998].

However, these works, for example, [Anagnostopoulos et al., 2001, Goodrich et al., 2003,

Tamassia and Triandopoulos, 2005a], concentrate on main memory structures and are not

directly applicable to databases resided on secondary storage medias. Furthermore, most

of these works presented techniques that are mostly theoretical focus. A general discussion

has been provided by [Tamassia and Triandopoulos, 2005a] to bound the cost of Merkle

tree based main memory index structures for authenticating selection queries.

Previous work has focused on studying the general selection and projection queries.

The proposed techniques can be categorized into two groups, signature-based approaches

and index-based approaches. In general, projection queries are handled using the same

techniques as selection queries, the only difference being the granularity level at which

the signature/hash of the database tuple is computed (i.e. tuple level or attribute level).

Therefore, in the rest we focus on selection queries only.

In signature-based approaches [Narasimha and Tsudik, 2005, Pang et al., 2005], the

general idea is to produce a signature for each tuple in the database. Suppose that

there exists an authenticated index with respect to a query attribute Aq. The signa-

tures are produced by forcing the owner to sign the hash value of the concatenation of

every tuple with its right neighbor in the total ordering of Aq. To answer a selection

query for Aq ∈ [a, b], the server returns all tuples t with Aq ∈ [a − 1, b + 1] along with

a VO that contains a set of signatures s(ti) corresponding to tuples in [a − 1, b]. The

client authenticates the result by verifying these signatures for all consecutive pairs of tu-

ples ti, ti+1 in the result. It is possible to reduce the number of signatures transmitted

by using special aggregation signature techniques [Mykletun et al., 2004b]. Index-based

approaches [Devanbu et al., 2000, Martel et al., 2004, Mykletun et al., 2004a] utilize the

Merkle hash tree to provide authentication. The owner builds a Merkle tree on the tu-

ples in the database, based on the query attribute. Subsequently, the server answers the

selection query using the tree, by returning all tuples t covering the result. In addition,

19

the server also returns the minimum set of hashes necessary for the client to reconstruct

the subtree of the Merkle tree corresponding to the query result and compute the hash of

the root. The reconstruction of the whole subtree is necessary for providing the proof of

completeness.

We are not aware of work that specifically addresses the query freshness issue and to

the best of our knowledge none of the existing works has explored aggregation queries.

The work of [Bouganim et al., 2003, Bouganim et al., 2005] offers a promising research

direction for designing query authentication schemes with special hardware support. Dis-

tributed content authentication has been addressed in [Tamassia and Triandopoulos, 2005b],

where a distributed version of the Merkle hash tree is applied. In [Miklau and Suciu, 2005],

a new hash tree is designed based on the relational interval tree that is implemented on

top of a database management system. However, despite its simplicity is expected to

be much more expensive than the techniques presented here since the tree is stored on

tables and the traversal is done through SQL queries. Techniques for integrity in data

exchange can be applied for query authentication and we refer readers to an excellent

thesis [Miklau, 2005] for more details. Also, [Mykletun and Tsudik, 2006] has studied the

problem of computing aggregations over encrypted databases and [Ge and Zdonik, 2007]

presented a technique to index encrypted data in a column-oriented DBMS. We discuss

encrypted databases in more depth in Chapter 4.5. Another interesting related work inves-

tigates trustworthy index structures based on Write-Once-Read-Many (WORM) storage

devices [Zhu and Hsu, 2005, Mitra et al., 2006]. In these work the main goal is to make

sure that all the records or documents are maintained forever (or at least for a predefined

retention period) and they are never deleted.

We would like to point out that there are other security issues that are orthogonal

to the problems considered here. Examples include privacy-preservation [Hore et al., 2004,

Agrawal and Srikant, 2000, Evfimievski et al., 2003], watermarking databases to prove own-

erships [Sion et al., 2003, Sion, 2004, Sion et al., 2004], security in conjunction with access

control requirements [Miklau and Suciu, 2003, Rizvi et al., 2004, Bouganim et al., 2003,

20

Pang et al., 2005] and secure query execution [Hacigümüs et al., 2002a] .

3.2 Query Authentication for Streaming Data

To the best of our knowledge, this thesis is the first to address query authentication issues

on sliding window queries for outsourced streams. Nevertheless, previous work utilizes

similar cryptographic primitives as the techniques proposed in this thesis, however, for

selection, projection and aggregation queries on offline, relational data, see our review in

last Section. Our solutions leverage on incorporating Merkle tree into kd-tree for provid-

ing necessary authentication information for multi-dimensional queries over data streams.

These extensions for the kd-tree (and similarly for other multi-dimensional structures like

the R-tree) are straightforward but new. Most importantly, arranging these structures

into hierarchies, making them suitable for sliding windows over data streams, and studying

their performance over a variety of cost metrics has not been addressed before.

Sliding window queries over data streams have been studied extensively recently. Read-

ers are referred to an excellent survey and related work therein [Babcock et al., 2002]. Tech-

niques that are in particular interested to us include dyadic ranges [Gilbert et al., 2002,

Cormode and Muthukrishnan, 2003] and exponential hierarchies [Datar et al., 2002] that

have been utilized by a number of algorithms to solve sliding window problems. As we will

learn in Chapter 5, our improved versions of the Mkd-trees use the similar idea. Readers

are referred to an excellent thesis [Golab, 2006] for more details.

We would like to point out that other security issues for secure computation/querying

over streaming and sensor data start to receive attention recently. For example, orthogonal

to our problem, [Chan et al., 2006, Garofalakis et al., 2007] have studied the problem of

secure in-network aggregation for aggregation queries in sensor networks. Both works

utilize cryptographic tools, such as digital signatures, as building blocks for their algorithms

and assume the man-in-middle attack model. Furthermore, the verifier does not have

access to the original data stream. Hence, they are fundamentally different from our

work. Nevertheless, they attest to the fact that secure computation of aggregation queries

21

has a profound impact in many real applications. Our problem is also orthogonal to

watermarking techniques for proving ownership of streams [Sion et al., 2006]

3.3 Query Execution Assurance on Data Streams

Our solutions to query execution assurance on data streams are a form of randomized

synopses. These randomized synopses are a way of summarizing the underlying data

streams. In that respect our work is related with the line of work on sketching techniques

[Alon et al., 1996, Flajolet and Martin, 1985, Ganguly et al., 2004, Babcock et al., 2003,

Manku and Motwani, 2002, Cormode and Muthukrishnan, 2005]. As it will be discussed

in Chapter 6.2, since these sketches are mainly designed for estimating certain statistics of

the stream (e.g. the frequency moments), they cannot solve the query execution assurance

problem.

Another approach for solving our problem is to use program execution verification tech-

niques [Blum and Kannan, 1995, Wasserman and Blum, 1997] on the DSMS of the server.

We briefly discuss two representatives from this field [Chen et al., 2002, Yang et al., 2005].

The main idea behind these approaches is for the client to precompute hash values in nodes

of the control flow graph of the query evaluation algorithm on the server’s DSMS. Subse-

quently, the client can randomly select a subset of nodes from the expected execution path

and ask the server for the corresponding hashes. If the sever does not follow the correct ex-

ecution it will be unable to provide the correct hashes. With guaranteed probability (with

respect to the sampling ratio) the client will be able to verify whether the query has been

honestly executed by the server or not. Clearly, these techniques do not solve our problem

since, first, the server can honestly execute the algorithm throughout and only modify the

results before transmitting them to the client, and second, there is no way for the client to

compute the correct hashes of the program execution, unless if it is recomputing the same

algorithm in real-time, or storing the whole stream for later processing.

Various authentication techniques are also relevant to the present work. The idea is that

by viewing v, the dynamic stream vector which is the the query result computed on the fly

22

with the incoming stream, as a message, the client could compute an authenticated signa-

ture s(v) and any alteration to v will be detected. Here the authenticated signature refers

to any possible authentication techniques, such as RSA or Message Authentication Code

(MAC). However, a fundamental challenge in applying such techniques to our problem is

how to perform incremental updates using s(v) alone, without storing v, i.e., in the present

setting the message v is constantly updated. Cryptography researchers have devoted con-

siderable effort in designing incremental cryptography [Bellare et al., 1994]. Among them

incremental signature and incremental MAC [Bellare et al., 1994, Bellare et al., 1995] are

especially interesting for this work. However, these techniques only support updates for

block edit operations such as insert and delete, i.e., by viewing v as blocks of bits, they are

able to compute s(v′) using s(v) alone if v′ is obtained by inserting a new block (or deleting

an old block) into (from) v. However, in our setting the update operation is arithmetic:

vτ
i = vτ−1

i + uτ where τ denotes any particular time instance, which cannot be handled by

simply deleting the old entry followed by inserting the new one, since we only have uτ (the

incoming tuple) as input, and no access to either vτ−1
i or vτ

i . Hence, such cryptographic

approaches are inapplicable.

There is also considerable work on authenticating query execution in an outsourced

database setting. Readers are referred to the detailed discussion in Section 3.1. Here,

the client queries the publisher’s data through a third party, namely the server, and the

goal is to design efficient solutions to enable the client to authenticate the query results.

Therefore, the model is fundamentally different from our problem. The closest previous

work appears in [Sion, 2005], where it is assumed that the client possess a copy of the data

resided on the servers and a random sampling based approach (by posing test queries with

known results) is used. This model is essentially same as it is in our problem, however,

its discussion limits to offline settings and not for online, one-pass streaming scenarios.

Authentication of sliding window queries over data streams has been studied in this thesis

as well, however, the outsourced model is different from what we have presented for this

problem. The client does not possess the data stream and the data publisher is responsible

23

for injecting “proofs” (in the forms of some cryptographic primitives) into its data stream

so that the server could construct a verification object associated with a query requested

by the client. Hence, it is fundamentally different from the problem we have studied in

query execution assurance (where the client and the data publisher are the same entity).

Finally and most related to our proposed techniques, verifying the identity of poly-

nomials is a fingerprinting technique [Motwani and Raghavan, 1995]. Fingerprinting is a

method for efficient, probabilistic checking of equality between two elements x, y from a

large universe U . Instead of testing the equality using x, y deterministically with com-

plexity at least log |U |, a probabilistic approach is to pick a random mapping from U to

a significantly smaller universe V such that with high probability x, y are identical if and

only if their images in V are identical. The images of x and y are their fingerprints and

their equality can be verified in log |V | time. Fingerprint techniques generally employ

algebraic techniques combined with randomization. Classical examples include verifying

univariate polynomial multiplication [Freivalds, 1979], multivariate polynomial identities

[Schwartz, 1980], and verifying equality of strings [Motwani and Raghavan, 1995]. We re-

fer readers for an excellent discussion on these problems to [Motwani and Raghavan, 1995].

Although the general technique of polynomial identity verification is known, our use of it

in the setting of query verification on data streams appears to be new.

24

Chapter 4

Authenticated Index Structures for Relational

Databases

4.1 Problem Definition

This Chapter focuses on authentication of range selection queries of the following form1:

SELECT A1, · · · , Ac FROM T WHERE a1 ≤ S1 ≤ b1, · · · , ad ≤ Sd ≤ bd,

and range aggregate queries of the following form2:

SELECT ⊗ (A1), · · · ,⊗(Ac) FROM T WHERE a1 ≤ S1 ≤ b1, · · · , ad ≤ Sd ≤ bd,

where
⊗

denotes an aggregation operation, Ai correspond to the projection/aggregation

attributes and Sj to the selection attributes. Attributes Ai, Sj may correspond to any of

the fields of T. For simplicity and without loss of generality, we assume that the schema of

T consists of fields S1, . . . , Sd with domains D1, . . . ,Dd, respectively. We refer to a query

Q with d selection predicates as a d-dimensional query.

The database owner compiles a set of authenticated structures for T, and disseminates

them, along with T, to a set of servers. Clients pose selection and aggregation queries Q

to the servers, which use the authenticated structures to provide query answers ANS(Q)

along with verification objects VO. Denote with SAT (Q) the set of tuples from T that

satisfy Q. The VO is constructed w.r.t. ANS(Q) and it enables the client to verify the

correctness, completeness and freshness of the answer. The problem is to design efficient

1The discussion for authenticating range selection queries is based on [Li et al., 2006b].
2The discussion for authenticating range aggregate queries is based on [Li et al., 2006a].

25

Table 4.1: Notation used in Chapter 4.

Symbol Description

r A database record
k A B+-tree key
p A B+-tree pointer
h A hash value
s A signature
|x| Size of object x
Di Domain size in the ith dimension
ND Total number of database records
NR Total number of query results
P Page size
ANS(Q) Final answer to an aggregation query
SAT (Q) Tuples satisfying the query predicate for an aggregation query
fx Node fanout of structure x
dx Height of structure x
Hl(x) A hash operation on input x of length l
Sl(x) A signing operation on input x of length l
Vl(x) A verifying operation on input x of length l
Cx Cost of operation x
VO The verification object

authentication structures for constructing the VO. The efficiency of each solution should

be measured with respect to the cost metrics introduced in Chapter 1.1.

In our model, only the data owner can update the database. For aggregation queries

we concentrate on distributive (SUM, COUNT, MAX, MIN) and algebraic (AVG) ag-

gregates. We also support HAVING operations. We do not considerthe issue of the data

confidentiality as it is orthogonal to our problem. Finally, access control constraints on top

of query authentication as discussed in [Pang et al., 2005] are not considered.

4.2 Authenticated Index Structures for Selection Queries

4.2.1 The Static Case

We illustrate three approaches for query correctness and completeness: a signature-based

approach similar to the ones described in [Pang et al., 2005, Narasimha and Tsudik, 2005],

26

a Merkle-tree-like approach based on the ideas presented in [Martel et al., 2004], and our

novel embedded tree approach. We present them for the static scenario where no data

updates occur between the owner and the servers on the outsourced database. We also

present analytical cost models for all techniques, given a variety of performance metrics. As

already mentioned, detailed analytical modelling was not considered in related literature

and is an important contribution of this work. It gives the ability to the owners to decide

which structure best satisfies their needs, using a variety of performance measures.

In the following, we derive models for the storage, construction, query, and authentica-

tion cost of each technique, taking into account the overhead of hashing, signing, verifying

data, and performing expensive computations (like modular multiplications of large num-

bers). The analysis considers range queries on a specific database attribute A indexed

by a B+-tree [Comer, 1979]. The size of the structure is important first for quantifying

the storage overhead on the servers, and second for possibly quantifying the owner/server

communication cost. The construction cost is useful for quantifying the overhead incurred

by the database owner for outsourcing the data. The query cost quantifies the incurred

server cost for answering client queries, and hence the potential query throughput. The

authentication cost quantifies the server/client communication cost and, in addition, the

client side incurred cost for verifying the query results. The notation used is summarized

in Table 4.1. In the rest, for ease of exposition, it is assumed that all structures are bulk-

loaded in a bottom-up fashion and that all index nodes are completely full. Extensions for

supporting multiple selection attributes are discussed in Section 4.5.

Aggregated Signatures with B+-trees

The first authenticated data structure for static environments is a direct extension of aggre-

gated signatures and ideas that appeared in [Narasimha and Tsudik, 2005, Pang et al., 2005].

To guarantee correctness and completeness the following technique can be used: First, the

owner individually hashes and signs all consecutive pairs of tuples in the database, assum-

ing some sorted order on a given attribute A. For example, given two consecutive tuples

27

...
r1 r2 r3 rn rx

B+-tree

S(r1|r2) S(r2|r3) S(r3|r4) S(rn|rx)

Figure 4·1: The signature-based approach.

ri, rj the owner transmits to the servers the pair (ri, si), where si = S(ri|rj) (‘|’ denotes

some canonical pairing of strings that can be uniquely parsed back into its two components;

e.g., simple string concatenation if the lengths are fixed). The first and last tuples can be

paired with special marker records. Chaining tuples in this way will enable the clients to

verify that no in-between tuples have been dropped from the results or modified in any

way. An example of this scheme is shown in Figure 4·1.

In order to speed up query execution on the server side a B+-tree is constructed on top

of attribute A. To answer a query the server constructs a VO that contains one pair rq|sq

per query result. In addition, one tuple to the left of the lower-bound of the query results

and one to the right of the upper-bound is returned, in order for the client to be able to

guarantee that no boundary results have been dropped. Notice that since our completeness

requirements are less stringent than those of [Pang et al., 2005] (where they assume that

database access permissions restrict which tuples the database can expose to the user), for

fairness we have simplified the query algorithm substantially here.

There are two obvious and serious drawbacks associated with this approach. First,

the extremely large VO size that contains a linear number of signatures w.r.t. NR (the

total number of query results), taking into account that signature sizes are very large.

Second, the high verification cost for the clients. Authentication requires NR verification

operations which, as mentioned earlier, are very expensive. To solve this problem one

can use the aggregated signature scheme discussed in Section 2.3. Instead of sending one

signature per query result the server can send one combined signature sπ for all results,

28

and the client can use an aggregate verification instead of individual verifications.

By using aggregated RSA signatures, the client can authenticate the results by hashing

consecutive pairs of tuples in the result-set, and calculating the product mπ =
∏

∀q hq

(mod n) (where n is the RSA modulus from the public key of the owner). It is important

to notice that both sπ and mπ require a linear number of modular multiplications (w.r.t.

NR). The cost models of the aggregated signature scheme for the metrics considered are

as follows:

Node fanout: The node fanout of the B+-tree structure is:

fa =
P − |p|
|k| + |p| + 1 . (4.1)

where P is the disk page size, |k| and |p| are the sizes of a B+-tree key and pointer

respectively.

Storage cost: The total size of the authenticated structure (excluding the database itself)

is equal to the size of the B+-tree plus the size of the signatures. For a total of ND tuples

the height of the tree is equal to da = logfa
ND, consisting of NI = fda

a −1
fa−1 (=

∑da−1
i=0 f i

a)

nodes in total. Hence, the total storage cost is equal to:

Ca
s = P · fda

a − 1

fa − 1
+ ND · |s|. (4.2)

The storage cost also reflects the initial communication cost between the owner and

servers. Notice that the owner does not have to upload the B+-tree to the servers, since

the latter can rebuild it by themselves, which will reduce the owner/server communication

cost but increase the computation cost at the servers. Nevertheless, the cost of sending the

signatures cannot be avoided.

Construction cost: The cost incurred by the owner for constructing the structure has

three components: the signature computation cost, bulk-loading the B+-tree, and the I/O

cost for storing the structure. Since the signing operation is very expensive, it dominates

29

the overall cost. Bulk-loading the B+-tree in main memory is much less expensive and its

cost can be omitted. Hence:

Ca
c = ND · (CH|r|

+ CS2|h|
) +

Ca
s

P
· CIO. (4.3)

VO construction cost: The cost of constructing the VO for a range query depends on

the total disk I/O for traversing the B+-tree and retrieving all necessary record/signature

pairs, as well as on the computation cost of sπ. Assuming that the total number of leaf

pages accessed is NQ = NR

fa
, the VO construction cost is:

Ca
q = (NQ + da − 1 +

NR · |r|
P

+
NR · |s|

P
) · CIO + Csπ , (4.4)

where the last term is the modular multiplication cost for computing the aggregated sig-

nature, which is linear to NR. The I/O overhead for retrieving the signatures is also large.

Authentication cost: The size of the VO is equal to the result-set size plus the size of

one signature:

|VO|a = NR · |r| + |s|. (4.5)

The cost of verifying the query results is dominated by the hash function computations

and modular multiplications at the client:

Ca
v = NR · CH|r|

+ Cmπ + CV|n|
, (4.6)

where the modular multiplication cost for computing the aggregated hash value is linear

to the result-set size NR, and the size of the final product has length in the order of |n|

(the RSA modulus). The final term is the cost of verifying the product using sπ and the

owner’s public key.

It becomes obvious now that one advantage of the aggregated signature scheme is that

it features small VO sizes and hence small client/server communication cost. On the other

hand it has the following serious drawbacks: 1. Large storage overhead on the servers,

30

dominated by the large signature sizes, 2. Large communication overhead between the

owners and the servers that cannot be reduced, 3. A very high initial construction cost,

dominated by the cost of computing the signatures, 4. Added I/O cost for retrieving sig-

natures, linear to NR, 5. An added modular multiplication cost, linear to the result-set

size, for constructing the VO and authenticating the results. Our experimental evalua-

tion shows that this cost is significant compared to other operations, 6. The requirement

for a public key signature scheme that supports aggregated signatures. For the rest of

this thesis, this approach is denoted as Aggregated Signatures with B+-trees (ASB-tree).

The ASB-tree has been generalized to work with multi-dimensional selection queries in

[Narasimha and Tsudik, 2005, Cheng et al., 2006].

The Merkle B-tree

Motivated by the drawbacks of the ASB-tree, we present a different approach for building

authenticated structures that is based on the general ideas of [Martel et al., 2004] (which

utilize the Merkle hash tree) applied in our case on a B+-tree structure. We term this

structure the Merkle B-tree (MB-tree).

As already explained in Section 2.4, the Merkle hash tree uses a hierarchical hashing

scheme in the form of a binary tree to achieve query authentication. Clearly, one can

use a similar hashing scheme with trees of higher fanout and with different organization

algorithms, like the B+-tree, to achieve the same goal. An MB-tree works like a B+-

tree and also consists of ordinary B+-tree nodes that are extended with one hash value

associated with every pointer entry. The hash values associated with entries on leaf nodes

are computed on the database records themselves. The hash values associated with index

node entries are computed on the concatenation of the hash values of their children. For

example, an MB-tree is illustrated in Figure 4·2. A leaf node entry is associated with a hash

value h = H(ri), while an index node entry with h = H(h1| · · · |hfm
), where h1, . . . , hfm

are the hash values of the node’s children, assuming fanout fm per node. After computing

all hash values, the owner has to sign the hash of the root using its secret key SK .

31

... ...

...... ...

kj pj

piki

hj=H(h1|...|hf)

hi=H(ri)

Figure 4·2: An MB-tree node.

... ...

...

L1 L2 L3 L4 L5 L6

I1 I2 I3 I4 I5 I6

L7 L8 L9

return hi

return hi

I7 I8

return ri

ρ1

ρo

L10 L11 L12

Figure 4·3: A query traversal on an MB-tree. At every level the hashes
of the residual entries on the left and right boundary nodes need to be
returned.

To answer a range query the server builds a VO by initiating two top-down B+-tree

like traversals, one to find the left-most and one the right-most query result. At the leaf

level, the data contained in the nodes between the two discovered boundary leaves are

returned, as in the normal B+-tree. The server also needs to include in the VO the hash

values of the entries contained in each index node that is visited by the lower and upper

boundary traversals of the tree, except the hashes to the right (left) of the pointers that are

traversed during the lower (upper) boundary traversals. At the leaf level, the server inserts

only the answers to the query, along with the hash values of the residual entries to the left

and to the right parts of the boundary leaves. The result is also increased with one tuple

to the left and one to the right of the lower-bound and upper-bound of the query result

respectively, for completeness verification. Finally, the signed root of the tree is inserted

as well. An example query traversal is shown in Figure 4·3.

The client can iteratively compute all the hashes of the sub-tree corresponding to the

query result, all the way up to the root using the VO. The hashes of the query results are

32

computed first and grouped into their corresponding leaf nodes3, and the process continues

iteratively, until all the hashes of the query sub-tree have been computed. After the hash

value of the root has been computed, the client can verify the correctness of the computation

using the owner’s public key PK and the signed hash of the root. It is easy to see that

since the client is forced to recompute the whole query sub-tree, both correctness and

completeness is guaranteed. It is interesting to note here that one could avoid building

the whole query sub-tree during verification by individually signing all database tuples

as well as each node of the B+-tree. This approach, called VB-tree, was proposed in

[Pang and Tan, 2004] but it is subsumed by the ASB-tree. The analytical cost models of

the MB-tree are as follows:

Node fanout: The node fanout in this case is:

fm =
P − |p| − |h|
|k| + |p| + |h| + 1. (4.7)

Notice that the maximum node fanout of the MB-tree is considerably smaller than that

of the ASB-tree, since the nodes here are extended with one hash value per entry. This

adversely affects the total height of the MB-tree.

Storage cost: The total size is equal to:

Cm
s = P · fdm

m − 1

fm − 1
+ |s|. (4.8)

An important advantage of the MB-tree is that the storage cost does not necessarily reflect

the owner/server communication cost. The owner, after computing the final signature of

the root, does not have to transmit all hash values to the server, but only the database

tuples. The server can recompute the hash values incrementally by recreating the MB-tree.

Since hash computations are cheap, for a small increase in the server’s computation cost

this technique will reduce the owner/sever communication cost drastically.

3Extra node boundary information can be inserted in the VO for this purpose with a very small overhead.

33

Construction cost: The construction cost for building an MB-tree depends on the hash

function computations and the total I/Os. Since the tree is bulk-loaded, building the leaf

level requires ND hash computations of input length |r|. In addition, for every tree node

one hash of input length fm · |h| is computed. Since there are a total of NI = fdm
m −1
fm−1 nodes

on average (given height dm = logfm
ND), the total number of hash function computations,

and hence the total cost for constructing the tree is given by:

Cm
c = ND · CH|r|

+ NI · CHfm|h|
+ CS|h|

+
Cm

s

P
· CIO. (4.9)

VO construction cost: The VO construction cost is dominated by the total disk I/O.

Let the total number of leaf pages accessed be equal to NQ = NR

fm
, dm = logfm

ND and

dq = logfm
NR be the height of the MB-tree and the query sub-tree respectively. In the

general case the index traversal cost is:

Cm
q = [(dm − dq + 1) + 2(dq − 2) + NQ +

NR · |r|
P

] · CIO, (4.10)

taking into account the fact that the query traversal at some point splits into two paths.

It is assumed here that the query range spans at least two leaf nodes. The first term

corresponds to the hashes inserted for the common path of the two traversals from the

root of the tree to the root of the query sub-tree. The second term corresponds to the cost

of the two boundary traversals after the split. The last two terms correspond to the cost

of the leaf level traversal of the tree and accessing the database records.

Authentication cost: Assuming that ρ0 is the total number of query results contained in

the left boundary leaf node of the query sub-tree, σ0 on the right boundary leaf node, and

ρi, σi the total number of entries of the left and right boundary nodes on level i, 1 ≤ i ≤ dq,

34

that point towards leaves that contain query results (see Figure 4·3), the size of the VO is:

|VO|m = (2fm − ρ0 − σ0)|h| + NR · |r| + |s| + (dm − dq) · (fm − 1)|h| +
dq−2∑

i=1

(2fm − ρi − σi)|h| + (fm − ρdq−1 − σdq−1)|h|.

(4.11)

This cost does not include the extra boundary information needed by the client in order

to group hashes correctly, but this overhead is very small (one byte per node in the VO)

especially when compared with the hash value size. Consequently, the verification cost on

the client is:

Cm
v = NR · CH|r|

+

dq−1∑

i=0

f i
m · CHfm|h|

+ (dm − dq) · CHfm|h|
+ CV|h|

. (4.12)

Given that the computation cost of hashing versus signing is orders of magnitude

smaller, the initial construction cost of the MB-tree is expected to be orders of magni-

tude less expensive than that of the ASB-tree. Given that the size of hash values is much

smaller than that of signatures and that the fanout of the MB-tree will be smaller than

that of the ASB-tree, it is not easy to quantify the exact difference in the storage cost of

these techniques, but it is expected that the structures will have comparable storage cost,

with the MB-tree being smaller. The VO construction cost of the MB-tree will be much

smaller than that of the ASB-tree, since the ASB-tree requires many I/Os for retrieving sig-

natures, and also some expensive modular multiplications. The MB-tree will have smaller

verification cost as well since: 1. Hashing operations are orders of magnitude cheaper

than modular multiplications, 2. The ASB-tree requires NR modular multiplications for

verification. The only drawback of the MB-tree is the large VO size, which increases the

client/server communication cost. Notice that the VO size of the MB-tree is bounded by

fm · logfm
ND. Since generally fm ≫ logfm

ND, the VO size is essentially determined by

fm, resulting in large sizes.

35

...

... ...

...... ...

... ...

kl pl

ki pi

embedded tree’s root

krj hrjprj

hi=H(ri)

hl=H(hr1 |...| hrfk
)

Figure 4·4: An EMB-tree node.

The Embedded Merkle B-tree

In this section we propose a novel data structure, the Embedded Merkle B-tree (EMB-

tree), that provides a nice, adjustable trade-off between robust initial construction and

storage cost versus improved VO construction and verification cost. The main idea is to

have different fanouts for storage and authentication and yet combine them in the same

data structure.

Every EMB-tree node consists of regular B+-tree entries, augmented with an embedded

MB-tree. Let fe be the fanout of the EMB-tree. Then each node stores up to fe triplets

ki|pi|hi, and an embedded MB-tree with fanout fk < fe. The leaf level of this embedded

tree consists of the fe entries of the node. The hash value at the root level of this embedded

tree is stored as an hi value in the parent of the node, thus authenticating this node to

its parent. Essentially, we are collapsing an MB-tree with height de · dk = logfk
ND into

a tree with height de that stores smaller MB-trees of height dk within each node. Here,

de = logfe
ND is the height of the EMB-tree and dk = logfk

fe is the height of each small

embedded MB-tree. An example EMB-tree node is shown in Figure 4·4.

For ease of exposition, in the rest of this discussion it will be assumed that fe is a

power of fk such that the embedded trees when bulk-loaded are always full. The technical

details if this is not the case can be worked out easily. The exact relation between fe

and fk will be discussed shortly. After choosing fk and fe, bulk-loading the EMB-tree is

straightforward: Simply group the ND tuples in groups of size fe to form the leaves and

build their embedded trees on the fly. Continue iteratively in a bottom up fashion.

36

When querying the structure the server follows a path from the root to the leaves of

the external tree as in the normal B+-tree. For every node visited, the algorithm scans all

fe − 1 triplets ki|pi|hi on the data level of the embedded tree to find the key that needs to

be followed to the next level. When the right key is found the server also initiates a point

query on the embedded tree of the node using this key. The point query will return all

the needed hash values for computing the concatenated hash of the node, exactly like for

the MB-tree. Essentially, these hash values would be the equivalent of the fe − 1 sibling

hashes that would be returned per node if the embedded tree was not used. However, since

now the hashes are arranged hierarchically in an fk-way tree, the total number of values

inserted in the VO per node is reduced to (fk − 1)dk.

To authenticate the query results the client uses the normal MB-tree authentication

algorithm to construct the hash value of the root node of each embedded tree (assuming

that proper boundary information has been included in the VO for separating groups

of hash values into different nodes) and then follows the same algorithm once more for

computing the final hash value of the root of the EMB-tree.

The EMB-tree structure uses extra space for storing the index levels of the embedded

trees. Hence, by construction it has increased height compared to the MB-tree due to

smaller fanout fe. A first, simple optimization for improving the fanout of the EMB-tree

is to avoid storing the embedded trees altogether. Instead, each embedded tree can be

instantiated by computing fewer than fe/(fk − 1) hashes on the fly, only when a node is

accessed during the querying phase. We call this the EMB−-tree. The EMB−-tree is

logically the same as the EMB-tree, however its physical structure is equivalent to an MB-

tree with the hash values computed differently. The querying algorithm of the EMB−-tree

is slightly different than that of the EMB-tree in order to take into account the conceptually

embedded trees. With this optimization the storage overhead is minimized and the height

of the EMB−-tree becomes equal to the height of the equivalent MB-tree. The trade-off

is an increased computation cost for constructing the VO. However, this cost is minimal

as the number of embedded trees that need to be reconstructed is bounded by the height

37

of the EMB−-tree.

As a second optimization, one can create a slightly more complicated embedded tree to

reduce the total size of the index levels and increase fanout fe. We call this the EMB∗-tree.

Essentially, instead of using a B+-tree as the base structure for the embedded trees, one

can use a multi-way search tree with fanout fk while keeping the structure of the external

EMB-tree intact. The embedded tree based on B+-trees has a total of Ni =
f

dk
k

−1
fk−1 nodes

while, for example, a B-tree based embedded tree (recall that a B-tree is equivalent to a

balanced multi-way search tree) would contain Ni = fe−1
fk−1 nodes instead. A side effect of

using multi-way search trees is that the cost for querying the embedded tree on average

will decrease, since the search for a particular key might stop before reaching the leaf level.

This will reduce the expected cost of VO construction substantially. Below we give the

analytical cost models of the EMB-tree. The further technical details and the analytical

cost models associated with the EMB∗-tree and EMB−-tree are similar to the EMB-tree

case and can be worked out similarly.

Node fanout: For the EMB-tree, the relationship between fe and fk is given by:

P ≥ f
logfk

fe−1

k − 1

fk − 1
[fk(|k| + |p| + |h|) − |k|] + [fe(|k| + |p| + |h|) − |k|]. (4.13)

First, a suitable fk is chosen such that the requirements for authentication cost and storage

overhead are met. Then, the maximum value for fe satisfying (4.13) can be determined.

Storage cost: The storage cost is equal to:

Ce
s = P · fde

e − 1

fe − 1
+ |s|. (4.14)

Construction cost: The total construction cost is the cost of constructing all the embed-

ded trees plus the I/Os to write the tree back to disk. Given a total of NI = fde
e −1
fe−1 nodes

38

in the tree and Ni =
f

dk
k

−1
fk−1 nodes per embedded tree, the cost is:

Ce
c = ND · CH|r|

+ NI · Ni · CHfk|h|
+ CS|h|

+
Ce

s

P
· CIO. (4.15)

It should be mentioned here that the cost for constructing the EMB−-tree is exactly the

same, since in order to find the hash values for the index entries of the trees one needs

to instantiate all embedded trees. The cost of the EMB∗-tree is somewhat smaller than

(4.15), due to the smaller number of nodes in the embedded trees.

VO construction cost: The VO construction cost is dominated by the total I/O for

locating and reading all the nodes containing the query results. Similarly to the MB-tree

case:

Ce
q = [(de − dq + 1) + 2(dq − 2) + NQ +

NR · |r|
P

] · CIO, (4.16)

where dq is the height of the query sub-tree and NQ = NR

fe
is the number of leaf pages to be

accessed. Since the embedded trees are loaded with each node, the querying computation

cost associated with finding the needed hash values is expected to be dominated by the

cost of loading the node in memory, and hence it is omitted. It should be restated here

that for the EMB∗-tree the expected VO construction cost will be smaller, since not all

embedded tree searches will reach the leaf level of the structure.

Authentication cost: The embedded trees work exactly like MB-trees for point queries.

Hence, each embedded tree returns (fk − 1)dk hashes. Similarly to the MB-tree the total

size of the VO is:

|VO|e = NR · |r| + |s| +
dq−2∑

0

2|VO|m + |VO|m +

dm−1∑

dq

(fk − 1)dk|h|, (4.17)

where |VO|m is the cost of a range query on the embedded trees of the boundary nodes

contained in the query sub-tree given by equation (4.11), with a query range that covers

all pointers to children that cover the query result-set.

39

The verification cost is:

Ce
v = NR · CH|r|

+

dq−1∑

i=0

f i
e · Ck + (de − dq) · Ck + CV|h|

, (4.18)

where Ck = Ni · CHfk|h|
is the cost for constructing the concatenated hash of each node

using the embedded tree.

For fk = 2 the authentication cost becomes equal to a Merkle hash tree, which has the

minimal VO size but higher verification time. For fk ≥ fe the embedded tree consists of

only one node which can actually be discarded, hence the authentication cost becomes equal

to that of an MB-tree, which has larger VO size but smaller verification cost. Notice that,

as fk becomes smaller, fe becomes smaller as well. This has an impact on VO construction

cost and size, since with smaller fanout the height of the EMB-tree increases. Nevertheless,

since there is only a logarithmic dependence on fe versus a linear dependence on fk, it is

expected that with smaller fk the authentication related operations will become faster.

There are two possible ways of utilizing our index structures to authenticate multi-

dimensional selection queries. One option is to build one authenticated index structure for

each selection attribute, and authenticate all tuples satisfying each predicate separately,

filtering the results at the client side. Another option is to use an authenticated R-tree

structure, a variant of which will be discussed in Section 4.3.2.

4.2.2 The Dynamic Case

In this section we analyze the performance of all approaches given dynamic updates be-

tween the owner and the servers. In particular, for simplicity, we assume that only inser-

tions and deletions can occur to the database. The performance of updates in the worst

case can be considered as the cost of a deletion followed by an insertion. There are two

contributing factors for the update cost, computation cost such as creating new signatures

and computing hashes, and I/O cost.

40

Aggregated Signatures with B+-trees

Suppose that a single database record ri is inserted in or deleted from the database. As-

suming that in the sorted order of attribute A the left neighbor of ri is ri−1 and the

right neighbor is ri+1, for an insertion the owner has to compute signatures S(ri−1|ri) and

S(ri|ri+1), and for a deletion S(ri−1|ri+1). For k consecutive updates in the best case a

total of k + 2 signature computations are required for insertions and 1 for deletions if the

deleted tuples are consecutive. In the worst case a total of 2k signature computations

are needed for insertions and k for deletions, if no two tuples are consecutive. Given k

updates, suppose the expected number of signatures to be computed is represented by

E{k}(k ≤ E{k} ≤ 2k). Then the additional I/O incurred is equal to E{k}·|s|
P , excluding

the I/Os incurred for updating the B+-tree structure. Since the cost of signature compu-

tations is larger than even the I/O cost of random disk accesses, a large number of updates

is expected to have a very expensive updating cost. Our experimental evaluation verifies

this claim. The total update cost for the ASB-tree is:

Ca
u = E{k} · Cs +

E{k} · |s|
P

· CIO. (4.19)

The Merkle B-tree

The MB-tree can support efficient updates since only hash values are stored for the records

in the tree and, first, hashing is orders of magnitude faster then signing, second, for each

tuple only the path from the affected leaf to the root need to be updated. Hence, the cost of

updating a single record is dominated by the cost of I/Os. Assuming that no reorganization

to the tree occurs the cost of an insertion is Cm
u = H|r| + dm(Hfm|h| + CIO) + S|h|.

In realistic scenarios though one expects that a large number of updates will occur at

the same time. In other cases the owner may decide to do a delayed batch processing of

updates as soon as enough changes to the database have occurred. The naive approach for

handling batch updates would be to do all updates to the MB-tree one by one and update

the path from the leaves to the root once per update. Nevertheless, in case that a large

41

number of updates affect a similar set of nodes (e.g., the same leaf) a per tuple updating

policy performs an unnecessary number of hash function computations on the predecessor

path. In such cases, the computation cost can be reduced significantly by recomputing the

hashes of all affected nodes only once, after all the updates have been performed on the

tree. A similar analysis holds for the incurred I/O as well.

Clearly, the total update cost for the per tuple update approach for k insertions is

k · Cm
u which is linear to the number of affected nodes k · dm. The expected cost of k

updates using batch processing can be computed as follows. Given k updates to the MB-

tree, assuming that all tuples are updated uniformly at random and using a standard balls

and bins argument, the probability that leaf node X has been affected at least once is

P (X) = 1− (1− 1

fdm−1
m

)k and the expected number of leaf nodes that have been affected is

fdm−1
m · P (X). Using the same argument, the expected number of nodes at level i (where

i = 1 is the leaf level and 1 ≤ i ≤ dm) is fdm−i
m · Pi(X), where Pi(X) = [1 − (1 − 1

fdm−i
m

)k].

Hence, for a batch of k updates the total expected number of affected nodes is:

E{X} =
dm−1∑

i=0

f i
m[1 − (1 − 1

f i
m

)k]. (4.20)

Hence, the expected MB-tree update cost for batch updates is

Cm
u = k · H|r| + E{X} · (Hfm|h| + CIO) + S|h|. (4.21)

We can find the closed form for E{X} as follows:

∑dm−1
i=0 f i

m(1 − (f i
m−1
f i

m
)k)

=
∑dm−1

i=0 f i
m(1 − (1 − 1

f i
m

)k)

=
∑dm−1

i=0 f i
m[1 − ∑k

x=0

(
k

x

)
(− 1

f i
m

)x]

=
∑dm−1

i=0 f i
m − ∑dm−1

i=0

∑k
x=0

(
k

x

)
(−1)x(1

f i
m

)x−1

= kdm − ∑k
x=2

(
k

x

)
(−1)x

∑dm−1
i=0 (1

f i
m

)x−1

= kdm − ∑k
x=2

(
k

x

)
(−1)x

1−(1

f
dm
m

)x−1

1−(1

fm
)x−1

42

The second term quantifies the cost decrease afforded by the batch update operation,

when compared to the per update cost. For non-uniform updates to the database, the

batch updating technique is expected to work well in practice given that in real settings

updates exhibit a certain degree of locality. In such cases one can still derive a similar cost

analysis by modelling the distribution of updates.

The Embedded MB-tree

The analysis for the EMB-tree is similar to the one for MB-trees. The update cost for per

tuple updates is equal to k · Ce
u, where Ce

u = H|r| + de logfk
fe · (Hfk|h| + CIO) + S|h|, once

again assuming that no reorganizations to the tree occur. Similarly to the MB-tree case

the expected cost for batch updates is equal to:

Ce
u = k · H|r| + E{X} · logfk

fe · (Hfk |h| + CIO) + S|h|. (4.22)

Discussion

For the ASB-tree, the communication cost for updates between owner and servers is

bounded by E{K}|s|, and there is no possible way to reduce this cost as only the owner

can compute signatures. However, for the hash based index structures, there are a number

of options that can be used for transmitting the updates to the server. The first option is

for the owner to transmit only a delta table with the updated nodes of the MB-tree (or

EMB-tree) plus the signed root. The second option is to transmit only the signed root

and the updates themselves and let the servers redo the necessary computations on the

tree. The first approach minimizes the computation cost on the servers but increases the

communication cost, while the second approach has the opposite effect.

4.3 Authenticated Index Structures for Aggregation Queries

Any technique for authenticating selection queries can be used as a straightforward but

very inefficient solution for authenticating aggregation queries. The server simply answers

the aggregation query Q as a selection query and returns SAT (Q) along with the VO.

43

The client first verifies SAT (Q), then computes the aggregation locally. This approach

is inefficient because the communication and verification costs are linear to |SAT (Q)|

(e.g., if the query is a SELECT * statement the cost might be prohibitive), and also

because the cost of answering multi-dimensional aggregation queries is extremely high

since all tuples satisfying each selection predicate independently have to be send to the

client before filtering can be performed. It is thus desirable to design a solution that has

communication and verification costs sub-linear to |SAT (Q)| and, in addition, that can

support multi-dimensional aggregation queries efficiently.

4.3.1 The Static Case

The APS-tree: Authenticated Prefix Sums

Consider a one dimensional SUM query,

Q = SELECT SUM(Aq) FROM T WHERE a1 ≤ S1 ≤ b1.

The prefix sum array PS[x] for attribute Aq with respect to selection attribute S1 stores

for every x the sum of values Aq for all tuples with S1 ≤ x. If we assume that we have

pre-computed the prefix sums array PS for attribute Aq with respect to S1, the answer

to Q is equal to PS[b1] − PS[a1 − 1]. Prefix sum arrays can be used for answering multi-

dimensional queries also. Assume for simplicity discrete domains Dj = [0,Mj),
4 and a

query

Q = SELECT SUM(Aq) FROM T

WHERE a1 ≤ S1 ≤ b1 AND . . . AND ad ≤ Sd ≤ bd.

Each tuple in the database can be viewed as a point in a d-dimensional space D1×· · ·×Dd.

The d-dimensional space can be represented as a D1 × · · · × Dd array C and the points

(tuples) are mapped to elements in C. Every element C[i1, . . . , id] of the array contains

4For continuous or categorical domains existing values are ordered and assigned distinct identifiers. Next
section presents structures that do not require the domains to be discrete.

44

those Aq values that appear in tuples whose S1, . . . , Sd attributes have values corresponding

to coordinates i1, . . . , id. If there are no such tuples for element C[i1, . . . , id], its value is set

to zero. The prefix sum array PS of C has the same structure as C and in every coordinate

it stores ∀xj ∈ [0,Mj), j ∈ [1, d] :

PS[x1, . . . , xd] =

x1∑

i1=0

. . .

xd∑

id=0

C[i1, i2, . . . , id],

It has been shown in [Ho et al., 1997] that answering any d dimensional range sum query

Q defined as above using PS requires accessing 2d elements as follows. For all j ∈ [1, d],

let I(j) = 1 if xj = bj and I(j) = −1 if xj = aj − 1, and PS[x1, . . . , xd] = 0 if xj = −1,

then:

ANS(Q) =
∑

∀xj∈{aj−1,bj}

{PS[x1, . . . , xd] ·
d∏

i=1

I(i)}. (4.23)

Having computed PS for the aggregation attribute Aq, any aggregation query with the

same form as Q can be answered efficiently. Furthermore, authenticating the answers

becomes equivalent to authenticating the 2d prefix sums required by Equation (4.23).

However, as we discuss next, we need to authenticate both their values and their lo-

cations in the array. To authenticate the elements of PS, we convert PS into a one-

dimensional array PS1d, where element PS[i1, . . . , id] corresponds to element PS1d[k], k =
∑d−1

j=1(ij
∏d

n=j+1 Mn)+ id, and build an f -way Merkle tree on top of PS1d, as described in

Section 2.4. We call this structure the authenticated prefix sums tree (APS-tree).

Suppose that a single element PS1d[k] needs to be authenticated. Traversing the tree

in order to find the k-th element requires computing the correct path from the root to

the leaf containing the k-th entry, and can happen efficiently by using the following tree

encoding scheme. Let h be the height of the tree (with 0 being the height of the root)

and f its fanout. Every node is encoded using a unique label, which is an integer in a

base-f number system. The root node has no label. The 1st level nodes have base-f

45

representations 1, 2, . . . f , from left to right respectively.5 The 2nd level nodes have labels

11, . . . , 1f, 21, . . . , 2f, . . . , f1, . . . , ff , and so on all the way to the leaves. An example is

shown in Figure 4·5 with f = 2. Straightforwardly, a leaf entry with PS1d offset k is

converted into a base-f number λ1 · · · λh with h digits (each digit, in our notation, ranging

from 1 to f , and computed as λi = 1 + ⌊k/fh−i⌋ mod f). Since the tree is full, element k

lies in the k/f leaf node, and this leaf node lies in the k/f2 index node one level up, and

so on. Retrieving PS1d[k] is now possible by computing all prefixes of the label of k and

following the corresponding nodes.

Given a query Q, the server computes all the 2d prefix sums needed to answer the

query and constructs a VO that contains all the hash values needed for authenticating

those entries. In addition, the VO should contain the encoding of the path followed for

every prefix sum (i.e., the label of every entry). The client needs the path encoding in

order to be able to reconstruct the hash values of index nodes correctly.

Similarly to the authenticated index structures for range queries it can be shown that

any change to the structure of the APS-tree or the VO will cause the authentication

procedure to fail. In addition, the fact that the encoding path of an element must be

included in the VO for successful verification ensures the following:

Lemma 4.3.1. Given
∏d

i=1 Mi ordered elements in PS1d, the APS-tree can authenticate

both the value and the position of the k-th element for k ∈ [1,
∏d

i=1 Mi].

In order for the client to be able to authenticate a query correctly the following infor-

mation is needed: 1. The signed root of the APS-tree, 2. The domain size of the selection

attributes, and 3. The fanout of the APS-tree. 6 Using the hashes and the path encodings

first the client verifies each prefix sum by computing the hash of the root once for every

path and comparing it against the singed root. During this step, the client also infers the

position k of every prefix sum in PS1d based on its encoding and the fanout f . Next, using

the query ranges [ai, bi] and the domain sizes, the client maps each element’s position k

5We use numbers from 1 to f instead of from 0 to f−1 to simplify notation for the purposes of exposition.
6The domain sizes and the fanout of the tree are static information and could be authenticated directly

by the owner at system initialization.

46

12 22
2

2111

ǫ

1

122 212112111 211121 221

leaf entry
node

Figure 4·5: The tree encoding scheme.

Figure 4·6: Merging the overlapping paths in the APS-tree. At every
black node the remaining hashes can be inserted in the VO only once for
all verification paths towards the root.

back to the original coordinate space of the d-dimensional prefix sums array. Finally, if

all the elements are verified correctly, the client confirms that the correct prefix sum have

been returned and computes the answer to the query using Equation (4.23).

Correctness and Completeness: Based on Lemma 4.3.1 and Equation (4.23), we can

claim that the APS-tree guarantees both completeness and correctness of the provided

results.

Optimizations: A naive VO construction algorithm would return an individual VO for

each of the prefix sum entries returned. Since the authentication paths of these values may

share a significant number of common edges (as shown in Figure 4·6), a substantial im-

provement in the communication and authentication costs can be achieved by constructing

a common VO using only one tree traversal. A sketch of this process is shown in Algo-

rithm 1. In this algorithm, SAT (Q) refers to the set of prefix sums required to answer

the aggregation query, which is equivalent to the actual set of tuples satisfying the query,

according to Equation (4.23).

Let k1, . . . , kn be the indices of the PS1d values that need to be authenticated. The

single-pass construction algorithm first computes the base-f labels of indices k1, . . . , kn,

47

Algorithm 1: APSQuery(Query Q; APS-tree T; Stack VO; Stack SAT)

Let node N and N.k the key, N.α the aggregate value, N.η the hash1

VO = ∅, SAT = ∅, h = T.height2

VO.push(h), VO.push(domain sizes)3

for kx = i1, . . . , id ∈ {a1 − 1, b1}, . . . , {ad − 1, bd} do4

Compute matrix K = λ1
1 · · ·λn

h for keys k1, . . . , kn
5

Compute G1 = {11, . . . , 1x} using K6

// set G1 contains x groups named 11, . . . , 1x

for S ∈ G1 do7

Recurse(root, 2, S, K)8

Recurse(Node N , Level l, Set S, Matrix K):9

begin10

Compute G = {S1, . . . , Sy} using K11

// group names will become {111, . . . , 11z}, {1111, . . . , 111w}, and so on

VO.push(l), VO.push(N .children - |G|)12

for λl ≡ S′ ∈ G do13

// for λls corresponding to each S′ in G

VO.push(λl)14

if l = h then SAT .push(N [λl].k)15

; // value λx
h is the offset of key kx in the leaf

for 1 ≤ i ≤ N .children do16

if i 6= λl,∀λl ∈ G then VO.push(N [i].η)17

if l < h then18

for λl ≡ S′ ∈ G do Recurse(N [λl], l + 1, S′)19

end20

and conceptually defines a n × h matrix K as follows:

K =




λ1
1 λ1

2 . . . λ1
h

λ2
1 λ2

2 . . . λ2
h

...
...

. . .
...

λn
1 λn

2 . . . λn
h




The paths that need to be followed at every level of the tree for constructing the VO can

be identified by calculating the longest common prefixes of the labels contained in every

column of K. These prefixes denote the longest common paths that can be followed for a

combination of prefix sum entries, before the paths of those entries split. The verification

48

procedure at the client follows a similar reasoning, but in a bottom-up fashion.

Extending the APS-tree to support multiple aggregate attributes is achieved by asso-

ciating a set of aggregate values and hash values with every entry of PS1d[k] at the leaf

level of the APS-tree. Every value/hash pair corresponds to an aggregate attribute one

wishes to be able to authenticate. Answering multi-aggregate queries using this structure

requires only one traversal of the tree. (To reduce storage costs at the expense of larger VO

sizes, a single hash value for all aggregate attributes can be computed; in this case, for the

client to authenticate correctly, the VO must include all aggregate attributes, irrespective

of which attributes the query refers to.) Finally, the APS-tree can be used to authenticate

COUNT and AVG as well, as COUNT is a special case of SUM and AVG is authenticated

as SUM/COUNT. Authentication of MIN and MAX is not possible with the APS-tree.

Cost Analysis

It is easy to see that the APS-tree has constant communication and verification cost re-

gardless of |SAT (Q)|. However, it has high storage overhead for sparse databases and

extremely high update cost. For example, updating a tuple that belongs in PS[0, . . . , 0]

(having the smallest values in all domains), will necessitate an update to the whole APS-

tree. A detailed cost analysis is presented next.

Query cost: The query cost can be broken up into communication and verification costs.

The communication cost depends on the size of the VO and SAT :

Ccommunication ≤ 2d(f − 1)⌈logf N⌉|H| + 2d|I|, (4.24)

where N (= M1 × . . . × Md) is the total size of the PS1d array, |H| is the size of a hash

value, |I| the size of an integer value (all in bytes).

The verification cost at the client in the worst case is:

Cverification ≤ 2d⌈logf N⌉CH + CV , (4.25)

49

where CH and CV denote the cost of one hashing operation and the cost of one verification

operation respectively.

Storage cost: The size of an APS-tree is equal to:

Cstorage =

⌈logf N⌉∑

l=0

f l(|H| + |I|) + N |I|, (4.26)

including one hash and one pointer per tree entry. The APS-tree is storage-expensive if

the original d-dimensional array C is sparse (the database is sparse w.r.t the full domain

size), i.e., when only a few coordinates contain database tuples.

Update cost: Updating a single element of the prefix sums array requires updating the

values of all other elements that dominate this entry. Assume that element PS[i1, . . . , id]

is updated. Then, elements PS[x1, . . . , xd] for ij < xj < Mj, 1 ≤ j ≤ d also need to be

updated, for a total of
∏d

j=1 (Mj − ij) values. Hence, the cost of updating the APS-tree

is:

Cupdate =

d∏

j=1

(Mj − ij)⌈logfN⌉ · CH + CS , (4.27)

where CS denotes the cost of a signing operation.

4.3.2 The Dynamic Case

The APS-tree is a good solution for non-sparse, static environments and even though it

features constant query cost, it has its limitations. More specifically, it cannot handle

MIN/MAX aggregates, has considerable storage overhead for sparse database, and its

update cost is very high. This section presents structures that overcome these limitations.

One dimensional Queries: Authenticated Aggregation B-tree

Consider an one-dimensional aggregation query that contains only one selection predicate

with continuous or discrete domain D1, where the distinct number of values of S1 in T

is N ≤ M1. An Authenticated Aggregation B-tree (AAB-tree) is an extended B+-tree

50

...

...

...

...

... ... kj ηj = H(kj |αj)pj αj

ki pi αi = α1 + . . . + αf ηi = H(η1|α1| . . . |ηf |αf)

Figure 4·7: The AAB-tree. On the top is an index node. On the bottom
is a leaf node. ki is a key, αi the aggregate value, pi the pointer, and ηi the
hash value associated with the entry.

structure of fanout f with key attribute S1, bulk-loaded bottom-up on the base table

tuples. The AAB-tree nodes are extended with one hash value and one aggregate value

per entry. The exact structure of a leaf and an index node is shown in Figure 4·7. Each

leaf entry corresponds to one database tuple t with key k = t.S1, aggregate value α = t.Aq,

and an associated hash value η = H(k|α). If tuples with duplicate keys exist, then the

tree stores only one entry for that key and aggregates all Aq values in α. Hence the

AAB-tree has exactly N data entries. Index entries have keys k computed in the same

way as in the normal B+-tree and each key is associated with an aggregate value α =

α1 ⊗ . . . ⊗ αf (which is the aggregation of the aggregate values of its children), and a

hash value H(η1|α1| . . . |ηf |αf), which is a concatenation of both the hash values and the

aggregate values of the children.

To locate an entry with key k, a point B+-tree query is issued. Authenticating this

entry is done in a Merkle tree fashion. The only difference is that the VO includes both

the hash values η and aggregate values α associated with every index entry, and the key

values k associated with every leaf entry. In addition, auxiliary information is stored in the

VO, so that the client can find the right location of each hash value during the verification

phase. For ease of exposition, we use the same tree encoding scheme as in the previous

section (see Figure 4·8). The only difference is that in an AAB-tree any node could be

incomplete and contain fewer than f entries. However, the labelling scheme is imposed on

a conceptually complete tree. As the auxiliary information enables the client at each level

of the tree to place the computed hash values correctly, the AAB-tree can ensure that:

51

122123 132 212131 231232233222

2

232112 1311

211121113

22

1 3

ǫ

Q

112 221

Figure 4·8: Labelling scheme and the MCS entries.

Lemma 4.3.2. The AAB-tree can authenticate both the value associated with the aggregate

attribute and the label of any entry in the tree, including entries at the index nodes.

Next, we present a method for authenticating aggregation queries efficiently using the

AAB-tree. The basic idea is that the aggregate information at the index nodes of the tree

can be used to answer and authenticate range queries without having to traverse the tree

all the way to the leaves. The following statements apply to aggregation trees in general,

with or without authentication. As we shall see shortly, however, authentication interacts

very nicely with the aggregation-related structures.

Definition 4.3.3. The Label Cover LC of entry λ = λ1 · · ·λh is the range of labels of all

data entries (i.e., leaf level entries) that have λ as an ancestor. The label cover of a data

entry is the label of the entry itself.

Given a label λ, the range of labels in its LC can be computed by right padding it with

enough 1s to get an h-digit number for the lower bound, and enough fs to get an h-digit

number for the upper bound. For example, the LC of λ = 12 in Figure 4·8 is {121, . . . , 123}.

Definition 4.3.4. The Minimum Covering Set MCS of the data entries in query range

Q is the set of entries whose LCs are: 1. Disjoint; 2. Their union covers S completely; 3.

Their union covers only entries in S and no more.

Let λ−, λ+ be the entries corresponding to the lower and upper bound entries of

ANS(Q) (e.g., λ− = 113 and λ+ = 212 in the example of Figure 4·8). Set MCS(Q)

can be computed by traversing the tree top-down and inserting in the MCS all entries

whose LC is completely contained in [λ−, λ+] (and whose ancestors have not been included

52

already in MCS). An entry with LC that intersects with [λ−, λ+] is followed to the next

level. An entry with LC that does not intersect with [λ−, λ+] is ignored. An example is

shown in Figure 4·8. The range of labels [λ−, λ+] of Q is [113, 212]. The MCS(Q) consists

of the entries with labels {113, 12, 13, 21}. It can be shown that:

Proposition 4.3.5.

ANS(Q) =
∑

N∈MCS(Q)

N.α, (4.28)

⋃

N∈MCS(Q)

LC(N) = [λ−, λ+], (4.29)

LC(M) ∩ LC(N) = ∅,∀N,M ∈ MCS(Q),M 6= N. (4.30)

Based on Proposition 4.3.5, the authentication of Q can now be converted to the prob-

lem of authenticating MCS(Q). Next, we discuss the algorithm for retrieving MCS(Q)

and the sibling set SIB needed to verify the former, in one pass of the tree. The server first

identifies the boundary labels λ−, λ+ of the query range using two point B+-tree queries

(note that these labels might correspond to keys with values a ≤ k− and k+ ≤ b). Start-

ing from the root, the server follows the following modified algorithm for constructing the

MCS, processing entries using a pre-order traversal of the tree. When a node N is visited,

the algorithm compares LC(N) with [λ−, λ+]: if LC(N) ∈ [λ−, λ+], then the node is added

to the MCS. If LC ∩ [λ−, λ+] 6= ∅, then the node’s children are visited recursively. If

LC(N) ∩ [λ−, λ+] = ∅ then the node’s hash value (or key value for leaf nodes) and aggre-

gate value is added to the SIB. In the previous example, the hash values (or key values for

leaf entries) and the aggregate values of entries {111, 112, 22, 23, 3} are included in SIB.

The VO for the aggregation query contains sets MCS and SIB, as well as the label of

every entry contained therein; this will enable the client to infer an entry’s correct position

in the tree and reconstruct the hash value of its ancestor. Finally, to ensure completeness,

the server also includes verification information for the two boundary data entries that lie

exactly to the left of λ− and to the right of λ+. Denote these entries by λ−
l , λ+

r respectively7.

7For the left-most and right-most entries in the tree, dummy records are used.

53

Before discussing the verification algorithm at the client side the following definitions

are necessary:

Definition 4.3.6. Two entries (or their labels) are neighbors if and only if: 1. They are

at the same level of the tree and no other entry at that level exists in-between, or 2. Their

LCs are disjoint and the left-most and right-most labels in the LC of the right and left entry

respectively are neighbors.

For example, in figure 4·8 entries 11, 12 as well as 113, 12 are neighbors. An interesting

observation is that:

Lemma 4.3.7. All consecutive MCS entries (in increasing order of labels) are neighbors

in the tree.

Proof. Suppose that two consecutive MCS entries M,N are not neighbors. Let x be the

largest data value under M , and z the smallest data value under N . Since M and N are

not neighbors, by the definition of LC there exists a value y and a node P s.t. x < y < z

and P is a neighbor of M . Clearly, if such y and P exist, y is an answer to the query and

P (or a descendant of P that is a neighbor of M) must be a member of MCS. This is

a contradiction, since M and N are consecutive in label order. Hence, assuming that the

MCS has been constructed correctly such y cannot exist and M,N are neighbors.

The authentication at the client side proceeds as follows. First the boundary entries

{λ−, λ−
l , λ+, λ+

r } are authenticated. After successful authentication, the client checks that

k−
l < a ≤ k− and k+ ≤ b < k+

r and that the entries {k−
l , k−} (similarly for {k+, k+

r })

are neighbors. The second step is to verify the correctness of all entries in the MCS and

that consecutive entries are neighbors (by using their labels). If this step is successful,

the MCS has been constructed correctly and no entries are missing according to Lemma

4.3.7. The last step is to infer the LCs of all MCS entries using their labels and confirm

Proposition 4.3.5. On success, the client computes the final aggregate result. On failure,

the client rejects the answer.

The complete query and VO construction algorithm is presented in Algorithm 2 and

the algorithm for client side verification is presented in Algorithm 3.

54

Algorithm 2: AABQuery(Query Q; AAB-tree T; Stack VO)

Let node N and N.k the key, N.α the aggregate value, N.η the hash1

Compute [λ−, λ+] from Q2

Recurse(T.root, VO, [λ−, λ+])3

Push information for verifying λ−
l , λ+

r into VO4

5

Recurse(Node N , Stack VO, Range R):6

begin7

VO.push(∗); VO.push(N .children)8

for N.children ≥ i ≥ 1 do9

if LC(N [i]) ∈ R then10

if N is a leaf then11

VO.push(N [i].k);12

else VO.push(N [i].η)13

else if LC(N [i]) ∩R 6= ∅ then14

Recurse(N [i], VO, R)15

else VO.push(N [i].η);16

VO.push(N [i].α)17

end18

The AAB-tree can be used for authenticating one-dimensional aggregate queries in a dy-

namic setting since the owner can easily issue deletions, insertions and updates to the tree,

which handles them similarly to a normal B+-tree. In addition, extending the AAB-tree for

multiple aggregate attributes Aq can happen similarly to the APS-tree. Straightforwardly,

the AAB-tree can also support COUNT, AVG, MIN and MAX.

Correctness and Completeness: Based on lemmata 4.3.2, 4.3.7, and proposition 4.3.5,

the AAB-tree ensures both correctness and completeness of the query results.

Optimizations: A potential optimization for reducing the VO size of a given query Q, is

to authenticate the complement of Q. Define the following:

Definition 4.3.8. The Least Covering Ancestors LCA of the data entries in the range of

Q are the two entries whose LCs are: 1. Disjoint, 2. Completely cover the data entries in

[λ−, λ+], 3. The union of their LCs contains the minimum possible number of data entries.

Denote with R the range of data entries covered by LCA(Q). In Figure 4·8, LCA(Q)

55

Algorithm 3: AABAuthenticate(Query Q; Stack VO)

Retrieve and verify λ−, λ+ from VO1

MCS = ∅2

η = Recurse(VO, MCS)3

Remove entries from MCS according to [λ−, λ+]4

Verify neighbor integrity of MCS or Reject5

Verify η or Reject6

7

Recurse(Stack VO, Stack MCS):8

begin9

c = VO.pop()10

η = ∅11

for 1 ≤ i ≤ c do12

e = VO.pop()13

if e = ∗ then η = η| Recurse(VO, MCS) α = VO.pop()14

η = η|e|α15

MCS.push(e)16

Return H(η)17

end18

contains entries 1 and 21 and range R data entries [111, 212]. Depending on the size of

MCS(Q), it might be beneficial to answer the query by authenticating the aggregate of

range R, then the aggregate of range Q = R −Q (using MCS(Q), and subtract the result

for the final answer. In the running example, MCS(Q) is simply {111, 112}. It is possible

to estimate the size of these sets using statistical information about the average per level

utilization of the tree, meaning that the server can make a decision without having to

traverse the tree. Furthermore, if the tree is complete, the exact size of these sets can be

analytically computed.

Cost Analysis of AAB-Tree

To authenticate any aggregate value either in a leaf entry or an index entry, or the key of

a leaf entry, in the worst case the VO constructed by the AAB-tree has size:

|VO| ≤ ⌈logf N⌉[f(|H| + 2|I|) + 2|I|], (4.31)

56

The size of the MCS can be upper bounded as well. For any key range [a, b]:

|MCS| ≤ 2(f − 1)⌈logf (b − a + 1)⌉. (4.32)

The subtree containing all entries in range [a, b] has height ⌈logf (b − a + 1)⌉. In the worst

case at every level of the tree the MCS includes f − 1 entries for the left sub-range, and

f − 1 for the right sub-range, until the two paths meet.

Query cost: Combining Equations (4.31) and (4.32) the communication cost is bounded

by:

Ccommunication ≤ 2|VO| + |MCS| · |VO|, (4.33)

for the VOs corresponding to the boundary labels, and the VO for the MCS. The verifi-

cation at the client, counting hashing and verification operations only, is bounded by:

Cverification ≤ (|MCS| + ⌈logf
N

b−a+1⌉) · CH + 2 logf N · CH + CV , (4.34)

including the hashes for the nodes containing MCS entries, the remaining hashes in the

path to the root, and the authentication cost of the boundary entries. Only one verification

is necessary, since whenever the computed hash value of the root of the tree is rejected the

answer is rejected immediately.

Storage cost: The size of the AAB-tree is:

Cstorage =

⌈logf N⌉∑

l=1

f l(|H| + 4|I|), (4.35)

which includes the hash value, aggregate value, key and one pointer per entry.

Update cost: Updating the AAB-tree is similar to updating a normal B+-tree with the

additional cost of recomputing the hash values and aggregate values when nodes merge or

split. The cost is bounded by:

Cupdate ≤ 2⌈logf N⌉CH + CS , (4.36)

57

...

R1

R3

R4

query Q

R2

p2

R

p3
p1

(a) Data Indexed by AAR-tree.

......

... ...

... ...

R2.PHR2.PL p h=H(h1|a1|p1...)a=agg(a1,a2,a3)

R4

R1 R3p h2=H(a2)p2 a2

R2

R4.PL

R

pR4.PH a=agg(R1.a,R2.a,R3.a)h=H(R1.h|R1.a|R1.PL|R1.PH ...)

(b) AAR-tree Nodes.

Figure 4·9: AAR-tree.

given the worst case update cost of a B+-tree.

Multi-dimensional Queries: Authenticated Aggregation R-tree

The AAB-tree can answer only one-dimensional queries. To answer multi-dimensional

aggregation queries we extend the Aggregate R-tree (AR-tree)[Jürgens and Lenz, 1999,

Lazaridis and Mehrotra, 2001, Tao and Papadias, 2004b] to get the Authenticated Aggre-

gation R-tree (AAR-tree).

Let

Q = SELECT SUM(Aq) FROM T

WHERE a1 ≤ S1 ≤ b1 AND . . . AND ad ≤ Sd ≤ bd,

be a d-dimensional aggregate query. Similarly to the AAB-tree, the AAR-tree indexes

the tuples in T on attributes Si, 1 ≤ i ≤ d. Every dimension of the tree corresponds

to an attribute Si, and every node entry is associated with an aggregate value α and a

hash value η. The hash value is computed on the concatenation of the node MBRs of the

entry’s children mi, aggregate values αi and hash values ηi (η = H(. . . |mi|αi|ηi| . . .)). The

structure of an AAR-tree node is shown in Figure 4·9. The MBR of each entry is included

in the hash computation in order for the client to be able to authenticate the extent of

the tree nodes, which will enable verification of the completeness of the results, as will be

seen shortly. Notice that in a d-dimensional space, the MBR m is simply a d-dimensional

rectangle represented by two d-dimensional points. The query Q becomes a d-dimensional

58

query rectangle.

The MCS set can be defined similarly to the AAB-tree. It consists of the minimum

set of nodes whose MBRs totally contain the points covered by the query rectangle. The

VO construction is similar to that of the AAB-tree, and uses the concept of computing the

answer by authenticating the MCS entries. Even though correctness verification for any

range query can be achieved simply by authenticating the root of the tree, completeness

in the AAR-tree requires extra effort by the client. Specifically, the client needs to check

if the MBR associated with each node in the VO intersects or is contained in the query

MBR. If it is contained, it belongs to the MCS. If it intersects, then the client expects to

have already encountered a descendant of this node which is either fully contained in the

query range or disjoint. This check is possible since the MBRs of all entries are included

in the hash computation. The server has to return all MBRs of the entries encountered

during the querying phase in order for the client to be able to recompute the hash of the

root, and to be able to check for completeness. The AAR-tree can be extended to support

multi-aggregate queries similarly to the APS-tree.

Correctness and Completeness: The verification method described above gives an au-

thentication procedure that guarantees correctness and completeness. The proof is a special

case of [Martel et al., 2004, Theorem 3], which holds for more general DAG structures.

Cost Analysis

We present the cost analysis for AAR-tree next.

Query cost: Let an AAR-tree indexing N d-dimensional points, with average fanout f

and height h = logP (N
f) (where the level of the root node is zero and the level of the

data entries is h). The size of the VO for authenticating one AAR-tree entry at level l

(equivalent to a node at level l+1), either a data entry or an index entry, is upper bounded

by:

|VO| ≤ fl[2d · |I| + |I| + |H|], (4.37)

59

(assuming that MBRs are represented by |I|-byte floating point numbers). The cost is

equal to the level of the entry times the amount of information needed for computing the

hash of every node on the path from the entry to the root.

The size of the MCS is clearly related to the relationship between the query range

MBR q and the MBRs of the tree nodes. Let m be a node MBR, and P (m ⊙ q) represent

the probability that the query MBR fully contains m. Assuming uniformly distributed

data, it has been shown in [Jürgens and Lenz, 1999] that:

P (m ⊙ q) =





∏d
j=1(qj − mj) , if ∀j : qj > mj

0 , otherwise
,

where qj,mj represent the length of q and m on the j-th dimension. Furthermore, it has

been shown in [Kamel and Faloutsos, 1993] that the probability of intersection between q

and m is P (m⊕ q) =
∏d

j=1(qj + mj). Thus, the probability of an intersection but not con-

tainment is equal to P (m⊖q) = P (m⊕q)−P (m⊙q). Let ml be the average length of the side

of an MBR at the l-th level of the tree. It has been shown by [Theodoridis and Sellis, 1996,

Tao and Papadias, 2004a] that ml = min {(fh−l/N)1/d, 1}, 0 ≤ l ≤ h− 1, which enables us

to estimate the above probability.

The expected number of nodes at level l is Nl = N
fh−l . It can be shown that Jl =

Jl−1 · P (m ⊖ q), 1 ≤ l ≤ h, J0 = f · P (m ⊖ q) is the number of nodes that intersect with

query q at level l, given that all its ancestors also intersect with q. The size of the MCS is

upper bounds by |MCS| ≤ [N1 +
∑h−1

l=0 Jl] ·P (m⊙ q). Essentially, we estimate the number

of children entries that are contained in the query, for every node that intersects with the

query at a given level.

Hence, the communication cost in the worst case can be expressed by the following

estimate:

Ccommunication ≤ |MCS| · |VO|. (4.38)

60

The verification cost is similarly bounded by:

Cverification ≤ |MCS| · CH + CV . (4.39)

Storage cost: The storage cost is:

Cstorage =
h−1∑

l=0

N

fh−l
· f · [|H| + 2d · |I| + |I| + |I|], (4.40)

since we extend every entry with a hash value and an aggregate value, and include the

d-dimensional MBRs and one pointer per entry.

Update cost: Updating the AAR-tree is similar to updating an R-tree. Hence:

Cupdate = logP (
N

f
) · CH + CS . (4.41)

4.4 Query Freshness

The dynamic scenarios considered here reveal a third dimension of the query authentication

problem that has not been sufficiently explored in previous work, that of query result

freshness. When the owner updates the database, a malicious or compromised server may

still retain an older version of the data. Since the old version was authenticated by the

owner already, the client will still accept any query results originating from an old version

as authentic, unless the latter is informed by the owner that this is no longer the case.

In fact, a malicious server may choose to answer queries using any previous version, and

in some scenarios even a combination of older versions of the data. If the client wishes

to be assured that queries are answered using the latest data updates, additional work is

necessary.

This issue is similar to the problem of ensuring the freshness of signed documents,

which has been studied extensively in the context of certificate validation and revocation.

There are many solutions which we do not review here. The simplest is to publish a list of

revoked signatures, one for every expired version of the database. More sophisticated ones

61

are: 1. Including the time interval of validity as part of the signed root of the authenticated

structures and reissuing the signature after the interval expires, 2. Using hash chains to

confirm validity of signatures at frequent intervals [Micali, 1996].

Clearly, all signature freshness techniques impose a cost which is linear to the number

of signatures used by any authentication structure. The advantage of all novel Merkle tree

based solutions presented here is that they use one signature only — that of the root of

the tree — which is sufficient for authenticating the whole database. Straightforwardly,

database updates will also require re-issuing only the signature of the root. This is a

tremendous improvement compared to the ASB-tree approach which uses multiple signa-

tures. It is unclear how to solve the freshness problem for the ASB-tree without applying

signature freshness techniques to each signature individually, which will be prohibitively

expensive in practice.

4.5 Extensions

This section extends our discussion to other interesting topics that are related to the query

authentication problem.

General Query Types. The proposed authenticated structures can support other query

types as well. We briefly discuss here a possible extension of these techniques for join

queries. Other query types that can be supported are projections and multi-attribute

queries.

Assume that we would like to provide authenticated results for join queries such as

R ⊲⊳Ai=Aj
S, where Ai ∈ R and Aj ∈ S (R and S could be relations or result-sets from

other queries), and authenticated structures for both Ai in R and Aj in S exist. The server

can provide the proof for the join as follows: 1. Select the relation with the smaller size,

say R, 2. Construct the V O for R (if R is an entire relation then the VO contains only

the signature of the root node from the index of R), 3. Construct the VOs for each of the

following selection queries: for each record rk in R, qk =“SELECT * FROM S WHERE

62

r.Aj = rk.Ai”. The client can easily verify the join results. First, it authenticates that the

relation R is complete and correct. Then, using the VO for each query qk, it makes sure

that it is complete for every k (even when the result of qk is empty). After this verification,

the client can construct the results for the join query and be sure that they are complete

and correct.

Authenticating Selection Queries and Aggregation Queries using One Unified

Structure. It is not hard to see that both the AAB-tree and AAR-tree can support the

authentication of selection queries as well. Furthermore, the embedding idea used for the

EMB-tree and its variants could be easily applied to the AAB-tree and AAR-tree in order

to reduce the VO size.

Handling Encrypted Data: In some scenarios it might be necessary for the data owner

to publish only encrypted versions of its data for privacy preservation and data security

purposes [Hacigümüs et al., 2002a, Agrawal et al., 2005, Mykletun and Tsudik, 2006]. It

should be made clear that an encrypted database does not provide a solution to the query

authentication problem: the servers could still purposely omit from the results tuples that

actually satisfy the query conditions. It is interesting to mention that the APS-tree can

work without modifications with encrypted data. The server does not need to access the

data or perform any computations or comparisons on the data. It only needs to retrieve the

encrypted data at a specific location of the one-dimensional prefix sums array. This location

information can be provided by the client that can infer it from the query, the domain sizes

and the fanout f of the APS tree. On the other hand, the AAB-tree and the AAR-tree

structures cannot support encrypted databases. The difficulty arises in requiring the server

to perform comparisons on encrypted data. Techniques like order-preserving encryption

[Agrawal et al., 2004], if acceptable under certain security models, can be used with the

proposed structures.

63

Chapter 5

Enabling Authentication for Sliding Window

Query over Data Streams

5.1 Problem Formulation

Stream outsourcing. We adopt the data outsourcing model in a streaming environ-

ment. Formally, we define three entities, the service provider who is the originator of the

stream, the server who answers queries, and the client who registers queries and receives

authenticated results (see Figure 1·1)1. The service provider constructs special authenti-

cation structures that can be updated in real-time over the stream and that are tailored

for answering one-shot and sliding window selection and aggregation queries. The provider

forwards the original stream to the server along with the necessary information to enable

reconstruction of the authentication structures at the server side. The server uses these

structures to generate verifiable query answers, and forwards the final results to the clients.

The data stream model. We model a data stream S as an infinite sequence of tuples

S = (a1, a2, . . .). Tuples arrive one at a time, i.e., in the i-th time unit tuple ai arrives.

A sliding window of size n consists of elements (at−n+1, . . . , at) where at is the last tuple

received so far, and n is in number of tuples. This model is typically referred to as tuple-

based sliding windows [Datar et al., 2002, Babcock et al., 2002] (i.e., querying the most

recent n tuples). In some applications it might be desirable to use time-based sliding

windows, where each tuple is associated with a timestamp and we are interested in querying

all tuples within time interval [tnow − T, tnow] where tnow is the current time and T is the

1This Chapter is extended from [Li et al., 2007].

64

window size in timestamps. For ease of exposition we focus on tuple-based sliding windows,

and discuss extensions for time-based sliding windows in Section 5.5.

Queries. Assume that each tuple consists of multiple attributes and clients issue contin-

uous selection queries of the following form:

SELECT * FROM Stream WHERE

l1 ≤ A1 ≤ u1 AND ... AND ld ≤ Ad ≤ ud

WINDOW SIZE n, SLIDE EVERY σ

where (li, ui) are the selection ranges over attributes Ai.
2 We will also consider aggregation

queries of a similar form:

SELECT AGG(Ax) FROM Stream WHERE ...

Ax is any tuple attribute and AGG is any distributive aggregate function, like sum, count,

min, and max.

Assume that a query is issued at time t. The answer to a selection query consist of

those tuples that fall within the window (at−n+1, . . . , at) and whose attributes satisfy the

selection predicates. For one-shot queries the server constructs the answer once and reports

the result. For sliding window queries, the server constructs the initial answer at time t,

which is again a one-shot query, and incrementally communicates the necessary changes to

the clients, as tuples expire from the window and new tuples become available.

Our authentication algorithms will guarantee that the server does not introduce any

spurious tuples, does not drop any tuples, and does not modify any tuples. In other words,

our techniques guarantee both correctness and completeness of the results. Similarly for

aggregation queries, we will guarantee that the aggregate is computed over the correct set

of tuples, and properly updated over the sliding window.

An important observation for authenticating queries in a streaming setting is that any

solution that can provide authenticated responses on a per tuple basis will have to trigger

2The selection attributes can be categorical as well, but without loss of generality, we will concentrate
on numerical attributes in this work.

65

a signing operation at the provider on a per tuple arrival basis, which is very costly (see

Chapter 2). The only alternative is to amortize the signing cost by performing signing

operations across several tuples. This approach will lower the update overhead at the cost

of providing delayed query responses. In many applications, delayed responses can often

be tolerated and, given the complexity of this problem, our main interest will be to design

algorithms that minimize signing, authentication and querying costs, given a maximum

permissible response delay b. For one-shot window queries, clients will receive replies in

the worst case b tuple arrivals after the time that the query was issued. For sliding window

queries, clients will receive necessary updates with at most a b-tuple delay. Even though we

introduce delays, we do not change the ad-hoc window semantics: The answers provided

are with respect to the user defined window specifications t, n, σ. In critical applications

(e.g., anomaly detection) preserving window semantics is very important.

A straightforward approach for answering sliding window queries would be to re-

compute the exact answer every σ tuple arrivals, which is unacceptable. Alternatively,

we could maintain the answers of all registered queries at the server side, update them

incrementally as the window evolves, and communicate only the necessary changes to

clients. This solution is unacceptable in streaming settings with a large number of queries

and clients, putting unnecessary storage burden on the server. Hence, we explore solu-

tions that incrementally compute result updates without explicitly keeping state on a per

query/per client basis. In addition, we will assume that a maximum permissible window

size N has been determined, and we will require our structures to have storage linear or

near-linear in N .

Finally, we will evaluate our solutions, both analytically and experimentally, using the

following metrics: 1. The query cost for the server; 2. The communication overhead for

the authentication information, i.e., the size of the verification object, or the VO. 3. The

authentication cost for the client; 4. The update cost for the provider and the server; 5.

The storage cost for the provider and the server; 6. Support for multi-dimensional queries.

66

N + b

...

...

expired new false positives

σ Q
Q

V
a
lu

e
Time

b = 5

Figure 5·1: The Tumbling Merkle Tree.

5.2 The Tumbling Merkle Tree

In this section we present a structure based on the Merkle binary search tree for answering

one-dimensional sliding window queries. Consider a predefined maximum window size N ,

a maximum permissible response delay b, and ad-hoc queries with window sizes n < N ,

on selection attribute A. The provider builds one Merkle binary search tree on the values

of the attribute A for every b tuples within the window of the most recent N + b tuples

(at−N+1−b, . . . , at). Note that tuples in the tree are sorted by value A and not by order of

arrival. An example is shown at the top of Figure 5·1, where every rectangle represents a

Merkle tree on attribute A. Then, the provider signs the ⌈N/b⌉ + 1 Merkle trees. Each

signature also includes t⊢ and t⊣, the indices of the oldest and newest tuple contained in the

tree, i.e., s = S(SK , hroot|t⊢|t⊣). All signatures are forwarded to the server. We call this

structure the Tumbling Merkle Tree (TM-tree). Updating the TM-tree is easy. On every b

new tuple arrivals the provider and the server bulk load a new Merkle tree with the new

values and discard the oldest tree. In addition, the provider signs the tree and propagates

the signature to the server. An advantage of this solution is that it amortizes the signing

cost over every b tuples. The penalty is that authenticated results are provided with a

delay up to b tuples. When the server receives a query but has not obtained the up-to-date

signature from the provider, it temporarily buffers the query. When the next signature is

received, the oldest buffered query refers to a sliding window with a low boundary at most

N + b tuples in the past.

67

One-Shot Queries. Consider a one-shot window query of size n. To answer the query the

server traverses the ⌈n/b⌉+1 Merkle trees whose corresponding time intervals together cover

the query time window, reporting all tuples satisfying the selection predicates (see Figure

5·1). For every tree, a verification object (VO) is constructed using the original Merkle tree

algorithm, and it is extended with the indices of the oldest and newest tuple in the tree. For

trees fully contained in the query window, all tuples satisfying the selection predicate need

to be reported (plus two boundary tuples for proof of completeness [Martel et al., 2004]).

For the (at most) two boundary Merkle trees, up to 2b false positive answers might be

returned (false positives are introduced in the temporal dimension though they are all

satisfying tuples in the value dimension defined by the selection attribute A; see Figure

5·1). The server includes the false positives in the result, and leaves the filtering task to

the client—this is necessary for proper authentication. Now, upon receiving a reply the

client verifies correctness by authenticating the result of every tree individually; only then

it filters out false positives from tuples in the two boundary Merkle trees whose indices are

outside the query window. Correctness stems from the properties of Merkle trees discussed

in Chapter 2. Completeness is guaranteed by proving that all qualifying values have been

returned and that the right ⌈n/b⌉+1 trees have been traversed. Completeness of the values

returned from each individual tree is guaranteed from the original Merkle binary search

tree verification algorithm by including the left and right boundary values in the result

[Martel et al., 2004]. A detailed discussion could be found in Chapter 4. Verifying that

the correct trees have been traversed is possible by examining the indices of the oldest

and newest tuples in the trees, whose values have been verified using the signature of each

tree. Since trees do not intersect in the temporal dimension, we expect those indices to be

consecutive and cover the query window completely.

Assuming that k is the result size of the query, the TM-tree achieves the following.

Lemma 5.2.1. Given a maximum permissible response delay b, the TM-tree uses O(N)

space, and requires O(log b) time and O(1/b) signing operations amortized to process a

tuple. It takes O(n/b · log b + b + k) time to answer a one-shot window query, and provides

a VO of size O(n/b · log b + b). The client takes O(n/b · log b + b + k) time to authenticate

68

the results.

Note that we interpret the VO as all information transmitted to the client besides the

query results, so the VO size above also includes the false positives.

Sliding Window Queries. Consider a sliding window query issued at time t, with window

size n and sliding period σ. The server first constructs the initial answer to the query for

the window starting at t as described for one-shot queries, and sends the results to the client

with delay at most b. Then, the server has to keep the results up-to-date as follows. Every

b tuples, if a sliding period has ended, it constructs a VO that contains the tuples that

have expired from the query window and the new tuples that have been generated since

the last update to the client. The expired tuples can be found simply by traversing the

(at most) ⌈σ/b⌉+ 1 Merkle trees at the left-most boundary of the sliding window; the new

tuples can be found by querying the (at most) ⌈σ/b⌉ + 1 new Merkle trees that have been

created since the last update. The cost of both operations is O(⌈σ/b⌉ log b + b + k), where

k is the total number of new result tuples in the current query window and expiring tuples

in the previous query window. Note that the server may return up to 4b false positives

(see Figure 5·1), which need to be filtered out by the client. False positives correspond

to values from the boundary Merkle trees (expired and new) and also values that have

appeared in the result already and are reported again. In practice, the query efficiency

could be improved by querying and reporting results only from the new boundary Merkle

trees without worrying about the expiring boundary trees. This is true because that the

client, already possessing results in the expiring trees, could filter out the expiring tuples

by checking their timestamps. Notice that in order to construct an update the server

is oblivious to the previous state of the query answer. Hence, no per query/client state

needs to be retained. Furthermore, for large n, updating the result is more efficient than

reconstructing the answer from scratch, since a large number of intermediate Merkle trees

do not have to be traversed. Correctness and completeness is guaranteed given that the

answers provided by every Merkle tree can be authenticated individually, verifying that

69

both the expired and the new tuple sets are correct. Clearly, if σ < b, the server cannot

do better than reporting updates only once every b tuples. If σ > b, the server reports

updates every σ tuples with a maximum delay of b.

Lemma 5.2.2. The TM-tree can support sliding window queries with a per period cost

O(⌈σ/b⌉ log b+b+k) and VO size O(⌈σ/b⌉ log b+b). The client spends O(⌈σ/b⌉ log b+b+k)

time to authenticate the results.

Supporting aggregations. Now we consider aggregate queries. Take sum as an example.

The Merkle binary search tree can support range-sum queries by combining with standard

techniques [Lazaridis and Mehrotra, 2001] as we have discussed in Chapter 4. Assume that

all data values are stored on the leaf nodes. We associate with every internal node u, the

sum (sum(u)) of the aggregation attribute of all tuples stored in the subtree rooted at

u. To enable authentication, we include this sum into the hash value stored in the parent

node. More precisely, for an internal node u with children v and w, the hash value of u is

computed as hu = H(hv|hw|sum(u)). Now, authenticating a sum aggregate can be done

efficiently by retrieving the covering set of leaf and internal nodes that span the query

range, and computing the aggregate without having to traverse all the leaf nodes satisfying

the selection predicate. It is easy to show that the covering set has a logarithmic size.

The correctness and completeness proof is a technicality, and full details are in Chapter 4.

Similar techniques can be used for all other distributive aggregates.

The TM-tree can be used for answering aggregation queries as well. For every Merkle

tree that is completely contained in the window, we return the sum of all tuples falling in the

selection range. However, for the two trees crossing the boundary, the server needs to return

all the tuples in the selection range, instead of just the sum, so that the client can compute

the sum of the tuples that are both in the selection range and in the query window. The

same analysis applies to sliding window queries and for all other distributive aggregates,

except min and max. For these aggregates, in addition the client has to maintain the

min/max of the (at most) ⌈n/b⌉ trees that do not contain any expiring tuples. These

values will be needed for recomputing the total aggregate after an update is received.

70

Without giving the details of the derivation, which is rather straightforward, we conclude

that for aggregation queries, all the aforementioned bounds hold by setting k = 1.

5.3 The Tumbling Mkd-tree

So far we have an efficient solution for one-shot and sliding window queries that has three

drawbacks: it introduces O(b) false positive answers (leading to a large VO size for large b),

supports only one-dimensional queries, and has a high one-shot query cost. In this section

we address the first two drawbacks and the third one in the next section. Notice that

selection queries on variable window sizes with multiple selection predicates are essentially

a range searching problem. This motivates the use of multi-dimensional range searching

structures, like kd-trees [Bentley, 1975, de Berg et al., 2000], range trees [de Berg et al., 2000],

or R-trees [Guttman, 1984]. In this work we will use authenticated Merkle kd-trees (Mkd-

trees) as a building block for our solutions. The Mkd-tree is of independent interest for gen-

eral authenticated range searching problems, but also a very good candidate for streaming

settings, since it is a main memory data structure that can be bulk-loaded very efficiently

and provides guaranteed worst case performance (as opposed to R-trees). Nevertheless, our

techniques are not designed specifically for kd-trees; any space partitioning structure, such

as R-trees, can be authenticated in the same manner.

5.3.1 The kd-tree

We briefly review the kd-tree in two dimensions; the extension to higher dimensions is

straightforward. For simplicity we assume that all coordinates are distinct; if this is not

the case, standard techniques such as symbolic perturbation [de Berg et al., 2000] can be

used to resolve degeneracy. The kd-tree is a balanced binary tree T . To build T on a

set P of n points, we first divide P into two subsets Pl and Pr using a vertical line that

divides the points into two sets of approximately equal size. We store the dividing line at

the root node of T and continue with sets Pl and Pr as the left and right children of the

root, by dividing each set into two subsets using a horizontal line. We continue recursively

71

l7

l9

p3

p2 p9 p1 p5 p6 p3

p10 p4 p7 p8

l2

p1

l3

p9

p5

p4
p2

p7

p8

p6

l6

l8

l4p10

l5 l1 l1

l2 l3

l7l4 l5 l6

l8 l9

Figure 5·2: A kd-tree.

for all sets, alternating the direction of the dividing line for every level of the tree. The

recursion stops when a set consists of only one point, which is stored as a leaf node of the

tree. Each node u of the tree is naturally associated with a bounding box, denoted box(u),

which encloses all the points stored in the subtree rooted at u (see Figure 5·2).

To answer an orthogonal range search query Q, we start from the root of T and traverse

all nodes whose associated bounding boxes intersect with or are contained in the query

range Q. Please refer to Figure 5·2 for a query example where the query range is indicated

by the small dark rectangle and the nodes accessed in the kd-tree are marked by the gray

color. It is known that the kd-tree has excellent performance in practice, and furthermore,

the following guarantee:

Lemma 5.3.1 ([Bentley, 1975]). Let T be the kd-tree built on a set of n points. For any

orthogonal query Q, the number of nodes in T whose bounding boxes intersect Q is at most

O(
√

n + k), where k is the number of points in the result, and the number of nodes whose

bounding boxes intersect any side of Q (i.e., the boundary ∂(Q) of Q) is at most O(
√

n).

5.3.2 The Mkd-tree

We can extend the kd-tree with authentication information similarly to the Merkle tree.

The authenticated Mkd-tree stores one hash value for every node. A leaf node v that

contains point p stores hash value hv = H(p). An internal node u with children v and w

and dividing line lu stores hash value hu = H(hv|hw|lu). The hash value of the root of the

tree is signed by the data provider, producing signature s = S(SK , hroot).

72

The query algorithm. To answer a range query Q, we recursively visit all nodes whose

bounding boxes intersect with or are contained in Q. In addition to the query results, we

also return the following VO in order for the client to authenticate the results: 1. The hash

value hu for each unvisited node u that has a visited sibling; 2. The dividing line lu for

each u where box(u) ∩ ∂(Q) 6= ∅; 3. The point p of a visited leaf u if p /∈ Q (note that all

p ∈ Q are included in the query results); 4. The signature s. We also include a label for

each of these nodes, for identifying its level and position in the tree. The label is described

by O(log n) bits, or O(1) words.

Lemma 5.3.2. For any query Q, the Mkd-tree T built on n points returns a VO of size

at most O(
√

n).

Proof. We only need to bound the total number of nodes in the three categories defined

above. According to Lemma 5.3.1, the number of nodes in T whose bounding boxes

intersect ∂(Q) is O(
√

n). This naturally bounds the number of type (2) and (3) elements.

For a type (1) node u, its parent must have a bounding box that intersects ∂(Q), so the

number of type (1) nodes is also O(
√

n).

The authentication algorithm. Using the VO and the query results the client can

recompute the hash value of the root and verify the signature s of the tree. Let R be

the set of points in the query result. The client computes hroot using a recursive function

starting from the root node. The recursive call has three inputs: a node u (i.e., the label

of u), box(u) and all p ∈ R s.t. p ∈ box(u). The algorithm (shown as Algorithm 4) is

initialized with ComputeHash(root, R
2, R). When the recursive call completes, the hash

value of the root has been computed. The basic idea is to reconstruct the part of the

Mkd-tree that was traversed for constructing the query answer at the server.

Since there are O(log n) levels of recursion, and each level involves O(k) operations, the

total running time is O(k log n). Correctness of the results is guaranteed similarly to the

original Merkle tree, due to the collision-resistance of the hash function. Completeness is

guaranteed by the following.

73

Algorithm 4: ComputeHash(u, box(u), Ru)

input: u: a node in T , box(u) : u’s bounding box, lu: the dividing line of u, Ru:
p ∈ R s.t. p ∈ box(u).

return: hu: the hash value of u.

if u is a leaf then1

if |Ru| 6= 1 then report error;2

let p be the only point in Ru;3

if p /∈ box(u) then report error;4

return H(p);5

else6

let v and w be u’s children;7

compute box(v) and box(w) from box(u) and lu;8

Rv := Ru ∩ box(v);9

Rw := Ru ∩ box(w);10

for z = v,w do11

if box(z) ∩ Q = ∅ then12

if hv not available then report error;13

else if box(z) ∩ ∂(Q) 6= ∅ then14

if lz not available then report error;15

hz :=ComputeHash(z, box(z), Rz);16

else17

// box(z) is contained in Q;18

build the Mkd-tree Tz of Rz;19

hz := hash value of the root of Tz;20

return H(hv|hw|lu);21

Lemma 5.3.3. Successful VO authentication of the Mkd-tree implies completeness of query

results.

Proof. If any node fully contained in Q is missing from the VO, authentication will fail.

Consider nodes that intersect with ∂(Q). For any such node, the construction algorithm will

have to traverse all the way to the leaves to identify potential query results. At some level of

this recursion there will be one path fully disjoint with Q and another fully contained in Q.

Clearly, if any fully contained node or its children is omitted from the VO authentication

will fail; a needed hash for constructing the hash of the parent is missing. Similarly, if

any node that has a parent that intersects with ∂(Q) is missing, authentication will fail;

the hash of this parent will have to be computed due to a child that is fully contained in

Q. Hence, if the hash of the root authenticates correctly, no points below nodes that are

74

contained or intersect with Q have been omitted from the result.

The following holds for the Mkd-tree:

Theorem 5.3.4. Given a set of n points in the plane, an Mkd-tree takes O(n) space and can

be built in O(n log n) time. Given an orthogonal range search query Q, it takes O(
√

n + k)

time to construct the answer, with a VO size O(
√

n). The client needs O(
√

n + k log n)

time to authenticate the results.

The kd-tree can be extended into an aggregate structure similarly to the discussion

in Section 5.2, by hashing a node with hu = H(hv |hw|lu|sum(u)). The bounds in Theo-

rem 5.3.4 hold by setting k = 1 for aggregation queries.

5.3.3 The Tumbling Mkd-tree

We can now extend the TM-tree into a Tumbling Mkd-tree (TMkd-tree), by replacing

the Merkle trees with Mkd-trees. Clearly, the new structure eliminates false positives,

since now for the boundary kd-trees that intersect with the query range we can issue

two-dimensional range queries that will report qualifying tuples within both the selection

and temporal axes. The TMkd-tree significantly reduces the sliding window query cost,

especially the VO size.

Theorem 5.3.5. Given a maximum permissible response delay b, the TMkd-tree uses

O(N) space, and requires O(log b) time and O(1/b) amortized signing operations to process

a tuple. It supports sliding window queries with per period cost O(⌈σ/b⌉
√

b + k), and VO
size O(⌈σ/b⌉

√
b). For aggregation queries, the same bounds hold by setting k = 1.

In addition, the structure naturally extends to higher dimensions. For queries with d

selection attributes, we use (d + 1)-dimensional kd-trees (time is always one dimension).

5.4 Reducing One-shot Query Cost

The TM-tree and TMkd-tree are robust solutions for sliding window queries. Nevertheless,

they suffer from high one-shot query cost, especially for large n, since a large number

75

. . .
...

Q

N + b

2b

4b

b

4b

b

2b

b

2b

b b b

2b2b

b

N + b

bb b

Figure 5·3: The DMkd-tree. Trees with boundaries outside of the max-
imum window can be discarded. A one-shot query can be answered by
accessing only a logarithmic number of trees.

(n/b) of trees need to be queried for constructing the answer. In the following we focus

on algorithms for reducing one-shot query cost at the expense of either slightly increased

storage cost or slightly increased update cost. Clearly, the same solutions can be used

for constructing the initial results of sliding window queries (recall that constructing the

initial answer to a sliding window query is a one-shot query), which is a very important

improvement especially in streaming scenarios where a large number of users pose queries

dynamically. In the rest, we do not discuss extensions for aggregate queries, since they are

similar to the solutions discussed already for the TMkd-tree.

5.4.1 The Dyadic Mkd-tree

We present a structure that combines the Merkle tree and the Mkd-tree, yielding a solution

that has much faster one-shot query cost than the TM-tree for one-dimensional queries, at

the expense of slightly increased maintenance cost at the provider and server, and slightly

increased storage cost at the server.

The structure. We call the new structure the Dyadic Mkd-tree (DMkd-tree). Assume

that (N + b)/b is a power of 2 and let ℓ = log((N + b)/b) − 1. A DMkd-tree consists of

ℓ + 1 levels of forests of trees arranged in dyadic ranges over the time dimension. On level

0, we build a Mkd-tree for every b consecutive tuples in the stream (denoted with boxes

in Figure 5·3). Levels 1 through ℓ consist of a forest of Merkle binary search trees over

the values of attribute A (rectangles in the figure). More precisely, on level i, we build a

Merkle binary search tree for every 2ib tuples.

76

The maintenance algorithm. The DMkd-tree is fairly easy to maintain. The structure

is initialized with the first N + b tuples, building all levels in the dyadic hierarchy. After

b new tuples have been received we build one new Mkd-tree on level 0 and discard the

last kd-tree. At the same time we discard all Merkle trees that contain tuples outside the

maximum window N + b. In general, after 2ib tuples have been received, we build one new

Merkle tree on level i, 1 ≤ i ≤ ℓ and discard all Merkle trees that fall outside the maximum

window. For example, in Figure 5·3, after 2b tuples, the two left-most kd-trees and the

left-most Merkle tree on all levels can be deleted.

A very important observation is that to build a new Merkle binary search tree T on

level i, 2 ≤ i ≤ ℓ, we do not need to re-sort any tuples. We can simply retrieve the tuples

by scanning the leaf levels of the level-(i − 1) Merkle trees that fully span the range of T .

Hence, we can build tree T in a bottom-up fashion in time O(2ib).

Lemma 5.4.1. The amortized maintenance cost per tuple for the DMkd-tree is O(log N).

The amortized number of signing operations is O(1/b).

Proof. On level 0, we spend O(b log b) time to build each Mkd-tree. The amortized cost

is O(log b) per tuple. Similarly, on level 1 we spend O(b log b) time to build a Merkle tree

for every 2b tuples, so the amortized cost is also O(log b). On level i, 2 ≤ i ≤ ℓ, we spend

O(2ib) time to build the Merkle tree for every 2ib tuples (as mentioned already the sorting

operation can be avoided). This yields an amortized cost of O(1). So the overall cost per

tuple is O(log b + ℓ) = O(log N).

Applying similar arguments, the amortized number of signing operations on level i is

O(1/(2ib)), which yields a total of O(1/b) signing operations per tuple.

Since each level occupies O(N) space the entire structure at the server side takes

O(N log(N/b)) space. On the other hand, the service provider uses linear space for storing

the DMkd-tree. Once a kd-tree or a Merkle tree at any level of the hierarchy has been

covered by a higher level Merkle tree and its signature has been propagated to the server,

it can be discarded (at the provider side the trees are only useful for producing signatures

77

and not for answering queries).

Query and authentication. The main idea behind using dyadic ranges is that con-

structing a query answer requires accessing only a logarithmic number of trees. Given a

one-shot window query of size n, we decompose its time range into a series of sub-ranges,

and answer each of them individually. First, we query the two level-0 Mkd-trees at the

end-points of the query range. Then by a standard argument, the remaining portion of the

range can be decomposed into O(log(n/b)) sub-ranges, each of which is exactly covered by

one of the Merkle trees. For example, in Figure 5·3 only three kd-trees and one Merkle

tree need to be traversed. Trees at level 0 might be contained fully in the query time range

or not. Trees at higher levels are always fully contained in the query. Hence, for higher

levels in the hierarchy we only need to maintain one-dimensional structures on the selection

attribute. For level 0 we need to maintain two-dimensional kd-trees to be able to filter out

false positives.

To authenticate the results the client first individually authenticates the VO of each

tree as in the original Merkle tree and Mkd-tree. This verifies correctness. To authenticate

completeness, the client needs to verify that the appropriate trees have been traversed.

First, the provider signs each tree individually creating a signature that contains the hash

value of the root node and the indices of the oldest and newest tuple contained therein.

Second, the server includes in the VOs the indices of the newest and oldest tuple of the

traversed trees. The client verifies that the indices returned by the server are consecutive

and also cover the query window. Since no trees overlap in the temporal dimension this

invariant has to hold. The authenticity of the timestamps returned is established by the

signature of each tree. The following holds for the DMkd-tree:

Theorem 5.4.2. For a maximum response delay b, the DMkd-tree uses O(N log(N/b))

space, and requires O(log N) time and O(1/b) signing operations amortized to process a

tuple. It takes O(log n log(n/b) +
√

b + k) time to answer a one-shot query, and provides a

VO of size O(log n log(n/b) +
√

b). The client takes O(log n log(n/b) +
√

b + k log b) time

to authenticate the results.

78

...

2b4b

T1T2 T0 T ′
0

N/2

Time Tℓ

bb

Q

V
a
lu

e
Figure 5·4: Querying the EMkd-tree.

Note that level-0 of DMkd-tree is essentially the same as TMkd-tree. Hence for sliding

window queries, once the initial answers have been reported, subsequent updates can be

handled by using the level-0 TMkd-tree, as in Section 5.3.3.

5.4.2 The Exponential Mkd-tree

So far, the DMkd-tree can be used for one-dimensional queries only. In this section, we

present an algorithm that arranges a forest of Mkd-trees in an exponential hierarchy and

can answer multi-dimensional queries. We call this structure the Exponential Mkd-tree

(EMkd-tree). This approach can construct initial query answers much faster than the

TMkd-tree, with a slight increase in the amortized per tuple update cost.

The structure. For simplicity assume that N/b is a power of 2 and let ℓ = log(N/b) − 1.

The EMkd-tree consists of up to 2ℓ Mkd-trees: T0,T ′
0 ,T1,T ′

1 , . . . ,Tℓ. Each Ti is always

present, but a T ′
i may be present or absent, as will become clear shortly. The tree Ti or

T ′
i (if present) stores 2ib consecutive tuples, hence

∑ℓ
i=0 |Ti| = b(2log N/b − 1) = N − b. For

any i < j, all tuples stored in Ti are newer than any tuple stored in Tj; and for any i, if T ′
i

is present, all tuples in T ′
i are newer than any tuple in Ti , such that no trees overlap in

the time dimension (see Figure 5·4). The EMkd-tree structure is initialized with the first

N tuples in the stream as follows. Tree Tℓ receives the first N/2 tuples, Tℓ−1 the following

N/4 tuples, until tree T0 which receives b tuples, for a total of N − b tuples. The remaining

b tuples are assigned to tree T ′
0 , for a total of ℓ + 2 Mkd-trees. No other T ′

i exists yet (see

Figure 5·5).

The update algorithm. After initializing the EMkd-tree we update it every b new

79

T0 T ′
0

T ′
ℓ

T1 T ′
1

Tℓ

. . .Initialization:

After b new tuples:
T1

2b 2b

new T0 T ′
0 = ∅

4b4b

T ′
1 = T0|T

′
0

b bb

bb

b

2b 2b

Figure 5·5: Initializing and updating the EMkd-tree.

arrivals. The update procedure first combines trees T0 and T ′
0 into tree T ′

1 , then creates a

new tree T0 using the latest b tuples and stops (see Figure 5·5). The next update proceeds

similarly by creating a new tree T ′
0 using the latest b tuples and stops. This procedure

continues by merging and propagating trees on consecutive levels of the hierarchy, until a

level with a non-existent T ′
i is found, at which point the propagation stops. Notice that we

merge two trees Ti,T ′
i only if a third tree has been propagated from level i− 1. Otherwise,

we leave the trees intact. It is easy to see that after any update, the invariant that no trees

overlap in the time dimension is preserved. A special case occurs at level ℓ. When tree

T ′
ℓ is created the update procedure immediately discards tree Tℓ containing the oldest N/2

tuples, and sets Tℓ = T ′
ℓ . This iterative procedure is detailed in Algorithm 5.

Algorithm 5: EMkd-tree-Maintain

input: The b newest tuples in the stream.

build Mkd-tree R0 on the b new tuples;1

i := 0;2

while true do3

if T ′
i present then4

merge Ti and T ′
i into Ri+1;5

remove Ti and T ′
i ;6

Ti = Ri;7

i := i + 1;8

else9

if i = ℓ then Ti = Ri;10

else T ′
i = Ri;11

return;12

80

Although the maintenance algorithm in the worst case may affect all the trees, its

amortized cost can be effectively bounded by the following lemma:

Lemma 5.4.3. O(log(N/b) log N) is the amortized maintenance cost per tuple for the

EMkd-tree. The amortized number of signing operations is O(1/b).

Proof. We use a charging argument. According to Theorem 5.3.4, the construction cost of

a Mkd-tree built on n tuples is O(n log n), so we can charge an O(log n) cost to each tuple.

Consider each tuple in the stream. It is involved in the construction of each T ′
i exactly

once, so it is charged by a total cost at most (asymptotically)

ℓ∑

i=0

log(2ib) =
ℓ∑

i=0

(i + log b) = O(log
N

b
(log

N

b
+ log b))

= O(log(N/b) log N).

For the signing cost, we use a similar charging scheme. Since building a Mkd-tree on

n tuples requires only one signing operation, we can charge O(1/n) to each tuple. Every

tuple is involved in the construction of each T ′
i exactly once, so it is charged with a total

of
∑ℓ

i=1 1/(2ib) = O(1/b) signing operations.

It is easy to verify that in the worst case this algorithm will maintain 3N/2 tuples,

hence the storage cost is O(N). In addition, there is an easy optimization for merging two

Mkd-trees efficiently, without having to bulk load the structures from scratch. For all trees

Ti,T ′
i , and Ri, we first divide the data along the attribute dimension if i is even, and along

the time dimension if i is odd (see Figure 5·4). Now, for even i, given that Ti and T ′
i have

no overlap in the temporal dimension and their roots are split on the attribute dimension,

we can merge them by creating a new kd-tree root node and attaching Ti and T ′
i as its two

subtrees. On even levels the merging operation has constant cost. On odd levels (since the

attribute domains of the two trees might overlap) bulk loading from scratch is unavoidable.

The query and authentication algorithms. To answer the query the server traverses

the kd-trees starting from T0, until the query window is entirely covered. For kd-trees that

81

are entirely contained in the query window, the server poses a 2-sided range query. For

the first and last kd-trees the server poses a 3-sided query, to filter out false positives. The

server returns an individual VO for each tree using the original construction algorithm

of the Mkd-tree. In addition, it includes the indices of the oldest and newest tuple in

each tree. Authentication at the client side proceeds in exactly the same way as for the

DMkd-tree.

The following can be stated for the EMkd-tree:

Lemma 5.4.4. The EMkd-tree spends O(
√

n + b + k) to construct an answer and returns

a VO of size O(
√

n + b). It takes the client O(
√

n + b + k log(n + b)) time to authenticate

the results.

Proof. Since the size of the Mkd-trees doubles every level, given a query with window size

n ≥ b, it is not difficult to see that the biggest tree that needs to be traversed to construct

the answer has size at most n. For each level of the exponential hierarchy, at most two

trees are traversed. So the total VO size is at most

O(
√

n) + O(
√

n/2) + · · · + O(
√

b) = O(
√

n).

When n < b, at most two Mkd-trees of size b need to be traversed, so the overall VO size

is O(
√

n + b). The same analysis applies for the total query time, plus an additional term

linear to the size of the query results.

The bound on the authentication cost can be easily obtained by observing that the

maximum height of the kd-trees that need to be traversed is O(max{log n, log b}).

In order to answer sliding window queries, the provider and the server also need to

maintain a TMkd-tree, concurrently with the EMkd-tree. The EMkd-tree is used for

constructing the initial answers, while the TMkd-tree is used for constructing subsequent

updates. Notice here that even if the initial answer from the EMkd-tree is delayed for some

reason, the TMkd-tree can still provide updates unhindered (deltas can be computed even

without knowing the answer of the previous window). The updates will have to be buffered

82

TM-tree TMkd-tree DMkd-tree EMkd-tree

Space N N N log N
b N

Update cost log b log b log N log N
b log N

Signing operations 1/b 1/b 1/b 1/b

Sliding query cost ⌈σ/b⌉ log b + b + k ⌈σ/b⌉
√

b + k - -

Sliding VO size ⌈σ/b⌉ log b + b ⌈σ/b⌉
√

b - -

Sliding authen. cost ⌈σ/b⌉ log b + b + k ⌈σ/b⌉
√

b + k log b - -

One-shot query cost n
b log b + b + k n

b

√
b + k log n log n

b +
√

b + k
√

n + b + k

One-shot VO size n
b log b + b n

b

√
b log n log n

b +
√

b
√

n + b

One-shot authen. cost n
b log b + b + k n

b

√
b + k log n log n

b +
√

b + k log b
√

n + b + k log (n + b)
Dimensions (*) One Multiple One Multiple

Aggregation (**) Yes Yes Yes Yes

Table 5.1: Summary of the (asymptotic) results for various solutions. (*)

For d dimensions, all the
√

b terms become b1−1/(d+1); all the
√

n + b terms
become (n + b)1−1/(d+1). (**) For aggregation queries, all the bounds hold
by setting k = 1.

by the client until the initial answer arrives. The following summarizes the performance of

the EMkd-tree:

Theorem 5.4.5. For a maximum response delay b, the EMkd-tree uses O(N) space, takes

O(log(N/b) log N) time and O(1/b) signing operations amortized to process a tuple. It

takes O(
√

n + b + k) time to answer a one-shot query, with a VO size O(
√

n + b). The

client takes O(
√

n + b + k log(n + b)) time to authenticate the results.

5.4.3 Comparison of DMkd-tree and EMkd-tree

Readers may be curious about the design principles behind the DMkd-tree and EMkd-tree.

The intuition that motivates the design of both trees is to query only logarithm number

of smaller trees. However, the goal of supporting either one dimensional queries or multi-

dimensional queries differentiates the structures of these two trees. Noticeably, DMkd-tree

has overlapping Merkle trees across various levels while the EMkd-tree has its trees from

different levels covering disjoint segments along the time axis. The fact that the Merkle

tree indexes one dimensional data leads to false positives when answering queries with

both a query selection attribute and a time range. Hence, in the DMkd-tree Merkle trees

are placed across different levels, with exponentially increasing overlapped ranges along

the time axis, in order to increase the chance that there is a single Merkle tree at certain

level that is fully covered by the given query in a specified time range. In fact, it is not

83

hard to see that this overlapping strategy ensures that at most four visits to small Mkd-

trees at the bottom level, those appear at the two boundary sides, are necessary for any

one-shot query if no false positive is desired. On the other hand, since Mkd-tree supports

multi-dimensional queries without producing any false positives, it is not necessary to have

overlapping trees in order to achieve the similar goal. Hence, trees are still designed to

have exponentially increasing cover range along the time axis when level increase, however,

they are not arranged to have overlaps.

5.5 Discussions

Supporting time-based windows. Supporting time-based windows is also possible.

First, we use standard symbolic perturbation techniques to uniquely associate each tuple

with a timestamp, if there are multiple tuples per time instant. Then, we generate dummy

tuples for time instants without activity (a time instant can be defined as the smallest

permissible window slide). The rest poses only technical difficulties that are not hard

to overcome. Dummy tuples in general can be ignored and are used only for triggering

signing operations. The theoretical bounds of the solutions hold, where N now expresses

the maximum number of tuples within a maximum window.

Summary of various solutions. Table 5.1 summarizes the performance of various solu-

tions. We can see that for sliding window queries, the TMkd-tree is better than the TM-tree

for typical values of σ and b. The difference in the VO size could be significant when the

sliding period σ is smaller than or comparable to b, which is common in real scenarios.

However, for one-shot queries (or equivalently the initialization cost for sliding window

queries), the two tumbling approaches both perform badly. The proposed DMkd-tree and

EMkd-tree structures complement nicely in this respect. For one-dimensional queries, the

DMkd-tree is the structure of preference, as it has excellent query performance, for a small

penalty in the server’s storage cost. When the server’s memory is limited or for multi-

dimensional queries, the EMkd-tree can be used. Notice that for sliding window queries,

84

the server needs to maintain both an EMkd-tree and a TMkd-tree, which doubles the

storage cost in the worst case. For most practical cases though, the storage cost will still

be smaller than the DMkd-tree. Finally, all structures can be extended easily to support

aggregates like sum, count, avg, min, and max.

85

Chapter 6

Query Execution Assurance on Data Streams

6.1 Problem Formulation

The queries examined in this Chapter for query execution assurance have the following

structure1:

SELECT AGG(A_1), ..., AGG(A_N) FROM T

WHERE ... GROUP BY G_1, ..., G_M

This is a rather general form of SQL queries, as any “SELECT, FROM, WHERE” query can

be written in a GROUP BY aggregate form by using the primary key of the input relation

T as the GROUP BY attribute G (a GROUP BY clause that groups every tuple by itself). For

example “SELECT A,B FROM T WHERE B>10” can be written as “SELECT SUM(A),SUM(B)

FROM T WHERE B>10 GROUP BY PK”. Note also that GROUP BY aggregate queries have wide

applications in monitoring and statistical analysis of data streams (e.g., in networking

and telephony applications). Previous work has addressed exactly these types of queries

numerous times ([Zhang et al., 2005] and related work therein). For example, a query that

appears frequently in network monitoring applications is the following:

SELECT SUM(packet_size) FROM IP_Trace

GROUP BY source_ip, destination_ip (*)

In the rest of the thesis we will use this query as our main motivating example and con-

centrate on sum and count. Other aggregates that can be converted to these two (e.g.,

average, standard deviation, etc.) can be easily supported. Any solution to the above

problem naturally supports the tumbling window semantics. Our proposed scheme, as we

1This Chapter extends from [Yi et al., 2007].

86

will see shortly, has the appealing feature of being easily extended to the sliding window

semantics, which will be discussed in Section 6.6.

Data Stream Model. Following the example query of the previous section, the GROUP

BY predicate partitions the streaming tuples into a set of n groups, computing one sum

per group. The data stream can be viewed as a sequence of additions (or subtractions)

over a set of items in [n] = {1, . . . , n}. Denote this data stream as S and its τ -th tuple

as sτ = (i, uτ), an update of amount u to the ith group. Formally, the query answer

can be expressed as a dynamic vector of non-negative integers vτ = [vτ
1 , . . . , vτ

n] ∈ N
n,

containing one component per group aggregate. Initially, v0 is the zero vector. A new

tuple sτ = (i, uτ) updates the corresponding group i in vτ as vτ
i = vτ−1

i + uτ . We allow uτ

to be either positive or negative, but require vτ
i ≥ 0 for all τ and i. When count queries

are concerned, we have uτ = 1 for all τ . We assume that the L1 norm of vτ is always

bounded by some large m, i.e., at any τ , ‖vτ‖1 =
∑n

i=1 vτ
i ≤ m. Our streaming model

is the same as the general Turnstile model of [Muthukrishnan, 2003], and our algorithms

are designed to work under this model. The readers are referred to two excellent papers

[Muthukrishnan, 2003, Babcock et al., 2002] for detailed discussions of data stream models.

Problem Definition. The problem of Continuous Query Verification on data streams

(CQV)2 is defined as follows:

Definition 6.1.1. Given a data stream S, a continuous query Q and a user defined pa-

rameter δ ∈ (0, 1
2), build a synopsis X of v such that for any τ , given any wτ and using

X (vτ), we: 1. raise an alarm with probability at least 1 − δ if wτ 6= vτ ; 2. shall not raise

an alarm if wτ = vτ .

Here wτ , for example, could be the answer provided by the server, while X (vτ) is the

synopsis maintained by the client for verifying vector v.

With this definition the synopsis raises an alarm with high probability if any component

(or group answer) vτ
i is inconsistent. Consider a server that is using semantic load shedding,

2We use the words Verification and Assurance interchangeably.

87

i.e., dropping tuples from certain groups, on bursty stream updates. In this scenario the

aggregate of a certain, small number of components will be inconsistent without malicious

intent. We would like to design a technique that allows a certain degree of tolerance

in the number of erroneous answers contained in the query results, rather than raising

alarms indistinctly. The following definition captures the semantics of Continuous Query

Verification with Tolerance for a Limited Number of Errors (CQVγ):

Definition 6.1.2. For any w,v ∈ Z
n, let E(w,v) = {i | wi 6= vi}. Then w 6=γ v iff

|E(w,v)| ≥ γ and w =γ v iff |E(w,v)| < γ. Given a data stream S, a continuous query

Q, and user defined parameters γ ∈ {1, . . . , n} and δ ∈ (0, 1
2), build a synopsis X of v such

that, for any τ , given any wτ and using X (vτ), we: 1. raise an alarm with probability at

least 1 − δ, if wτ 6=γ vτ ; 2. shall not raise an alarm if wτ =γ vτ .

Note that CQV is the special case of CQVγ with γ = 1. Similarly, we would like to

design techniques that can support random load shedding, i.e., which can tolerate small

absolute or relative errors on any component irrespective of the total number of inconsis-

tent components. The following definition captures the semantics of Continuous Query

Verification with Tolerance for Small Errors (CQVη):

Definition 6.1.3. For any w,v ∈ Z
n, let w 6≈η v iff there is some i such that |wi−vi| > η,

and w ≈η v iff |wi − vi| ≤ η for all i ∈ [n]. Given a data stream S, a continuous query Q,

and user defined parameters η and δ ∈ (0, 1
2), build a synopsis X of v such that, for any

τ , given any wτ and using X (vτ), we: 1. raise an alarm with probability at least 1 − δ, if

wτ 6≈η vτ ; 2. shall not raise an alarm if wτ ≈η vτ .

Note that the definition above requires the absolute errors for each vτ
i to be no larger

than η. It is also possible to use relative errors, i.e., raise an alarm iff there is some i such

that |wτ
i − vτ

i |/|vτ
i | > η. Thus CQV is also a special case of CQVη with η = 0.

We will work under the standard RAM model. Under this model, it is assumed that

an addition, subtraction, multiplication, division, or taking mod involving two words takes

one unit of time. We also assume that n/δ and m/δ fit in a word. In the rest of the thesis,

we drop the superscript τ when there is no confusion.

88

6.2 Possible Solutions

This section presents some intuitive solutions and discusses why they do not solve the CQV

problem. We focus on count queries only; the discussion extends to sum queries since count

is a special case of sum. Abusing notations, we use |v| to denote the number of non-zero

entries of v. A näıve algorithm that always maintains v exactly would use Θ(|v| log m)

bits of space. One might think of the following two simple solutions in order to reduce the

high space requirement.

Random sampling. A first attempt is random sampling. Assuming a sampling rate r,

the client randomly chooses rn groups. Clearly, with probability r this method will raise

an alarm if w 6= v. In order to satisfy the problem statement requirements we need to

set r = 1 − δ. For CQVγ , if the server modifies exactly γ answers, then the probability of

raising an alarm is only roughly rγ, which is obviously too small for practical r’s and γ’s.

Thus, random sampling can at most reduce the space cost by a tiny fraction.

Sketches. Recent years have witnessed a large number of sketching techniques (for ex-

amples, [Flajolet and Martin, 1985, Cormode and Muthukrishnan, 2005, Alon et al., 1996,

Bar-Yossef et al., 2002]) that are designed to summarize high-volume streaming data with

small space. It is tempting to maintain such a sketch K(v) for the purpose of verification.

When the server returns some w, we compute K(w), which is possible since w exactly tells

us what the elements have appeared in the stream and their frequencies. Then we check if

K(v) = K(w).

It is imaginable that such an approach would likely to catch most unintentional errors

such as malfunctions of the server or package drops during communication. However,

the fact that they are not designed for verification leaves them vulnerable under certain

attacks. For instance, let us consider the two AMS sketches from the seminal work of

Alon et al. [Alon et al., 1996]. Their F0 sketch uses a pairwise independent random hash

function r and computes the maximum number of trailing zeros in the binary form of r(i)

89

for all tuples in the stream. This sketch is oblivious in the number of times a tuple appears,

so will not detect any errors as long as w and v have the same set of locations on the groups

with nonzero entries.

Their F2 sketch computes the sum
∑n

i=1 h(i)vi, where h : {1, . . . , n} → {−1, 1} is chosen

randomly from a family of 4-wise independent hash functions, and then repeat the process

for a certain number of times independently. Below we will argue that for certain w 6= v,

the chance that
∑n

i=1 h(i)vi =
∑n

i=1 h(i)wi is high, thus the sketch will miss w unless many

repetitions are used. This AMS sketch uses the BCH4 scheme (c.f. [Rusu and Dobra, 2007])

to construct a 4-wise independent random hash function f : [n] → {0, 1}, and then set

h(i) = 2f(i) − 1. Since
∑n

i=1 h(i)(vi − wi) = 2
∑n

i=1 f(i)(vi − wi) −
∑n

i=1(vi − wi), it is

sufficient to construct a w 6= v where
∑n

i=1(vi −wi) = 0, such that
∑n

i=1 f(i)(vi −wi) = 0

are likely to happen.

Without loss of generality we assume n = 2r − 1. Let S0 and S1 be two random r-bit

integers. The BCH4 scheme computes f(i) as f(i) = (S0 ⊙ i) ⊕ (S1 ⊙ i3), where ⊕ is the

vector dot product over the last r bits evaluated on Z2, i.e., assuming the last r bits of x

(resp. y) is x1, . . . , xr (resp. y1, . . . , yr), then x ⊕ y = (
∑r

i=1 xiyi) mod 2. We construct

w as follows. For all odd i, and i = 2r−1, wi = vi; for even i 6= 2r−1, vi − wi = −1 if

i < 2r−1, and vi −wi = 1 if i > 2r−1. It is clear that
∑n

i=1(vi −wi) = 0. We will show that

if S0 < 2r−1, then
∑n

i=1 f(i)(vi − wi) = 0. Consider any odd i < 2r−1, and j = i + 2r−1.

We have

f(j) = (S0 ⊙ j) ⊕ (S1 ⊙ j3)

= (S0 ⊙ (i + 2r−1)) ⊕ (S1 ⊙ (i + 2r−1)3)

= (S0 ⊙ i) ⊕ (S1 ⊙ (i + 2r−1)3),

where the last equality is due to the fact that the first bit of S0 is zero. On the other hand,

90

for even i, since

(i + 2r−1)3 = i3 + 3 · i2 · 2r−1 + 3 · i · 22r−2 + 23r−3

≡ i3 (mod 2r),

we have f(i) = f(j). Thus, the pair f(i)(vi − wi) and f(j)(vj − wj) cancel out, and we

have
∑n

i=1 f(i)(vi − wi) = 0. So when S0 < 2r−1, which happens with probability 1/2,

the sketch cannot catch this erroneous w. This implies that at least Ω(log 1
δ) independent

copies of sketches is needed to drive down the overall failure probability to the δ, giving a

space complexity of Ω(log 1
δ log n) and update time Ω(log 1

δ), with potentially large hidden

constants. As the typical δ values are very small in applications that require query assur-

ance, these bounds are not satisfying. More importantly, 1/2 is merely lower bound on its

failure probability as we do not know the exact probability it fails when S0 ≥ 2r−1. For

some specific values of n = 2r − 1, we enumerated all values of S0 and S1 to compute the

exact failure probabilities, shown in the following table.

r 3 4 5 6 7 8 9 10

fail prob .75 .86 .84 .90 .94 .92 .93 .94

From the table we can see that the actual failure probability can be much larger than

the lower bound of 1/2, and it is not clear if it is bounded away from 1, so it is not safe at

all to just use O(log 1
δ) copies. To summarize, although we have not theoretically ruled out

the possibility that the AMS sketch may work, we can find cases where it is very likely to

fail. Even if it could work (by proving an upper bound on the failure probability), it has

to use at least Ω(log 1
δ log n) bits of space with a large hidden constant.

Finally, the AMS sketches have many variants developed in recent years, but to our

knowledge, none of them has the guarantee of assurance required by the CQV problem.

In the next section, we present our solution, which does not only solve the CQV problem,

but also uses much less space than all the known sketches.

91

6.3 PIRS: Polynomial Identity Random Synopsis

This section presents two synopses, called Polynomial Identity Random Synopses (PIRS)

and denote by X (v), for solving the CQV problem (Definition 6.1.1). The synopses, as

the name suggests, are based on testing the identity of polynomials by evaluating them at

a randomly chosen point. The technique of verifying polynomial identities can be traced

back to the seventies [Freivalds, 1979]. It has found applications in e.g. verifying matrix

multiplications and pattern matching [Motwani and Raghavan, 1995].

PIRS-1. Let p be some prime such that max{m/δ, n} < p ≤ 2max{m/δ, n}. According

to Bertrand’s Postulate [Nagell, 1981] such a p always exists. We will work in the field

Zp, i.e., all additions and multiplications are done modulo p. For the first PIRS, denoted

PIRS-1, we choose α from Zp uniformly at random and compute

X (v) = (α − 1)v1 · (α − 2)v2 · · · · · (α − n)vn .

Having computed X (v) and given any input w, PIRS is able to check if w = v with

high probability and without explicitly storing v: We first check if
∑n

i=1 wi > m, if so we

reject w immediately; otherwise we compute X (w) as:

X (w) = (α − 1)w1 · (α − 2)w2 · · · · · (α − n)wn .

If X (w) = X (v), then we declare that w = v; otherwise we raise an alarm. It is easy to

see that we never raise a false alarm. Therefore we only need to show that we miss a true

alarm with probability at most δ.

Theorem 6.3.1. Given any w 6= v, PIRS raises an alarm with probability at least 1 − δ.

Proof. Consider the polynomials fv(x) = (x − 1)v1(x − 2)v2 · · · (x − n)vn and fw(x) =

(x − 1)w1(x − 2)w2 · · · (x − n)wn . Since a polynomial with 1 as its leading coefficient, i.e.,

the coefficient of the term with the largest degree, is completely determined by its zeroes

(with multiplicities), we have fv(x) ≡ fw(x) iff v = w. If v 6= w, since both fv(x) and

fw(x) have degree at most m, fv(x) = fw(x) happens at no more than m values of x,

92

due to the fundamental theorem of algebra. Since we have p ≥ m/δ choices for α, the

probability that X (v) = X (w) happens is at most δ.

Note that once we have chosen α, X (v) can be incrementally maintained easily. For

count queries, each tuple increments one of the vi’s by one, so the update cost is constant

(one addition and one multiplication). For sum queries, a tuple s = (i, u) increases vi

by u, so we need to compute (α − i)u, which can be done in O(log u) (exponentiation by

squaring) time. To perform a verification with w, we need to compute (x − i)wi for each

nonzero entry wi of w, which takes O(log wi) time, so the time needed for a verification

is O(
∑

log wi) = O(|w| log m
|w|). Since both X (v) and α are smaller than p, the space

complexity of the synopsis is O(log m
δ + log n) bits.

Theorem 6.3.2. PIRS-1 occupies O(log m
δ + log n) bits of space, spends O(1) (resp.

O(log u)) time to process a tuple for count (resp. sum) queries, and O(|w| log m
|w|) time

to perform a verification.

Some special care is needed when u is negative (or handling deletions for count queries),

as the field Zp is not equipped with division. We need first to compute (α − i)−1, the

multiplicative inverse of (α− i) in modulo p, in O(log p) time (using Euclid’s gcd algorithm

[Knuth, 1997]), and then compute (α − i)−1|u|.

PIRS-2. When n ≪ m we can actually do slightly better with PIRS-2. Now we choose

the prime p between max{m,n/δ} and 2max{m,n/δ}. For α chosen uniformly at random

from Zp, we compute

X (v) = v1α + v2α
2 + · · · + vnαn.

By considering the polynomial fv(x) = v1x+ v2x
2 + · · ·+ vnxn, we can use the same proof

to show that Theorem 6.3.1 still holds. Nevertheless, PIRS-2 has an O(log n) update cost

for both count and sum queries, since we need to compute uαi for a tuple (i, u) in the

stream. Without repeating the details, we conclude with the following.

93

Theorem 6.3.3. PIRS-2 occupies O(log m + log n
δ) bits of space, spends O(log n) time to

process a tuple, and O(|w| log n) time to perform a verification.

Since the space complexities of PIRS-1 and PIRS-2 are comparable, while PIRS-1 has

a better update time, we recommend using PIRS-1 unless n is small compared to m and

typical u.

Another nice property of PIRS is that the verification can also be performed in one

pass of w using a constant number of words of memory. This is especially useful when |w|

is large. The client will be able to receive w in a streaming fashion, verifies it online, and

either forward it to a dedicated server for further processing, or a network storage device

for offline use.

Space optimality. Below We give a lower bound showing that PIRS is space-optimal on

the bits level for almost all values of m and n.

Theorem 6.3.4. Any synopsis solving the CQV problem with error probability at most δ

has to keep Ω(log min{m,n}
δ) bits.

Proof. We will take an information-theoretic approach. Assume that v and w are both

taken from a universe U , and let M be the set of all possible memory states the synopsis

might keep. Any synopsis X can be seen as a function f : U → M; and if X is ran-

domized, it can be seen as a function randomly chosen from a family of such functions

F = {f1, f2, . . . }, where fi is chosen with probability p(fi). Without loss of generality, we

assume that p(f1) ≥ p(f2) ≥ · · · . Note that X needs at least log |M| bits to record the

output of the function and log |F| bits to describe the function chosen randomly from F .

For any w 6= v ∈ U , let Fw,v = {f ∈ F | f(w) = f(v)}. For a randomized synopsis X
to solve CQV with error probability at most δ, the following must hold for all w 6= v ∈ U :

∑

f∈Fw,v

p(f) ≤ δ. (6.1)

Let us focus on the first k = ⌈δ · |F|⌉ + 1 functions f1, . . . , fk. It is easy to see that
∑k

i=1 p(fi) > δ. Since there are a total of |M|k possible combinations for the outputs of

94

these k functions, by the pigeon-hole principle, we must have

|U| ≤ |M|k (6.2)

so that no two w 6= v ∈ U have fi(w) = fi(v) for all i = 1, . . . , k; otherwise we would find

w,v that violate (6.1).

Taking log on both sides of (6.2), we have

log |U| ≤ (⌈δ · |F|⌉ + 1) log |M|.

Since v has n entries whose sum is at most m, by simple combinatorics, we have |U| ≥
(m+n

n

)
, or log |U| ≥ min{m,n}. We thus obtain the following tradeoff:

|F| · log |M| = Ω(min{m,n}/δ).

If log |F| ≤ (1 − ǫ) log(min{m,n}/δ) (i.e., |F | ≤ (min{m,n}/δ)1−ǫ) for any constant ǫ ∈
(0, 1), then X has to use super-polylogarithmic space log |M| = Ω((min{m,n}/δ)ǫ); else

X has to keep log |F| ≥ log (min{m,n}/δ) random bits.

Therefore, when m ≤ n, PIRS-1 is optimal as long as log n = O(log m
δ); when m > n,

PIRS-2 is optimal as long as log m = O(log n
δ). Our bounds are not tight when log m

δ =

o(log n) or log n
δ = o(log m).

Practical issues. The theoretical analysis above focuses on the bit-level space complexity.

When implemented, however, both PIRS-1 and PIRS-2 use three words (p, α, and χ(v)),

and thus do not seem to have any difference. Nevertheless, there are some technical issues

to be considered in practice.

First, we shall choose p to be the maximum prime that fits in a word, so as to minimize

δ. Note that δ = m/p for PIRS-1 and δ = n/p for PIRS-2. For instance if we use 64-

bit words and m < 232, then δ is at most 2−32 for PIRS-1, which practically means no

95

error at all. Second, since we need to extract the group id i from each incoming tuple

directly, without the use of a dictionary (which would blow up the memory cost), the size

of the group space, n, needs to be large for certain queries. For example, the query (*) of

Section 6.1 has a group space of n = 264 (the combination of two IP addresses), although

the actual number of nonzero entries |v| may be nowhere near n. In this case, since m is

typically much smaller, PIRS-1 would be the better choice.

Information Disclosure on Multiple Attacks. Theorem 6.3.1 bounds the success rate

for detecting a single attack attempted by the server. After an error has been detected,

the client can choose to disclose this information to the server. If the error is not reported,

then Theorem 6.3.1 will continue to hold. However, errors can occur due to faulty software

or bad communication links, and may not be intentional. In this case we would like to give

a warning to the server. Since a compromised, smart server can extract knowledge from

this warning (e.g., it knows at least that the same attack will always fail), the guarantee of

Theorem 6.3.1 is not applicable any more. In order to restore the 1− δ success rate after a

reported attack, the synopsis has to be recomputed from scratch, which is impossible in a

streaming setting. Hence, it is important to rigorously quantify the loss of guarantee after

a series of warnings have been sent out without resetting the synopsis.

Let ek = 1 if the k-th attack goes undetected and ek = 0 otherwise. Let pk be the

probability that the server succeeds in its k-th attack after k − 1 failed attempts, i.e.,

pk = Pr[ek = 1 | e1 = 0, . . . , ek−1 = 0]. From Theorem 6.3.1 we know that p1 ≤ δ. In what

follows we upper bound pk with respect to the most powerful server, denoted as Alice,

to demonstrate the strength of PIRS. We assume that Alice: 1. Knows how PIRS works

except its random seed ; 2. Maximally explores the knowledge that could be gained from

one failed attack; and 3. Possesses infinite computational power.

Next, we precisely quantify the best Alice could do to improve pk over multiple attacks.

Denote by R the space of seeds used by PIRS. For any w,v denote the set of witnesses

W(w,v) = {r ∈ R | PIRS raises an alarm on r} and the set of non-witnesses W(w,v) =

96

R−W(w,v). Note that |W(w,v)| ≤ δ|R| if w 6= v, and W(w,v) = R if w = v. Suppose

the seed PIRS uses is r. If Alice returns a correct answer w = v, she cannot infer anything

about r. If she returns some w 6= v and gets a warning, it is possible that Alice can

determine r /∈ W(w,v). However, even if we assume that Alice has enough computational

power to compute both the sets of witnesses and non-witnesses, it is impossible for her

to infer which witness PIRS is using as r. After k − 1 failed attacks using w1, . . . ,wk−1,

the set of seeds that Alice has ruled out is
⋃k−1

i=1 W(wi,vi), whose cardinality is at most

(k − 1)δ|R|. Thus, we have:

Lemma 6.3.5. pk ≤ δ
1−(k−1)δ .

Proof.

pk =
|set of non-witnesses|
|set of remaining seeds|

=
|W(wk,vk)|

|R − ⋃k−1
i=1 W(wi,vi)|

≤ δ

1 − (k − 1)δ
.

Theorem 6.3.6. Assuming that Alice has made a total of k attacks to PIRS for any k,

the probability that none of them succeeds is at least 1 − kδ.

Proof. This probability is

Pr[e1 = 0 ∧ · · · ∧ ek = 0]

=

k∏

i=1

(1 − Pr[ei = 1 | e1 = 0, . . . , ei−1 = 0])

≥
k∏

i=1

(
1 − δ

1 − (i − 1)δ

)
=

k∏

i=1

1 − iδ

1 − (i − 1)δ

=
1 − δ

1
· 1 − 2δ

1 − δ
· · · · · 1 − kδ

1 − (k − 1)δ
= 1 − kδ.

Theorem 6.3.6 shows that PIRS is very resistant towards coordinated multiple attacks

97

even against an adversary with unlimited computational power. For a typical value of

δ = 2−32, PIRS could tolerate millions of attacks before the probability of success becomes

noticeably less than 1. Most importantly, the drop in the detection rate to 1 − kδ occurs

only if the client chooses to disclose the attacks to the server. Of course, such disclosure is

not required in most applications.

6.4 Tolerance for Few Errors

This section presents a synopsis for solving the CQVγ problem (Definition 6.1.2). Let γ

be the number of components in v that are allowed to be inconsistent. First, we present

a construction that gives an exact solution that satisfies the requirements of CQVγ , and

requires O(γ2 log 1
δ log n) bits of space, which is practicable only for small γ’s. Then,

we provide an approximate solution which uses only O(γ log 1
δ (log m + log n)) bits. Both

solutions use PIRS as a black box, and therefore can choose either PIRS-1 or PIRS-2. We

state all the results using PIRS-1 for count queries. The corresponding results for sum

queries and PIRS-2 can be obtained similarly.

6.4.1 PIRSγ: An Exact Solution

By using PIRS as a building block we can construct a synopsis that satisfies the require-

ments of CQVγ . This synopsis, referred to as PIRSγ, consists of multiple layers, where

each layer contains k = c1γ
2 buckets (c1 ≥ 1 is a constant to be determined shortly). Each

component of v is assigned to one bucket per layer, and each bucket is represented using

only its PIRS synopsis (see Figure 6·1). PIRSγ raises an alarm if at least γ buckets in any

layer raise an alarm. The intuition is that if there are less than γ errors, no layer will raise

an alarm, and if there are more than γ errors, at least one of the layers will raise an alarm

with high probability (when the γ inconsistent components do not collide on any bucket for

this layer). By choosing the probability of failure of the individual PIRS synopsis carefully,

we can guarantee that PIRSγ achieves the requirements of Definition 6.1.2.

Concentrating on one layer only, let b1, . . . , bn be n γ-wise independent random num-

98

{v4, v6}{v1, v3}

{v3} {v2, v5}

{v2, v5}

{v1, v4, v6}

X22

X13X11 X12

X21 X23

Figure 6·1: The PIRSγ synopsis.

Algorithm 6: PIRSγ-initialize(Prime p, Threshold γ)

c = 4.819, k = ⌈cγ2⌉1

Generate βℓ,j uniformly at random from Zp, for 1 ≤ ℓ ≤ log 1/δ, 1 ≤ j ≤ k2

for ℓ = 1, . . . , ⌈log 1/δ⌉ do3

Layer Lℓ = [X1(v) := 0, · · · ,Xk(v) := 0]4

// Xj(v) is a PIRS synopsis with δ′ = 1/cγ

bers, uniformly distributed over {1, . . . , k}. PIRSγ assigns vi to the bi-th bucket, and for

each bucket computes the PIRS synopsis of the assigned subset of vi’s with probability of

failure δ′ = 1/(c2γ) (c2 ≥ 1 is a constant to be determined shortly). According to Theorem

6.3.2 each of these k synopses occupies O(log m
δ′ + log n) = O(log m + log n) bits. Given

some w =γ v, since there are less than γ errors, the algorithm will not raise an alarm.

We can choose constants c1 and c2 such that if w 6=γ v, then the algorithm will raise an

alarm with probability at least 1/2 for this layer. In this case there are two cases when

the algorithm will fail to raise an alarm: 1. There are less than γ buckets that contain

erroneous components of w; 2. There are at least γ buckets containing erroneous compo-

nents but at least one of them fails due to the failure probability of PIRS. We show that by

setting constants c1, c2 = 4.819 either case occurs with probability at most 1/4. Consider

the first case. Since the vi’s are assigned to the buckets in a γ-wise independent fashion,

by considering just γ of them, the probability that less than γ buckets get at least one of

the erroneous vi’s is at most

1 − k

k
· k − 1

k
· · · · · k − γ + 1

k
(6.3)

≤ 1 −
(

k − γ

k

)γ

= 1 −
(
1 − γ

k

) k
γ
· γ2

k ≤ 1 − 2
− 2

c1 ≤ 1

4
,

99

Algorithm 7: PIRSγ-update(Tuple s = (i, u))

for ℓ = 1, . . . , ⌈log 1/δ⌉ do1

bℓ,i = (βℓ,γiγ−1 + . . . + βℓ,2i + βℓ,1) mod k + 12

Update Lℓ.Xbℓ,i
(v) using s3

Algorithm 8: PIRSγ-verify(Vector w)

for ℓ = 1, . . . , ⌈log 1/δ⌉ do1

Layer Mℓ = [X1(w) := 0, · · · ,Xk(w) := 0]2

// Xj(w) is a PIRS synopsis with δ′ = 1/cγ
for i = 1, . . . , n do3

Generate bℓ,i as line 2, Algorithm 74

Update Mℓ.Xbℓ,i
(w) by s = (i, wi)5

if |{j | Li.Xj(v) 6= Mi.Xj(w), 1 ≤ j ≤ k}| ≥ γ then Raise an alarm6

where the last inequality holds as long as c1 ≥ 2/ log 4
3 = 4.819.

Next, consider the second case. The probability that some of the γ buckets that are

supposed to raise an alarm fail is:

1 − (1 − δ′)γ = 1 −
(

1 − 1

c2γ

)c2γ/c2

≤ 1 − 2
− 2

c2 <
1

4
, (6.4)

which holds as long as c2 ≥ 4.819.

Therefore, using one layer PIRSγ will raise an alarm with probability at least 1/2 on

some w 6=γ v, and will not raise an alarm if w =γ v. By using log 1
δ layers and reporting

an alarm if at least one of these layers raises an alarm, the probability is boosted to 1− δ.

Theorem 6.4.1. For any w 6=γ v, PIRSγ raises an alarm with probability at least 1 − δ.

For any w =γ v, PIRSγ will not raise an alarm.

In addition to the klog 1
δ PIRS synopses, we also need to generate the γ-wise indepen-

dent random numbers. Using standard techniques we can generate them on-the-fly using

O(γ log n) truly random bits. Specifically, the technique of [Wegman and Carter, 1981] for

constructing k-universal hash families can be used. Let p be some prime between n and

2n, and α0, . . . , αγ−1 be γ random numbers chosen uniformly and independently from Zp.

100

Then we set

bi = ((αγ−1i
γ−1 + αγ−2i

γ−2 + · · · + α0) mod p) mod k + 1,

for i = 1, . . . , n. For an incoming tuple s = (i, u), we compute bi using the αj ’s in O(γ)

time, and then perform the update to the corresponding PIRS. To perform a verification,

we can compute in parallel for all the layers while making one pass over w. The detailed

initialization, update and verification algorithms for PIRSγ appear in Algorithms 6, 7, and

8. The next theorem bounds both the space and time complexity of PIRSγ .

Theorem 6.4.2. PIRSγ requires O(γ2 log 1
δ (log m+log n)) bits, spends O(γ log 1

δ) time to

process a tuple in the stream, and O(|w|(γ + log m
|w|)log

1
δ) time to perform a verification.

With careful analysis a smaller constant in the big-Oh above can be achieved in practice.

For a given γ, we choose the minimum k such that (6.3) is at most 1/2, and choose 1/δ′ very

large (close to the maximum allowed integer) so that (6.4) is almost zero. For instance if

γ = 2 and 3, then 2log 1
δ and 6log 1

δ words suffice, respectively. For arbitrary γ, the storage

requirement is 2γ2 log 1
δ words in the worst case.

Remark. Note that computing the γ-wise independent random numbers bi is the bottle-

neck for the time bounds. We can trade space for faster update times by using other γ-wise

independent random number generation schemes. For instance by using an extra O(nǫ)

words per layer, the technique of [Siegel, 1989] can generate a bi in O(1) time provided that

γ ≤ nǫ3/2, for ǫ > 0. The update and verification times become O(log 1
δ) and O(nlog 1

δ),

and the space bound O(nǫlog 1
δ log n) bits.

6.4.2 PIRS±γ: An Approximate Solution

The exact solution works when only a small number of errors can be tolerated. In appli-

cations where γ is large, the quadratic space requirement is prohibitive. If we relax the

definition of CQVγ to allow raising alarms when approximately γ errors have been observed,

we can design more space-efficient algorithms. This approximation is often acceptable since

101

when γ is large, users probably will not concern too much if the number of errors detected

deviates from γ by a small amount. This section presents such an approximate solution,

denoted with PIRS±γ, that guarantees the following:

Theorem 6.4.3. PIRS±γ: 1. raises no alarm with probability at least 1−δ on any w =γ− v

where γ− = (1− c
lnγ)γ; and 2. raises an alarm with probability at least 1−δ on any w 6=γ+ v

where γ+ = (1 + c
ln γ)γ, for any constant c > − ln ln 2 ≈ 0.367.

Note that this is a very sharp approximation; the multiplicative approximation ratio

1 ± c
lnγ is close to 1 for large γ.

PIRS±γ also contains multiple layers of buckets, where each bucket is assigned a subset

of the components of v and summarized using PIRS (Figure 6·1). Focusing on one layer

only, our desiderata is on any w =γ− v not to raise an alarm with probability at least 1/2+ǫ

for some constant ǫ ∈ (0, 1/2), and on any w 6=γ+ v to raise an alarm with probability

at least 1/2 + ǫ. By using O(log 1
δ) independent layers and reporting the majority of

the results, the probabilistic guarantee will be boosted to 1 − δ using Chernoff bounds

[Motwani and Raghavan, 1995].

Let k be the number of buckets per layer. The components of v are distributed into

the k buckets in a γ+-wise independent fashion, and for each bucket the PIRS sum of

those components is computed using δ′ = 1/γ2. Given some w, let this layer raise an

alarm only if all the k buckets report alarms. The intuition is that if w contains more

than γ+ erroneous members, then the probability that every bucket gets at least one such

component is high; and if w contains less than γ− erroneous members, then the probability

that there exists some bucket that is not assigned any erroneous members is also high.

The crucial factor that determines whether a layer could possibly raise an alarm is

the distribution of erroneous components into buckets. The event that all buckets raise

alarms is only possible if each bucket contains at least one inconsistent component. Let

us consider all the inconsistent components in w in some order, say w1, w2, . . . , and think

of each of them as a collector that randomly picks a bucket to “collect”. Assume for

now that we have enough inconsistent elements, and let the random variable Y denote

102

the number of inconsistent components required to collect all the buckets, i.e., Y is the

smallest i such that w1, . . . , wi have collected all the buckets. Then the problem becomes

an instantiation of the coupon collector’s problem [Motwani and Raghavan, 1995] (viewing

buckets as coupons and erroneous components as trials). With k buckets, it is known that

E(Y) = k ln k + O(k), therefore we set k such that γ = ⌈k ln k⌉. It is easy to see that

k = O(γ/ ln γ), hence the desired storage requirement.

We need the following sharp bounds showing that Y cannot deviate too much from its

mean.

Lemma 6.4.4 ([Motwani and Raghavan, 1995], Theorem 3.8). For any constant c′,

Pr[Y ≤ k(ln k − c′)] ≤ e−ec′

+ o(1),

Pr[Y ≥ k(ln k + c′)] ≤ 1 − e−e−c′

+ o(1),

where o(1) is in terms of k.

Notice that ln γ ≤ 2 ln k for any k ≥ 2, so Lemma 6.4.4 also infers that for any real

constant c:

Pr[Y ≤ γ − c
γ

ln γ
= γ−] ≤ e−ec

+ o(1), (6.5)

Pr[Y ≥ γ + c
γ

ln γ
= γ+] ≤ 1 − e−e−c

+ o(1). (6.6)

Now, consider the following two cases. If w =γ− v, then the probability that these less

than γ− independent erroneous components cover all buckets is bounded by (6.5), which is

also the upper bound for the probability that the layer raises an alarm. Thus, there exists

some constant ǫ such that the probability of raising a false alarm is (for large γ)

e−ec ≤ 1/2 − ǫ,

for any c > ln ln 2. If w 6=γ+ v, then considering only γ+ of the inconsistent components

which are independently distributed to the buckets, there are two cases in which a true

alarm is not raised: 1. These γ+ components do not cover all buckets; and 2. All the buckets

are covered but at least one of them fails to report an alarm. The probability that the

103

first case occurs is bounded by (6.6); while the probability that the second case happens

is at most 1− (1− δ′)k. By the union bound, the total probability that we produce a false

negative is at most

1 − e−e−c

+ o(1) + 1 − (1 − δ′)k ≤ 2 − ee−c − 2
− 2

γ + o(1).

For γ large enough, there exists a constant ǫ > 0 such that this probability is at most

1/2 − ǫ for any c > − ln ln 2.

To summarize, if c > max{ln ln 2,− ln ln 2} = − ln ln 2, then both the false positive

and false negative probabilities are at most 1/2 − ǫ for some constant ǫ at one layer with

k = O(γ/ log γ) buckets. Below we analyze the error probabilities of using ℓ = O(log 1
δ)

independent layers.

To drive down the error probabilities for both false positives and false negatives to δ,

we use ℓ = O(log 1
δ) layers and report simple majority. We quantify this probability for

false negatives; the other case is symmetric.

Each layer can be viewed as a coin flip that raises a true alarm with probability at

least 1/2 + ǫ. Let the random variable Z denote the number of layers that raise alarms.

This process is a sequence of independent Bernoulli trials, hence Z follows the binomial

distribution. For ℓ independent layers, the expectation of Z is at least µ = (1/2 + ǫ)ℓ. By

the Chernoff bound, the probability that a majority of layers raise alarms is

Pr[Z <
1

2
ℓ] = Pr[Z <

(
1 − 2ǫ

1 + 2ǫ

)
µ] < e−

µ
2
(2ǫ
1+2ǫ

)2 . (6.7)

Therefore, we need to ensure that e−
µ
2
(2ǫ
1+2ǫ

)2 ≤ δ, which can be satisfied by taking ℓ =

⌈1+2ǫ
ǫ2 ln 1

δ ⌉.

Finally, we use the technique discussed in Section 6.4.1 to generate γ+-wise independent

random numbers, by storing O(γ+) = O(γ) truly random numbers per layer. We have thus

obtained the desired results:

Theorem 6.4.5. PIRS±γ uses O(γ log 1
δ (log m + log n)) bits of space, spends O(γ log 1

δ)

time to process an update and O(|w|(γ + log m
|w|) log 1

δ) time to perform a verification.

104

As mentioned before, the technique of [Siegel, 1989] can be used to obtain space-time

trade-offs with respect to generating the γ+-wise independent random numbers.

6.4.3 Information Disclosure on Multiple Attacks

Similarly to the analysis in Section 6.3, since PIRSγ has false negatives only, it is a ran-

domized algorithm with one-sided errors like PIRS. It is easy to prove that Theorem 6.3.6

holds for PIRSγ as well.

PIRS±γ is a randomized algorithm with two-sided errors, which is in favor of attackers

and may be exploited by a smart server, since a portion of the seeds can be excluded both

in the case that Alice is sending an incorrect answer and when she is sending a correct

answer but PIRS±γ reports a false alarm. Using arguments similar to Theorem 6.3.6 the

following can be stated:

Theorem 6.4.6. Assuming that Alice has returned a total of k results w1, . . . ,wk to

PIRS±γ, including both honest answers and attacks, the probability that PIRS±γ correctly

identifies all consistent and inconsistent wi’s is at least 1 − kδ.

Theorem 6.4.6 is slightly weaker than Theorem 6.3.6, since a new possible attack strat-

egy for Alice is to simply return correct results and wait until a sufficient portion of the

seeds have been ruled out before launching an attack. However, since the success proba-

bility drops linearly to the number of rounds, one can always intentionally set δ extremely

small. For instance, if we choose δ = 2−30, it will take Alice a million rounds in order to

have a 0.1% chance of launching a successful attack. As always, information disclosure by

the clients is not necessary for most applications.

6.5 Tolerance for Small Errors

In this section we prove the hardness of solving CQVη (Definition 6.1.3) using sub-linear

space, even if approximations are allowed. This problem can be interpreted as detecting if

there is any component of w that has an absolute error exceeding a specified threshold η.

We show that this problem requires at least Ω(n) bits of space.

105

Theorem 6.5.1. Let η and δ ∈ (0, 1/2) be user specified parameters. Given a data stream

S, let X be any synopsis built on v that given w: 1. raises an alarm with probability at

most δ if w ≈η v; and 2. raises an alarm with probability at least 1 − δ if w 6≈(2−ǫ)η v for

any ǫ > 0. Then X has to use Ω(n) bits.

Proof. We will reduce from the problem of approximating the infinity frequency moment,

defined as follows. Let A = (a1, a2, . . .) be a sequence of elements from the set {1, . . . n}.
The infinity frequency moment, denoted by F∞, is the number of occurrences of the most

frequent element. Alon et al. [Alon et al., 1996] showed that any randomized algorithm

that makes one pass over A and computes F∞ with a relative error of at most 1/3 and a

success probability greater than 1 − δ for any δ < 1/2, has to use Ω(n) memory bits. In

particular, they proved that even if each element appears at most twice, it requires Ω(n)

bits in order to decide if F∞ is 1 or 2 with probability at least 1 − δ.

Let X by a synopsis solving the problem stated in Theorem 6.5.1. We will show how to

use X to compute the infinity frequency moment for any A in which each element appears

at most twice. We will make one pass over A. For any element i that we encounter, we

update X with the tuple s = (i, η). In the end, we verify w = 0 using X (v). If X asserts

that w ≈η v, we return F∞ = 1; if X asserts that w 6≈(2−ǫ)η v, we return F∞ = 2. It is not

difficult to see that we have thus computed the correct F∞ with probability at least 1− δ.

If we allow relative errors instead of absolute errors, the problem is still difficult, as

can be shown by setting s = (i, n) for element i, and doing the verification with w =

(n/(1 + η), · · · , n/(1 + η)) in the proof above.

Given the hardness of solving CQVη, we are interested in seeking alternative methods

that might be able to give us approximate answers using space less than the exact solution.

Here we briefly discuss one such method.

The CM sketch. The CM sketch [Cormode and Muthukrishnan, 2005] uses O(1
ǫ log 1

δ′)

words of space and provides an approximate answer ṽi for any i ∈ [n], that satisfies vi −

3ǫ||v||1 ≤ ṽi ≤ vi + 3ǫ||v||1 with probability 1 − δ′, for any ǫ ∈ (0, 1). However, this does

not make it applicable for solving CQVη as: 1. The estimation depends on ||v||1 and it

106

only works well for skewed distributions. Even in that case, in practice the estimation

works well only for the large vi’s; and 2. ||v||1 is not known in advance. However, if we can

estimate an upper bound on ||v||1, say ||v||1 ≤ Γ, then by setting ǫ = 1
3

η
Γ and δ′ = δ/n,

we can use the CM sketch to get approximate answers ṽi such that |ṽi − vi| ≤ η holds for

all i simultaneously with probability at least 1 − δ. Now, given some w, we generate an

alarm iff there exists some i such that |wi − ṽi| ≥ 2η. This way, we give out a false alarm

with probability at most δ if w ≈η v, and generate an alarm with probability 1 − δ if

w 6≈3η v. For other w’s, no guarantee can be made (see Figure 6·2). Especially, some false

negatives may be observed for some range of w. This solution uses O(1
ǫ log n

δ log W) bits

of space and O(log n
δ) time per update (W is the largest expressible integer in one word of

the RAM model). The space dependence on 1
ǫ is expensive, as 1

ǫ = Γ
η in this case and the

upper bound on ||v||1 in practice might be large.

viη

false negatives

η

ṽi

Figure 6·2: False negatives for the CM sketch approach.

6.6 Extensions

In this section we discuss several extensions of PIRS. We will focus on PIRS-1 for count

queries only; the same arguments apply to sum queries, as well as to PIRS-2, PIRSγ , and

PIRS±γ.

Handling Multiple Queries. The discussion so far focused on handling a single query

per PIRS synopsis. Our techniques though can be used for handling multiple queries

simultaneously. Consider a number of aggregate queries on a single attribute (e.g., packet

size) but with different partitioning on the input tuples (e.g., source/destination IP and

source/destination port). Let Q1, . . . ,Qk be k such queries, and let the i-th query partition

the incoming tuples into ni groups for a total of n =
∑k

i=1 ni groups. A simple solution for

107

this problem would be to apply the PIRS algorithm once per query, using space linear in

k. Interestingly, by treating all the queries as one unified query of n groups we can use one

PIRS synopsis to verify the combined vector v. The time cost for processing one update

increases linearly in k, since each incoming tuple is updating k components of v at once

(one group for every query in the worst case):

Corollary 6.6.1. PIRS-1 for k queries occupies O(log m
δ + log n) bits of space, spends

O(k) time to process an update, and O(|w| log m
|w|) time to perform a verification.

Clearly, this is a very strong result, since we can effectively verify multiple queries with

a few words of memory.

Handling sliding windows. Another nice property of PIRS-1 is that it is decomposable,

i.e., for any v1,v2,X (v1 + v2) = X (v1) · X (v2). (For PIRS-2, we have X (v1 + v2) =

X (v1) + X (v2)) This property allows us to extend PIRS for periodically sliding windows

using standard techniques [Datar et al., 2002]. Again using our earlier example, one such

sliding window query might be the following.

SELECT SUM(packet_size) FROM IP_Trace

GROUP BY source_ip, destination_ip

WITHIN LAST 1 hour SLIDE EVERY 5 minutes

In this case, we can build a PIRS-1 for every 5-minute period, and keep it in memory

until it expires from the sliding window. Assume that there are k such periods in the

window, and let X (v1), . . . ,X (vk) be the PIRS for these periods. When the server returns

a result w, the client computes the overall X (v) =
∏k

i=1 X (vi), and then verifies the result.

Corollary 6.6.2. For a periodically sliding window query with k periods, our synopsis uses

O(k(log m
δ +log n)) bits of space, spends O(1) time to process an update, and O(|w| log m

|w|)

time to perform a verification.

Synchronization. In our discussions we omitted superscript τ for simplicity. Hence, an

implicit assumption was made that the result wτs returned by the server was synchronized

with X (vτc) maintained by the client, i.e., τs = τc. Correct verification can be performed

108

only if the server and the client are synchronized. Obviously, such perfect synchronization

is hard to obtain in practice, especially in a DSMS. Also, if n is large, transmitting the

result itself takes non-negligible time. The solution to this problem is as follows. Suppose

that the client sends out a request to the server asking for the query result at time τ ,

which is either a time instance at present or in the future. When the client has received

sτ from the stream S and has computed the synopsis for vτ , it makes a copy of X (vτ),

and continues updating PIRS. When the server returns the answer wτ , the client can do

the verification using the snapshot. The synchronization problem once again illustrates

the importance of using small space, as keeping a copy (or potentially many copies if there

are significant delays in the server’s response) could potentially become very expensive.

Similar ideas can be used on the server side for dealing with queries referring to the past.

Exploiting locality. In many practical situations data streams tend to exhibit a large

degree of locality. Simply put, updates to v tend to cluster to the same components. In this

setting, it is possible to explore space/time trade-offs. We can allocate a small buffer used

for storing exact aggregate results for a small number of groups. With data locality, a large

portion of updates will hit the buffer. Whenever the buffer is full and a new group needs to

be inserted, a victim is selected from the buffer using the simple least recently used (LRU)

policy. Only then does the evicted group update PIRS, using the overall aggregate value

computed within the buffer. We flush the buffer to update PIRS whenever a verification

is required. Since we are aggregating the incoming updates in the buffer and update the

synopsis in bulk, we incur a smaller, amortized update processing cost per tuple.

109

Chapter 7

Experiments

7.1 Experimental Evaluation on Authenticated Index Structures for Se-

lection Queries

For our experimental evaluation we have implemented the aggregated signatures technique

using a B+-tree (ASB-tree), the MB-tree, the EMB-tree and its two variants, EMB−-tree

and EMB∗-tree.

7.1.1 Setup

We use a synthetic database that consists of one table with 100, 000 tuples. Each tuple

contains multiple attributes, a primary key A, and is 500 bytes long. For simplicity, we

assume that an authenticated index is build on A, with page size equal to 1 KB. All

experiments are performed on a Linux machine with a 2.8GHz Intel Pentium 4 CPU.

The cost CIO of one I/O operation on this machine using 1KB pages for the indexes is

on average 1 ms for a sequential read and 15 ms for random access. The costs CH of hashing

a message with length 500 bytes is approximately equal to 1 to 2 µs. In comparison, the

cost CS of signing a message with any length is approximately equal to 2 ms. The cost of

one modular multiplication with 128 byte modulus is close to 100 µs. To quantify these

costs we used the publicly available Crypto++ [Crypto++ Library, 2005] and OpenSSL

[OpenSSL, 2005] libraries.

7.1.2 Performance Analysis

We run experiments to evaluate the proposed solutions under all metrics. First, we test

the initial construction cost of each technique. Then, we measure their query and verifi-

110

 0

 20

 40

 60

 80

 100

 120

 140

F
an

ou
t

ASB-Tree

MB-Tree

EMB-Tree

EMB--Tree
EMB*-Tree

Fanout
Avg Fanout

Root Fanout

(a) Fanout

 0

 1

 2

 3

 4

 5

 6

H
ei

gh
t

ASB-Tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

(b) Height

Figure 7·1: Index parameters.

cation performance. Finally, we run simulations to analyze their performance for dynamic

scenarios. For various embedded index structures, the fanout of their embedded trees is

set to 2 by default, except if otherwise specified.

Construction Cost

First we evaluate the physical characteristics of each structure, namely the maximum and

average fanout, and the height. The results are shown in Figure 7·1. As expected, the

ASB-tree has the maximum fanout and hence the smallest height, while the opposite is

true for the EMB-tree. However, the maximum height difference, which is an important

measure for the number of additional I/Os per query when using deeper structures, is only

2. Of course this depends on the database size. In general, the logarithmic relation between

the fanout and the database size limits the difference in height of the different indices.

Next, we measure the construction cost and the total size of each structure, which

are useful indicators for the owner/server computation overhead, communication cost and

storage demands. Figure 7.2(a) clearly shows the overhead imposed on the ASB-tree by the

excessive signature computations. Notice on the enclosed detailed graph that the overhead

of other authenticated index structures in the worst case is twice as large as the cost of

building the B+-tree of the ASB-tree approach. Figure 7.2(b) captures the total size of each

structure. Undoubtedly, the ASB-tree has the biggest storage overhead. The EMB-tree is

storage demanding as well since the addition of the embedded trees decreases the index

111

 0

 80

 160

 240

 320

 400

T
m

e
(s

ec
on

ds
)

ASB-Tree

 0

 2

 4

 6

 8

 10
ASB B+-Tree

MB-Tree
EMB-Tree
EMB--Tree
EMB*-Tree

(a) Time

 0

 3000

 6000

 9000

 12000

 15000

 18000

S
iz

e
(K

B
yt

es
)

S
ig

na
tu

re
s

MB-Tree

EMB-Tree

EMB--Tree

EMB*-Tree

B-Tree

Actual Size
Cost Model

(b) Storage

Figure 7·2: Index construction cost.

fanout substantially. The MB-tree has the least storage overhead and the EMB∗-tree is

a good compromise between the MB-tree and the EMB-tree for this metric. In the same

graph we also plot the size of a B-tree structure without authentication information. We

can see that the MB-tree and the EMB−-tree are 3 times larger, while the EMB-tree is 7

times larger. Nevertheless, all structures are significantly smaller than the total database

size, which is 47 MB. Notice that the proposed cost models capture very accurately the

tree sizes.

The client/server communication cost using the simplest possible strategy is directly

related to the size of the authenticated structures. It should be stressed however that for

the hash based approaches this cost can be reduced significantly by rebuilding the trees at

the server side. In contrast, the ASB-tree is not equally flexible since all signatures have

to be computed by the owner.

The construction cost of our new authenticated index structures has two components.

The I/O cost for building the trees and the computational cost for computing hash values.

Figure 7·3 shows the total number of hash computations executed per structure, and the

total time required. Evidently, the EMB-tree approaches increase the number of hashes

that need to be computed. However, the additional computation time increases by a small

margin as hashing is cheap, especially when compared with the total construction overhead

(see Figure 7·2). Thus, the dominating cost factor proves to be the I/O operations of the

index.

112

 0

 40000

 80000

 120000

 160000

 200000

 240000

H
as

he
s

(#
)

ASB-Tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

(a) Hash computations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

T
im

e
(s

ec
on

ds
)

ASB-Tree
MB-Tree

EMB-Tree EMB--Tree
EMB*-Tree

Actual Time
Cost Model

(b) Time

Figure 7·3: Hash computation overhead.

Query and Verification Cost

In this section we study the performance of the structures for range queries. We generate a

number of synthetic query workloads with range queries of given selectivity. Each workload

contains 100 range queries generated uniformly at random over the domain of A. Results

reflect the average case, where the cost associated with accessing the actual records in the

database has not been included. A 100 page LRU buffer is used, unless otherwise specified.

In the rest of the experiments we do not include the cost model analysis not to clutter the

graphs.

The results are summarized in Figure 7·4. There are two contributing cost factors

associated with answering range queries. The first is the total number of I/Os. The second

is the computation cost for constructing the VO. The number of I/Os can be further

divided into query specific I/Os (i.e., index traversal I/Os for answering the range query)

and VO construction related I/Os.

Figure 7.4(a) shows the query specific I/Os as a function of selectivity. Straightfor-

wardly, the number of page access is directly related to the fanout of each tree. Notice that

the majority of page access is sequential I/O at the leaf level of the trees. We include in

the graph the cost of answering a range query on an unauthenticated B-tree as well, which

is exactly the same as the pure query I/O cost of the ASB-tree. Figure 7.4(b) shows the

additional I/O needed by each structure for completing the VO. Evidently, the ASB-tree

has to perform a very large number of sequential I/Os for retrieving the signatures of the

113

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 0.1 0.2 0.3 0.4 0.5 0.6

Q
ue

ry
 I/

O
 (

#)

Selectivity

ASB-Tree/B-tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

(a) Query specific I/Os.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
dd

iti
on

al
 I/

O
 (

#)

Selectivity

 ASB-Tree
 MB-Tree

 EMB-Tree
 EMB--Tree
 EMB*-Tree

 0
 1
 2
 3
 4
 5

(b) VO construction specific I/Os.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
ot

al
 I/

O
 (

#)

Selectivity

ASB-Tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

(c) Total I/O.

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6
T

im
e

(s
ec

on
ds

)

Selectivity

ASB-Tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

 0
 0.1
 0.2
 0.3
 0.4
 0.5

m
ill

is
ec

on
ds

(d) Additional computation cost.

Figure 7·4: Performance analysis for range queries.

results, even though it’s pure query cost is the same as an unauthenticated B-tree. Our

authenticated index structures need to do only a few (upper bounded by the height of the

index) extra random accesses for traversing the path that leads to the largest tuple in the

query result. Overall, the EMB−-tree and the MB-tree do 3 times more I/O access than the

unauthenticated B-tree, while the EMB-tree 8 times more. Figure 7.4(c) shows the total

I/O incurred by the structures. It is clear that the ASB-tree has the worst performance

overall, even though its query specific performance is the best.

Figure 7.4(d) shows the runtime cost of additional computations that need to be per-

formed for modular multiplications and hashing operations. The ASB-tree has an added

multiplication cost for producing the aggregated signature. This cost is linear to the query

result-set size and cannot be omitted when compared with the I/O cost. This observa-

tion is instructive since it shows that one cannot evaluate analytically or experimentally

authenticated structures correctly only by examining I/O performance. Due to expen-

sive cryptographic computations, I/O operations are not always a dominating factor. The

114

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
(s

ec
on

ds
)

Selectivity

 ASB-Tree
 MB-Tree

 EMB-Tree
 EMB--Tree
 EMB*-Tree

 0
 0.05
 0.1

 0.15
 0.2

(a) Query runtime with LRU buffer.

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
(s

ec
on

ds
)

Selectivity

ASB-Tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

(b) Query runtime without LRU buffer.

Figure 7·5: The effect of the LRU buffer.

EMB−-tree has a minor computation overhead, depending only on the fanout of the con-

ceptual embedded tree. The rest of the structures have no computation overhead at all.

Interesting conclusions can be drawn by evaluating the effects of the main memory LRU

buffer. Figure 7·5 shows the total query runtime of all structures with and without the

LRU buffer. We can deduce that the LRU buffer reduces the query cost substantially for all

techniques. We expect that when a buffer is available the computation cost is the dominant

factor in query runtime, and the ASB-tree obviously has much worse performance, while

without the buffer the I/O cost should prevail. However, since overall the ASB-tree has

the largest I/O cost, the hash based structures still have better query performance.

Finally, we measure the VO size and verification cost at the client side. The results

are shown in Figure 7·6. The ASB-tree, as a result of using aggregated signatures always

returns only one signature independent of the result-set size. The MB-tree has to return

fm logfm
ND number of hashes plus one signature. As fm ≫ logfm

ND the fanout is the

dominating factor, and since the MB-tree has a relatively large fanout, the VO size is large.

The EMB-tree and its variants, logically work as an MB-tree with fanout fk and hence

their VO sizes are significantly reduced, since fm ≫ fk. Notice that the EMB∗-tree has

the smallest VO among all embedded index structures, as the searches in its embedded

multi-way search trees can stop at any level of the tree, reducing the total number of

hashes.

The verification cost for the ASB-tree is linear to the size of the query result-set due to

115

 0

 400

 800

 1200

 1600

 2000

 0 0.1 0.2 0.3 0.4 0.5 0.6

S
iz

e
(b

yt
es

)

Selectivity

ASB-Tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

(a) VO size.

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
(s

ec
on

ds
)

Selectivity

ASB-Tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

(b) Verification time.

Figure 7·6: Authentication cost.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
um

be
r

si
gn

at
ur

es
 to

 r
ec

om
pu

te

Insertion ratio

Best: σND
Worst: 2σND

Actual

(a) Number of signature re-computations.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
ot

al
 p

ag
e

ac
ce

ss
ed

 (
#)

Insertion ratio

ASB-Tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

(b) Number of pages affected.

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
(s

ec
on

ds
)

Insertion ratio

ASB-Tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

 0
 0.7
 1.4
 2.1
 2.8
 3.5

(c) Computation cost.

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
im

e
(s

ec
on

ds
)

Insertion ratio

ASB-Tree
MB-Tree

EMB-Tree
EMB--Tree
EMB*-Tree

 0
 4
 8

 12
 16
 20

(d) Total update time.

Figure 7·7: Performance analysis for insertions.

the modular multiplication operations, resulting in the worst performance. For the other

approaches the total cost is determined by the total hashes that need to be computed.

Interestingly, even though the MB-tree has the largest VO size, it has the fastest verification

time. The reason is that for verification the number of hash computations is dominated by

the height of the index, and the MB-tree has much smaller height compared to the other

structures.

116

Update Cost

There are two types of update operations, insertions and deletions. To expose the behavior

of each update type, we perform experiments on update workloads that contain either

insertions or deletions. Each update workload contains 100 batch update operations, where

each batch operation consists of a number of insertions or deletions, ranging from a ratio

σ = 1% to 50% of the total database size before the update occurs. Each workload

contains batch operations of equal ratio. We average the results on a per batch update

operation basis. Two distributions of update operations are tested. Ones that are generated

uniformly at random, and ones that exhibit a certain degree of locality. We present here

results for uniform insertions only for clarity, since deletions worked similarly. Skewed

distributions exhibit a somewhat improved performance and have similar effects on all

approaches. Finally, results shown here include only the cost of updating the structures

and not the cost associated with updating the database.

Figure 7·7 summarizes the results for insertion operations. The ASB-tree requires

computing between σND +1 and 2σND signatures. Essentially, every newly inserted tuple

requires two signature computations, unless if two new tuples are consecutive in order in

which case one computation can be avoided. Since the update operations are uniformly

distributed, only a few such pairs are expected on average. Figure 7.7(a) verifies this claim.

The rest of the structures require only one signature re-computation.

The total number of pages affected is shown in Figure 7.7(b). The ASB-tree needs

to update both the pages containing the affected signatures and the B+-tree structure.

Clearly, the signature updates dominate the cost as they are linear to the number of

update operations. Other structures need to update only the nodes of the index. Trees

with smaller fanout result in larger number of affected pages. Even though the EMB−-tree

and MB-tree have smaller fanout than the ASB-tree, they produce much smaller number

of affected pages. The EMB-tree and EMB∗-tree produce the largest number of affected

pages. Part of the reason is because in our experiments all indexes are bulk-loaded with

70% utilization and the update workloads contain only insertions. This will quickly lead

117

to many split operations, especially for indexes with small fanout, which creates a lot of

new pages.

Another contributing factor to the update cost is the computation overhead. As we

can see from Figure 7.7(c) the ASB-tree obviously has the worst performance and its cost

is order of magnitudes larger than all other indexes, as it has to perform linear number of

signature computations (w.r.t the number of update operations). For other indexes, the

computation cost is mainly due to the cost of hashing operations and index maintenance.

Finally, as Figure 7.7(d) shows, the total update cost is simply the page I/O cost plus the

computation cost. Our proposed structures are the clear winners. Finally the communica-

tion cost incurred by update operations is equal to the number of pages affected.

7.1.3 Authentication Overhead

Based on the previous experiments we can easily quantify the overhead of authentication

against an approach that does not provide any authentication at all. In that case, a single

B+-tree will be used with the maximum fanout and small storage cost. However, as we can

see from Figure 7.2(a), the size of the most space efficient authentication structures, i.e.,

MB-tree and EMB−-tree, are only up to three times larger than the simple unauthenticated

B+-tree. In terms of query cost, our techniques perform reasonably well. The authentica-

tion overhead in number of I/Os per query is about three times the unauthenticated case.

Note that the CPU cost of our method is negligible due to the use of hash functions that

are very efficient to compute. Finally, the update overhead depends on the number and

type of updates. However, still they incur a small additional overhead, about twice the

unauthenticated case.

A simple optimization can decrease the query time overhead without increasing the

space overhead much. The idea is to build first a single B+-tree without any authentication

information. Then, for each node of the tree, we compute the MHT of its entries and we

attach (sequentially) additional pages to accommodate the hash values. Assuming that the

original B+-tree has page utilization close to 70%, then we just need two more additional

118

pages for storing the hashes. Therefore, the space of the authenticated structure is three

times the original structure. The advantage of this organization is that when we access a

index node we perform a single random I/O and the additional pages that store the hash

values are accessed sequentially. Since a sequential I/O is typically about 10 time faster

than a random I/O, the overhead of accessing the authentication information is small.

Furthermore, given that the hash computations required to construct the VO and do the

verification are very cheap, the overall overhead of authentication in terms of time becomes

very small.

7.1.4 Discussion

The experimental results clearly show that the novel authenticated structures proposed in

this work perform better than the state-of-the-art with respect to all metrics except the VO

size. Still, our optimizations reduced the size to four times the size of the VO of the ASB-

tree. Overall, the EMB−-tree gives the best trade-off between all performance metrics,

and it should be the preferred technique in the general case. By adjusting the fanout of

the embedded trees, we obtain a nice trade-off between query (V O) size, verification time,

construction (update) time and storage overhead.

7.2 Performance Evaluation for Authenticated Aggregation Index Struc-

tures

In this section we evaluate the performance of the aggregate structures with respect to

query, authentication, storage, and update cost. We implemented the APS-tree, AAB-tree

and AAR-tree. We also evaluated the only current alternative solution which is based on

authentication structures for selection queries (see the beginning of section 4.3).

7.2.1 Setup

We use synthetic datasets for our experiments. We generate uniformly random d-dimensional

tuples, with multiple sizes for the attribute domains Di (the distribution of the data

does not affect our authentication techniques). We vary the density δ of the data, where

119

 300

 900

 1500

 2100

 2700

 0.1 0.3 0.5 0.7 0.9

I/O
 (

#)

query selectivity

 APS Tree
 AAB Tree (MCS)

AAB Tree Optimized
 MB Tree

 EMB- Tree

 4

 12

 20

 28

(a) I/O.

 0

 10

 20

 30

 40

 50

 60

 0.1 0.3 0.5 0.7 0.9

nu
m

be
r

of
 e

le
m

en
ts

query selectivity

Query Range MCS
Complement MCS and LCA

Best of the Two

(b) MCS size.

Figure 7·8: One-dimensional queries. Server-side cost.

 50

 200

 350

 500

 0.1 0.3 0.5 0.7 0.9

co
m

m
un

ic
at

io
n

co
st

 (
K

B
yt

es
)

query selectivity

APS Tree
AAB Tree (MCS)

AAB Tree Optimized
MB Tree

EMB- Tree

 4
 5
 6
 7
 8

(a) Communication cost.

 1000

 31000

 61000

 91000

 121000

 0.1 0.3 0.5 0.7 0.9

ha
sh

 c
om

pu
ta

tio
ns

 (
#)

query selectivity

 APS Tree
 AAB Tree (MCS)

 AAB Tree Optimized
 MB Tree

 EMB- Tree

 4

 10

 16

 22

(b) Verification cost.

Figure 7·9: One-dimensional queries. Communication and verification
cost.

δ = N
Qd

i=1
Mi

, and N the number of tuples. We also generate synthetic query workloads

with one aggregate attribute Aq and up to three selection attributes. Every workload con-

tains 100 queries, and we report averages in the plots. All experiments are performed on a

Linux box with a 2.8GHz Intel Pentium4 CPU. The page size of the structures is set to be

1KByte. We use the OpenSSL [OpenSSL, 2005] and Crypto++[Crypto++ Library, 2005]

libraries for hashing, verification and signing operations (SHA1 and RSA, respectively).

7.2.2 One-dimensional Queries

First, we evaluate the structures for one-dimensional queries. Candidates are the APS-

tree, the AAB-tree, and the structures for selection queries, the MB-tree and the EMB−-

tree. For the naive approaches in order to authenticate a query, first we answer the range

query and report all values to the client, which then reconstructs the result. For the

120

 400

 800

 1200

 1600

 2000

 2400

 2800

 0.2 0.4 0.6 0.8 1

in
de

x
st

ru
ct

ur
e

si
ze

 (
K

B
yt

es
)

database density

APS Tree
AAB Tree
MB Tree

EMB- Tree

(a) Storage cost

 30000

 40000

 50000

 60000

 70000

 0.2 0.4 0.6 0.8 1

ha
sh

 c
om

pu
ta

tio
ns

 (
#)

database density

 APS Tree
 AAB Tree
 MB Tree

 EMB- Tree

 0
 4
 8

 12
 16
 20

(b) Update cost

Figure 7·10: One-dimensional queries. Storage and update cost.

AAB-tree we evaluate both the structure based on MCS and the optimization based on

LCA. We generate a database with domain size of M = 100, 000, N = δM and vary

the density of the database δ ∈ [0.1, 0.9], as well as the query selectivity ρ ∈ [0.1, 0.9].

Figure 7.8(a) shows the I/O cost at the server side. The best structure overall is the APS-

tree, since it only needs to verify two PS entries, with a cost proportional to the height

of the tree. The naive approaches are one to two orders of magnitude more expensive

than the other techniques. For the AAB-trees it is interesting to note that the optimized

version has slightly higher query I/O, due to the extra point queries that are needed for

retrieving the query range boundaries. In addition, for both AAB-tree approaches the cost

decreases as queries become less selective, since the MCS(Q) (and its complement range’s

MCS(Q)∪LCA(Q)) become smaller due to larger aggregation opportunities. This is clearly

illustrated in Figure 7.8(b) that shows the actual sizes of MCS(Q), MCS(Q) ∪ LCA(Q),

and the best of the two for the average case over 100 queries. Figures 7.9(a) and 7.9(b) show

the communication cost and verification cost at the client side. For the communication cost

we observe similar trends with the MCS size, since the size of the VO is directly related

to the size of MCS. Notice also that the optimized version has smaller communication

cost. The same is true for the verification cost for the APS-tree and AAB-tree. For the

naive approaches, the communication and verification costs increase linearly with the query

selectivity, since they have to return ρN number of aggregate values and keys.

The query efficiency of the APS-tree is achieved with the penalty of high storage and

121

 100

 600

 1100

 1600

 2100

 2600

 0.1 0.3 0.5 0.7 0.9

I/O
 (

#)

query selectivity

 APS Tree
 AAR Tree Total
 AAR Tree Index
 AAR Tree Leaf

AR Tree Total

 5

 7

 9

(a) I/O

 0

 3000

 6000

 9000

 12000

 0.1 0.3 0.5 0.7 0.9

nu
m

be
r

of
 e

le
m

en
ts

query selectivity

Index MCS Entry
Leaf MCS Entry

(b) MCS size

Figure 7·11: 3-dimensional queries. Server-side cost.

update cost. This is indicated in Figures 7.10(a) and 7.10(b). For this set of experiments we

vary the database density δ. The storage cost of the APS-tree depends only on the domain

sizes and is not affected by δ. The other approaches have storage that increases linearly

with δ. Notice that, as expected, for very dense datasets all the trees have comparable

storage cost. For the update experiment, we generate uniformly at random 100 updates

and report the average. The update cost is measured in number of hash computations

required. The APS-tree has to update half of the data entries on average. For the AAB-

tree and MB-tree the update cost is bounded by the height of the tree. The EMB−-tree has

slightly increased cost due to the embedded trees stored in every node. Not surprisingly,

the AAB-tree is orders of magnitude better than the APS-tree in terms of update cost.

7.2.3 Multi-dimensional Queries

In this section we compare the APS-tree and the AAR-tree approaches for 3-dimensional

queries. To obtain similar database sizes with the 1-dimensional experimental evaluation,

we generate synthetic datasets with maximum unique elements of
∏3

i=1 Mi = 125, 000

tuples, query workloads with 100 queries with varying values of ρ, and database density

δ = 0.8. The storage and update costs are studied for databases with varying density

values.

The I/O cost of the structures as a function of query selectivity is reported in Figure

7.11(a). The APS-tree once again has the best performance overall, since it only needs

122

 300

 500

 700

 900

 0.1 0.3 0.5 0.7 0.9

co
m

m
un

ic
at

io
n

co
st

 (
K

B
yt

es
)

query selectivity

 APS Tree
 AAR Tree

 4
 5
 6
 7
 8

(a) Communication cost

 500

 1000

 1500

 2000

 0.1 0.3 0.5 0.7 0.9

ha
sh

 c
om

pu
ta

tio
ns

 (
#)

query selectivity

 APS Tree
 AAR Tree

 5

 7

 9

 11

(b) Verification cost

Figure 7·12: 3-dimensional queries. Communication and verification cost.

to authenticate eight PS elements. The AAR-tree has much higher I/O since it needs to

construct the MCS which requires traversing many different paths of the R-tree structure,

due to multiple MBR overlaps at every level of the tree. Notice also that the I/O of the

AAR-tree increases as queries become less selective, since larger query rectangles result into

a larger number of leaf node MBRs included in the MCS as indicated in Figure 7.11(b).

This becomes clear in Figure 7.11(a) which shows that most I/O operations come from

the leaf level of the tree. The authentication and verification costs are shown in Figure

7·12. The APS-tree has small communication cost and verification cost, both bounded

by eight times the height of the tree; notice that our algorithm by merging the common

paths has reduced the costs from this worst case bound. The AAR-tree has much larger

communication cost due to larger MCS sizes and because it has to return the MBRs of

all MCS entries. The verification costs follow similar trends, since the number of hash

computations is directly related to the number of entries in the MCS.

Figure 7.13(a) shows the storage cost as a function of δ, for the APS-tree and AAR-tree.

In multiple dimensions the AAR-tree consumes more space when the database becomes

relatively dense, in contrast to the one-dimensional case. This is due to the fact that the

AAR-tree has to store the 3-dimensional MBRs for all nodes. In our experiments we use

4-byte floating point numbers and a small page size, but the trend is indicative. Figure

7.13(b) plots the update cost as a function of δ. The superior query cost of the APS-tree is

offset by its extremely high update cost. For 100 updates generated uniformly at random,

123

 0

 1000

 2000

 3000

 4000

 5000

 0.2 0.4 0.6 0.8 1

in
de

x
st

ru
ct

ur
e

si
ze

 (
K

B
yt

es
)

database density

APS Tree
AAR Tree

AR Tree

(a) Storage cost

 40000

 50000

 60000

 70000

 80000

 0.2 0.4 0.6 0.8 1

ha
sh

 c
om

pu
ta

tio
ns

 (
#)

database density

 APS Tree
 AAR Tree

 0
 2
 4
 6
 8

 10

(b) Update cost

Figure 7·13: 3-dimensional queries. Storage and update cost.

regardless of database density the APS-tree has to update half of the data entries on

average. In contrast, the AAR-tree inherits the good update characteristics of the R-tree.

7.2.4 Authentication Overhead

Again, we compare the cost of the authenticated version of the aggregation methods against

the non-authenticated ones. As we can see, the additional storage overhead of the AAR-

tree is small compared to the AR-tree. In Figure 7.13(a) we see that the extra storage

overhead due to authentication is half the storage cost of the AR-tree. Furthermore, the

query cost of the AAR-tree is less than twice the cost of the AR-tree. Note that the APS-

tree has smaller space overhead than the AR-tree for dense datasets. As the dimensionality

increases, we expect that the extra cost of authentication will become even smaller. Overall,

the authentication overhead for the aggregation case is proportionally smaller than the case

of selection and projection queries that we discussed before.

7.2.5 Discussion

In general, our proposed methods have multiple orders of magnitude smaller query cost

with almost the same storage and update cost as the existing approaches. Among the

new techniques proposed, the APS-tree has very small (constant) query cost but expensive

updates, and considerable space overhead in the case of sparse datasets. However, it works

the best for non-sparse datasets and naturally supports both one-dimensional and multi-

124

dimensional queries. In addition, it works with encrypted data as shown in Section 4.5.

The AAB-tree and AAR-tree have higher query cost but better space usage, especially for

sparse datasets, and superior update cost.

7.3 Experiments Evaluation for Authenticating Sliding Window Queries

on Data Streams

We implemented the proposed techniques and evaluated their performance over two real

data streams [Arlitt and Jin, 1998, AT&T, 2005]. The following cost metrics are consid-

ered: 1. the amortized update cost per tuple for the data owner; 2. the storage cost of

the authentication structure for the server; 3. the query cost; 4. the VO size; and 5. the

verification cost for the client.

All algorithms are implemented using GNU C++. Cryptographic functions are pro-

vided by [Crypto++ Library, 2005, OpenSSL, 2005]. Two real data streams have been

tested. The World Cup (WC) data stream [Arlitt and Jin, 1998] consists of web server

request traces for the 1998 Soccer World Cup. Each request contains attributes such as

a timestamp, a client id, a requested object id, a response size, etc. We used the request

streams of days 46 and 47 that have about 100 millions records. The IP traces (IPs)

data stream [AT&T, 2005] is collected over the AT&T backbone; each tuple is a TCP/IP

packet header. Since similar patterns have been observed for all cost metrics for both data

streams, we present results from the WC data only. We use tuples consisting of attributes

response size, object id, and client id, and a unique timestamp. Experiments were run on

a Linux box with an Intel Pentium 2.8GHz CPU. The SHA1 hash function takes about

1 ∼ 2µs (for input size up to 500 bytes); 128-byte RSA has a signing cost of about 2ms and

verifying cost of 120µs. Each hash value produced by SHA1 is 20 bytes and a signature

from RSA is 128 bytes.

125

7.3.1 Sliding window queries.

The TM-tree and the TMkd-tree are the two candidates for authenticating sliding window

queries. We compare them using one-dimensional queries on the “response size” attribute

(as the TM-tree does not support multi-dimensional queries). Since kd-tree requires its

indexed data having distinct values (see Section 5.3.1), we perturb the attribute “response

size” so that all tuples have unique values. In addition, in order to easily generate a set

of random queries with a fixed query selectivity, tuples are perturbed so that they have

uniformly distributed values in “response size”. Our performance study is not affected by

this, as the query cost is solely determined by the query selectivity.

Update cost per tuple. The data owner has to maintain the authenticated data struc-

tures as tuples are being produced. The data streaming setting mandates this cost to be

small. Figure 7.14(a) shows the amortized update cost per tuple for both trees over differ-

ent values of b (the maximum delay, which is determined by the owner). We notice that for

small b both trees have an excessive update cost; as b increases, the cost drops quickly. Af-

ter some point both start to grow slowly, due to the fact that the cost consists of an O(1/b)

signing and an O(log b) update cost (see Table 5.1). For small b, signing is the dominant

cost; when b exceeds a certain threshold, the latter begins to dominate. Figure 7.14(a)

reveals that for both trees b = 1, 000 is a sweet point. For smaller b’s the update cost is

too high to cope with bursty streams, while larger b’s introduce longer response delays for

the clients without further reducing the data owner’s cost significantly. With b = 1, 000

the amortized update cost per tuple is only 10 ∼ 15µs, i.e., both the owner and the server

could handle 105 tuples per second.

Structure size. Our analysis has pointed out that both TM-tree and TMkd-tree use

linear space given a window size N . It is still interesting to investigate the constant

factors associated with this cost. Figure 7.14(b) plots the results. It should be noted that

the storage cost does not depend on b. The size of the raw data (32 bytes per tuple)

is also provided in Figure 7.14(b) as a baseline for comparison. Both trees have very

126

 0
 5

 10
 15
 20
 25
 30
 35

 1 3 5 7 9 11

up
da

te
 c

os
t p

er
 tu

pl
e

(µ
s)

maximum delay b (x1,000 tuples)

TM-tree
TMkd-tree

(a) Update cost

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100 110

si
ze

 (
M

B
)

window size N(x1,000 tuples), b=1,000

TM-tree
TMkd-tree

Size of tuples

(b) Tree size

Figure 7·14: Tumbling trees: update cost and size.

good scalability and introduce very small overhead in size (only 5 MB for 100,000 tuples).

Another interesting fact to highlight is that at any time instance, the provider only needs

space large enough to store one Merkle tree (or Mkd-tree), built for the latest b tuples.

This has size roughly equal to 40 KB for b = 1, 000.

Query cost. We turn our attention to the per period update cost for sliding window

queries. The performance of one-shot window queries (or equivalently the initialization

cost for a new sliding window query) will be studied in Section 7.3.2. The query cost is

measured for two different workloads of 1, 000 randomly generated queries: 1. fixed sliding

period σ but varying query selectivity γ (Figure 7.15(a)); and 2. fixed query selectivity γ

but varying sliding period σ (Figure 7.15(b)). We set b to 1, 000 as suggested before and

report the average cost for one query. Note that γ is essentially equal to the selectivity on

the query attribute dimension, since most tuples in a window, except those in the boundary

trees when window slides, are indexed by trees that are fully covered in the time dimension

by the query window.

With the sliding period σ = b = 1, 000, four boundary trees will be queried to report the

new and expiring tuples. From the results we observe that both TM-tree and TMkd-tree

have roughly linearly increasing costs w.r.t query selectivity. TM-tree does have a lower

query cost even though theoretically it may access more nodes than TM-kd tree due to

the fact that it incurs false positives. This is explained by the fact that a balanced binary

search tree is used as the underlying structure for a single tree in TM-tree, which means

127

 0

 25

 50

 75

 100

 125

 150

 0 0.05 0.1 0.15 0.2 0.25 0.3

av
er

ag
e

qu
er

y
co

st
 (

µs
)

query selectiviy γ

TM-tree
TMkd-tree

(a) σ = 1, 000

 0

 40

 80

 120

 160

 200

 240

 1 3 5 7 9

av
er

ag
e

qu
er

y
co

st
 (

µs
)

sliding period / delay (σ/b)

TM-tree
TMkd-tree

(b) γ = 0.1

Figure 7·15: b = 1, 000, Query cost per period.

that all tuples are retrieved in a sequential scan in the leaf level. In addition, since trees

are bulk-loaded there will be strong locality among these leaf nodes in the main memory.

Adjacent nodes are loaded into the cache in one memory access and this dramatically

reduces the number of memory access. On the other hand, though TMkd-tree accesses

less number of nodes theoretically by avoiding any false positives, but they are all random

access which in practice leads to more nodes access and slower performance. When the

sliding period σ is larger than b, around 2σ
b +2 trees will be queried. Hence, the query cost

is roughly linear in σ as we have observed in Figure 7.15(b). Finally, since we only retrieve

the new and expiring tuples as the window slides, the sliding window query cost does not

depend on the window size n.

VO size. The VO size is the determining factor for the communication overhead between

the server and the client. In Figure 7·16 we plot the VO size using the same queries as in

Figure 7.15(a) and 7.15(b). Figure 7.16(a) reveals that the TM-tree has a much higher VO

size than the TMkd-tree, as it will incur roughly 4γb false positives in this case (see Figure

5·1). Recall that when σ = b, four boundary trees will be queried. On the other hand, the

TMkd-tree can avoid false positives as it indexes and stores authentication information for

both the selection attribute and the time axis. The difference can be order of magnitude

as the query selectivity increases. This is due to the fact that the TM-tree generates

false positives, which are part of the VO and each false positive is a tuple (32 bytes in our

experiment). Similarly, the linear trend w.r.t σ in Figure 7.16(b) for both trees is explained

128

 0
 3
 6
 9

 12
 15
 18
 21

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

V
O

 s
iz

e
(K

B
)

query selctivity γ

TM-tree
TMkd-tree

(a) σ = 1, 000

 0

 10

 20

 30

 40

 50

 60

 1 3 5 7 9

V
O

 s
iz

e
(K

B
)

sliding period / delay(σ/b)

TM-tree
TMkd-tree

(b) γ = 0.1

Figure 7·16: b = 1, 000, VO size per period.

by the same reason as in Figure 7.15(b). Again, the sliding window size n does not affect

the results.

Verification cost. The verification cost at the client is a mirror of the query process

performed by the server, except for the additional hashing operations to reconstruct the

hashes of the roots, and the verification of the digital signatures. Since these costs are

common to both the TM-tree and the TMkd-tree, similar trends as in Figure 7·15 have

been observed for the verification cost. We omit the details.

Experimental conclusion. For sliding window queries, TM-tree has better query cost

and TMkd-tree outperforms TM-tree with respect to the VO size. Nevertheless, TMkd-tree

naturally supports multi-dimensional queries while TM-tree can not handle those cases.

7.3.2 One-shot queries

Both TM-tree and TMkd-tree have linear cost in n (Table 5.1) for one-shot queries. In

this section, we study the performance of the DMkd-tree and the EMkd-tree.

Amortized update cost and structure size. First we study the amortized per-tuple

update cost. The result is shown in Figure 7.17(a) with varying maximum window sizes

N . Both trees have higher update cost compared to the TM-tree and TMkd-tree (see

Figure 7.14(a)) due to the O(log N) dependence (comparing to the O(log b) cost for tum-

bling trees). In addition, the EMkd-tree is more expensive than the DMkd-tree as it has

129

 15

 20

 25

 30

 10 30 50 70 90 110

up
da

te
 c

os
t p

er
 tu

pl
e

(µ
s)

maximum window size N(x1,000 tuples)

DMkd-tree
EMkd-tree

(a) Update cost

 0

 5

 10

 15

 20

 25

 30

 10 30 50 70 90 110

si
ze

 (
M

B
)

window size N (x1,000 tuples)

DMkd-tree
EMkd-tree

Size of tuples

(b) Tree size

Figure 7·17: Update cost and size for DMkd-tree and EMkd-tree, b =
1, 000.

 0
 80

 160
 240
 320
 400
 480
 560

 0 5 10 15 20 25

av
er

ag
e

qu
er

y
co

st
 (

µs
)

one-shot window size n(x1,000 tuples)

TM-tree
TMkd-tree
DMkd-tree
EMkd-tree

(a) Query cost

 0

 3

 6

 9

 12

 15

 18

 21

 0 5 10 15 20 25

V
O

 s
iz

e
(K

B
)

one-shot window size n (x1,000 tuples)

TM-tree
TMkd-tree
DMkd-tree
EMkd-tree

(b) VO size

Figure 7·18: One-shot window query b = 1, 000, γ = 0.1 and N = 20, 000.

an additional factor of O(log N
b). Nevertheless, for fairly large N (up to 100, 000 in our

experiments), both DMkd-tree and EMkd-tree achieve update costs of less than 30µs per

tuple. The smaller update cost of DMkd-tree is not for free. The tree occupies more space,

as shown in Figure 7.17(b), by an O(log N
b) factor compared to the EMkd-tree. EMkd-tree

utilizes linear space that is almost equal to the raw data size. It should be highlighted

though that the DMkd-tree still has a reasonable main memory size. As Figure 7.17(b)

has suggested, it takes less than 30 MB of memory for the maximum window of 100, 000

tuples.

Query cost and VO size. Our theoretical analysis shows that the DMkd-tree and EMkd-

tree should perform better than the TM-tree and TMkd-tree respectively, especially for

large window sizes. This is confirmed by our findings from Figure 7.18(a) (where N is set

to 20, 000 and γ = 0.1). The results are obtained by averaging over a workload of 1, 000

130

randomly generated queries. Clearly, the DMkd-tree and EMkd-tree outperforms their

counterparts TM-tree and TMkd-tree. The gaps between them are increasing with the

larger value for n. This saving is critical when there are multiple clients registering many

queries in the system. Lastly, we study the VO size for various trees under one-shot window

queries and present the results in Figure 7.18(b). The TM-tree has the worst performance

since it has to include roughly 2γb tuples as false positives in the two boundary trees. Both

the DMkd-tree and EMkd-tree have less VO size than the TM-kd tree.

Verification cost. Following the discussion in Section 7.3.1 for the verification cost,

similar trends as those reflected in the query cost for one-shot window queries have been

observed. The results are omitted for the brevity.

Experimental conclusion. Our results reveal that the DMkd-tree and EMkd-tree are

good candidates for answering one-shot window queries. For one dimensional query, the

data owner and the server could combine either the DMkd-tree, if reducing update and

query cost is a higher priority, or the EMkd-tree, if reducing the space usage is a higher

priority, together with the TM-tree, if the efficient query cost for maintaining the updates to

sliding window queries is a higher priority, or the TMkd-tree if low VO size for maintaining

the updates to sliding window queries is a higher priority. This gives the data owner and

the server flexible choices to answer all queries efficiently in different settings.

7.3.3 Aggregation and multi-dimensional queries

All of the proposed structures in this thesis for authenticating sliding window queries on

data streams can support authentication of aggregation queries as we have discussed. The

detailed evaluation of the performance under different cost metrics is rather involved and

they are not discussed here. However, as Table 5.1 has suggested, the cost analysis remains

almost the same for aggregation queries. We would like to highlight that all of our index

structures could be made to support the authentication of selection and aggregation queries

at the same time, as the trees for authenticating aggregation queries trivially support

131

answering and authenticating selection queries.

Finally, the TMkd-tree and EMkd-tree support multi-dimensional queries. The combi-

nation of these two structures provide a nice treatment for a highly dynamic environment

where multiple clients register various sliding window queries at any time instance, possibly

with different dimensionality, window sizes and sliding periods.

”

7.4 Empirical Evaluation for Query Execution Assurance on Data Streams

In this section we evaluate the performance of the proposed synopses over two real data

streams [Arlitt and Jin, 1998, AT&T, 2005]. The experimental study demonstrates that

our synopses: 1. use very small space; 2. support fast updates; 3. have very high accuracy;

4. support multiple queries; and 5. are easy to implement.

7.4.1 Setup

Our synopses are implemented using GNU C++ and the GNU GMP extension which

provides arbitrary precision arithmetic, useful for operating on numbers longer than 32

bits. The experiments were run on an Intel Pentium 2.8GHz CPU with 512KB L2 cache

and 512MB of main memory. Our results show that using our techniques, even a low-end

client machine can efficiently verify online queries with millions of groups on real data

streams.

The World Cup (WC) data stream [Arlitt and Jin, 1998] consists of web server logs

for the 1998 Soccer World Cup. Each record in the log contains several attributes such

as a timestamp, a client id, a requested object id, a response size, etc. We used the

request streams of days 46 and 47 that have about 100 millions records. The IP traces

(IPs) data stream [AT&T, 2005] is collected over the AT&T backbone network; each tuple

is a TCP/IP packet header. Here, we are interested in analyzing the source IP/port,

destination IP/port, and packet size header fields. The data set consists of a segment of

one day traffic and has 100 million packets. Without loss of generality, unless otherwise

132

WC IPs

Count 0.98 µs 0.98 µs
Sum 8.01 µs 6.69 µs

Table 7.1: Average update time per tuple.

stated, we perform the following default query: 1. Count or Sum (on response size) query

group-by client id/object id for the WC data set; 2. Count or Sum (on packet size) query

group-by source IP/destination IP for the IPs data set. Each client id, object id, IP address,

the response size, or the packet size is a 32-bit integer. Thus, the group id is 64-bit long (by

concatenating the two grouping attributes), meaning a potential group space of n = 264.

The number of nonzero groups is of course far lower than n: WC has a total of 50 million

nonzero groups and IPs has 7 million nonzero groups.

7.4.2 PIRS

A very conservative upper bound for the total response size and packet size is m = 1010 ≪

n ≈ 2 × 1019 for all cases in our experiments. So from our analysis in Section 6.3, PIRS-1

is clearly the better choice, and is thus used in our experiments. We precomputed p as the

smallest prime above 264 and used the same p throughout this section. Thus, each word

(storing p, α, and X (v)) occupies 9 bytes.

Space usage. As our analysis has pointed out, PIRS uses only 3 words, or 27 bytes for

our queries. This is in contrast to the näıve solution of keeping the exact value for each

nonzero group, which would require 600MB and 84MB of memory, respectively.

Update cost. PIRS has excellent update cost which is crucial to the streaming algorithm.

The average per-tuple update cost is shown in Table 7.1 for Count and Sum queries on both

WC and IPs. The update time for the two count queries stays the same regardless of the

data set, since an update always incurs one addition, one multiplication, and one modulo.

The update cost for sum queries is higher, since we need O(log u) time for exponentiation.

The cost on WC is slightly larger as its average u is larger than that of IPs. Nevertheless,

133

PIRS is still extremely fast in all cases, and is able to process more than 105 tuples (106

tuples for count queries) per second.

Detection accuracy. As guaranteed by the theoretical analysis, the probability of failure

of PIRS-1 is δ ≤ m/p, which is at most 0.5 × 10−9. Note that our estimate of m is very

conservative; the actual δ is much smaller. We generated 100, 000 random attacks and, not

surprisingly, PIRS identified all of them.

7.4.3 PIRSγ and PIRS±γ

For the rest of the experiments, we focus on the Count query on the WC data set. Similar

patterns have been observed on the IPs data set.

Update cost. In this set of experiments we study the performance of PIRSγ and PIRS±γ .

Clearly, PIRSγ has linear update cost w.r.t the number of layers and γ (the number of

inconsistent groups to detect), as confirmed in Figure 7.19(a). It is not hard to see that

PIRSγ and PIRS±γ have almost the same update cost if they are configured with the same

number of layers. Essentially, each one has to generate the γ-wise (or γ+-wise) independent

random numbers on-the-fly and update one PIRS synopsis at each layer. Hence, we only

show the cost for PIRSγ . However, the space cost of the two synopses is different. PIRSγ ,

as an exact solution for CQVγ , is expected to use much larger space than its counterpart

PIRS±γ, which gives approximate solutions. This is demonstrated in Figure 7·20. By

construction, at each layer PIRSγ has O(γ2) and PIRS±γ O(γ
ln γ) buckets, which is easily

observed in Figure 7.20(a) and 7.20(b) respectively.

Space/Time Trade-offs. If the client can afford to allocate some extra space, but still

cannot store the entire vector v, as discussed in Section 6.6, it is possible to exploit the

locality in the input data streams to reduce the amortized update cost. A simple LRU

buffer has been added to PIRSγ and PIRS±γ and its effect on update cost is reported in

Figure 7.19(b) with γ = 10. Again, both synopses exhibit very similar behavior. As the

figure indicates, a very small buffer (up to 500 KB) that fits into the cache is able to

134

 0

 40

 80

 120

 160

 200

 240

 0 5 10 15 20 25

up
da

t t
im

e
pe

r
tu

pl
e(

m
ic

ro
ss

ec
s)

gamma

layer = 5
layer = 10
layer = 15

(a) Update cost per tuple.

 0

 20

 40

 60

 80

 100

 120

 140

 0 60 120 180 240 300 360 420 480

up
da

te
 ti

m
e

pe
r

tu
pl

e
(m

ic
ro

se
cs

)

buffer size (KB)

layer = 5
layer = 10
layer = 15

(b) Space time tradeoff.

Figure 7·19: PIRSγ ,PIRS±γ : running time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35

m
em

or
y

us
ag

e
(K

B
)

gamma

layer = 5
layer = 10
layer = 15

(a) PIRSγ .

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35

m
em

or
y

us
ag

e
(K

B
)

gamma

layer = 5
layer = 10
layer = 15

(b) PIRS±γ .

Figure 7·20: PIRSγ, PIRS±γ: memory usage.

reduce the update cost by an order of magnitude. The improvement on the update cost of

this buffering technique depends on the degree of locality in the data stream. Note that

if this simple buffering technique is still insufficient for achieving the desired update speed

(e.g., when there is very little locality in the data stream or γ is large) we could use the

technique of [Siegel, 1989] to reduce the cost to O(log 1
δ) (independent of γ) by using extra

space, but generating random numbers much faster.

Detection accuracy. We observed that both of our synopses can achieve excellent detec-

tion accuracy as the theoretical analysis suggests. All results reported here are the ratios

obtained from 100, 000 rounds. Since the detection mechanism of the synopses does not

depend on the data characteristics, both data sets give similar results. Figure 7.21(a) shows

the ratios of raising alarms versus the number of actual inconsistent groups, with γ = 10

and 10 layers. As expected, PIRSγ has no false positives and almost no false negatives;

only very few false negatives are observed with 10 and 11 actual inconsistent groups. On

135

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

ra
ti
o
 o

f
ra

is
in

g
 a

la
rm

s

number of faulty groups

PIRS 10
PIRS +- 10

(a) γ = 10, ℓ = 15.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

ra
ti
o
 o

f
ra

is
in

g
 a

la
rm

s

number of faulty groups

Layer = 4
Layer = 5
Layer = 6

(b) PIRSγ , γ = 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

ra
ti
o
 o

f
ra

is
in

g
 a

la
rm

s

number of faulty groups

Layer = 10
Layer = 15
Layer = 20

(c) PIRS±γ , γ = 10.

Figure 7·21: Detection with tolerance for limited number of errors.

queries 5 10 15 20

update time (µs) 5.0 9.9 14.9 19.8
memory usage (bytes) 27 27 27 27

Table 7.2: Update time and memory usage of PIRS for multiple queries.

the other hand, PIRS±γ has a transition region around γ and it does have false positives.

Nevertheless, the transition region is sharp and once the actual number of inconsistent

groups is slightly off γ, both false positives and negatives reduce to zero. We have also

studied the impact of the number of layers on the detection accuracy. Our theoretical anal-

ysis gives provable bounds. For example with PIRSγ the probability of missing an alarm

is at most 1/2ℓ (for ℓ layers). In practice, the probability is expected to be even smaller.

We repeated the same experiments using different layers, and Figure 7.21(b) reports the

result for PIRSγ. With less layers (4–6) it still achieves excellent detection accuracy. Only

when the number of actual inconsistent groups is close to γ, a small drop in the detection

ratio is observed. Figure 7.21(c) reports the same experiment for PIRS±γ with layers from

10 to 20. Smaller number of layers enlarges the transition region and larger number of

layers sharpens it. Outside this region, 100% detection ratio is always guaranteed. Finally,

experiments have been performed over different values of γ’s and similar behavior has been

observed.

136

7.4.4 Multiple Queries

Our final set of experiments investigates the effect of multiple, simultaneous queries. With-

out loss of generality, we simply execute the same query a number of times. Note that the

same grouping attributes with different query ids are considered as different groups. We

tested with 5, 10, 15, and 20 queries in the experiments. Note that on the WC data set,

the exact solution would use 600MB for each query, hence 12GB if there are 20 queries.

Following the analysis in Section 6.6, our synopses naturally support multiple queries and

still have the same memory usage as if there were only one query. Nevertheless, the update

costs of all synopses increase linearly with the number of queries. In Table 7.2 we report

the update time and memory usage for PIRS; similar results were observed for PIRSγ and

PIRS±γ.

137

Chapter 8

Conclusion

Query authentication is a fundamental problem in the data publishing model. The es-

sential challenge is to introduce security guarantees while preserving the query efficiency,

especially, for large scale datasets. This dissertation has made significant progress to-

wards that goal. The key idea throughout this thesis is to adapt advanced techniques from

other fields, such as cryptography and fingerprinting, into the process of data management

without dramatically increasing the system cost and sacrificing the query performance. We

realize this idea by designing algorithms that work extremely well in practice and bounding

their performance with rigorous theoretical analysis.

More specifically, our study has revealed novel structures, featuring with low maintain-

able cost and minimal query overhead, for authenticating range and aggregation queries

for both relational and streaming databases. This dissertation also fills in the gap for an

important variation of the query authentication problem, namely query execution assur-

ance on data streams. Rather than relying on random sampling techniques, as previous

work has advocated for off-line, relational databases, which evidently bounds the success

rate to the sampling ratio, this thesis introduces a complete different approach based on

fingerprinting techniques. This technique achieves success rates that are almost always

equal to 1. Furthermore, we prove the optimality of the fingerprinting technique in terms

of space and accuracy.

All these are possible while consuming very limited amount of system resources in terms

of both memory usage and CPU computation. Another notable contribution of this thesis

is the extensive experimental evaluation for all proposed techniques. We have implemented

a working prototype for empirical evaluations and our implementation has demonstrated

138

the superior practicality of the proposed solutions.

Looking beyond the scope of this thesis, the present work introduced several important

new problems, such as, query authentication and query execution assurance over data

streams. Our discussion has been concentrated on range and aggregation queries. However,

our long term goal is to efficiently proof-infuse a database for all possible queries. Therefore,

an important open problem is how to design and extend existing solutions for authenticating

complex relational and continuous queries with minimum overhead. The queries can consist

multiple multi-way or binary joins, projections, selection and group by operations with

aggregation. As a start we can investigate simple join queries that have not been studied

in depth yet and OLAP (online analytical processing) operations in data warehouses.

Another interesting problem that remains open is to authenticate only a subset of the

returned query results. This problem has many compiling reasons to be an ideal candidate

for future research. For example, it will enable clients to utilize results from a query

workload when a subset of the queries or a portion of results for one query has been

contaminated. The current methods do not achieve that; when the authentication of a

query result fails, the complete answer is discarded.

139

List of Abbreviations for Conferences, Journals

and Workshops

ASIAN Asian Computing Science Conference

CACM Communication of ACM

CCS Conference on Computer and Communication Security

CIDR Conference on Innovative Data Systems Research

CIKM Conference on Information and Knowledge Management

CRYPTO International Cryptology Conference

CT-RSA The Cryptographers’ Track within the RSA Conference

DBSec Conference on Data and Applications Security

ESORICS European Symposium on Research in Computer Security

FOCS Symposium on Foundations of Computer Science

ICDE International Conference on Data Engineering

IH International Workshop on Information Hiding

ISC Information Security Conference

JACM Journal of ACM

NDSS Network and Distributed System Security Symposium

OSDI Operating Systems Design and Implementation

PODS Principal of Database Systems

RANDOM Workshop on Randomization and Approximation Techniques

SIGMOD International Conference on Management of Data

SODA ACM-SIAM Symposium on Discrete Algorithms

140

SSDBM Statistical and Scientific Database Management

STOC Symposium on Theory of Computing

TKDE Transaction of Knowledge and Data Engineering

TODS Transaction of Database Systems

VLDB Very Large Databases Conference

VLDBJ International Journal on Very Large Databases

References

[Abadi et al., 2005] Abadi, D., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack,
M., Hwang, J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N.,
Xing, Y., and Zdonik, S. (2005). The Design of the Borealis Stream Processing
Engine. In CIDR.

[Agrawal et al., 2004] Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. (2004). Order
preserving encryption for numeric data. In SIGMOD, pages 563–574.

[Agrawal and Srikant, 2000] Agrawal, R. and Srikant, R. (2000). Privacy-preserving
data mining. In SIGMOD, pages 439–450.

[Agrawal et al., 2005] Agrawal, R., Srikant, R., and Thomas, D. (2005). Privacy pre-
serving OLAP. In SIGMOD, pages 251–262.

[Alon et al., 1996] Alon, N., Matias, Y., and Szegedy, M. (1996). The space complexity
of approximating the frequency moments. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pages 20–29.

[Anagnostopoulos et al., 2001] Anagnostopoulos, A., Goodrich, M., and Tamassia, R.
(2001). Persistent authenticated dictionaries and their applications. In Infor-
mation Security Conference (ISC), pages 379–393.

[Arasu et al., 2003] Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa,
I., Rosenstein, J., and Widom, J. (2003). Stream: The stanford stream data
manager. IEEE Data Engineering Bulletin, 26(1):19–26.

[Arasu and et al., 2003] Arasu, A. and et al. (2003). Stream: The stanford stream data
manager. IEEE Data Engineering Bulletin, 26(1).

[Arasu and Manku, 2004] Arasu, A. and Manku, G. S. (2004). Approximate counts
and quantiles over sliding windows. In PODS, pages 286–296.

[Arlitt and Jin, 1998] Arlitt, M. and Jin, T. (1998). http://www.acm.org/sigcomm/ITA/.
ITA, 1998 World Cup Web Site Access Logs.

[AT&T, 2005] AT&T (2005). AT&T network traffic streams. AT&T Labs.

[Babcock et al., 2002] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J.
(2002). Models and issues in data stream systems. In PODS.

[Babcock et al., 2004] Babcock, B., Datar, M., and Motwani, R. (2004). Load shedding
for aggregation queries over data streams. In ICDE, pages 350–361.

141

142

[Babcock et al., 2003] Babcock, B., M.Datar, Motwani, R., and O’Callaghan, L. (2003).
Maintaining variance and k-medians over data stream windows. In PODS, pages
234–243.

[Bar-Yossef et al., 2002] Bar-Yossef, Z., Jayram, T. S., Kumar, R., Sivakumar, D., and
Trevisan, L. (2002). Counting distinct elements in a data stream. In RANDOM,
pages 1–10.

[Bellare et al., 1994] Bellare, M., Goldreich, O., and Goldwasser, S. (1994). Incremental
cryptography: The case of hashing and signing. In CRYPTO, pages 216–233.

[Bellare et al., 1995] Bellare, M., Guerin, R., and Rogaway, P. (1995). Xor macs: New
methods for message authentication using finite pseudorandom functions. In
CRYPTO, pages 15–28.

[Bentley, 1975] Bentley, J. L. (1975). Multidimensional binary search trees used for
associative searching. CACM, 18(9):509–517.

[Bertino et al., 2004] Bertino, E., Carminati, B., Ferrari, E., Thuraisingham, B., and
Gupta, A. (2004). Selective and authentic third-party distribution of XML
documents. TKDE, 16(10):1263–1278.

[Blum and Kannan, 1995] Blum, M. and Kannan, S. (1995). Designing programs that
check their work. Journal of the ACM, 42(1):269–291.

[Bouganim et al., 2005] Bouganim, L., Cremarenco, C., Ngoc, F. D., Dieu, N., and
Pucheral, P. (2005). Safe data sharing and data dissemination on smart devices.
In SIGMOD, pages 888–890.

[Bouganim et al., 2003] Bouganim, L., Ngoc, F. D., Pucheral, P., and Wu, L. (2003).
Chip-secured data access: Reconciling access rights with data encryption. In
VLDB, pages 1133–1136.

[Bureau, 2006] Bureau, U. C. (2006). Quarterly retail e-commerce sales. http://
www.census.gov/ mrts/ www/ ecomm.html.

[Carney et al., 2003] Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Seidman, G., Stonebraker, M., Tatbul, N., and Zdonik, S. B. (2003). Monitoring
streams – a new class of data management applications. In VLDB, pages 215–
226.

[Chan et al., 2006] Chan, H., Perrig, A., and Song, D. (2006). Secure hierarchical in-
network aggregation in sensor networks. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), pages 278–287.

[Chandrasekaran et al., 2003] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,
M. J., Hellerstein, J. M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V.,
Reiss, F., and Shah, M. A. (2003). Telegraphcq: continuous dataflow processing
for an uncertain world. In CIDR.

143

[Chandrasekaran and et al., 2003] Chandrasekaran, S. and et al. (2003). Telegraphcq:
continuous dataflow processing for an uncertain world. In CIDR.

[Chen et al., 2002] Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., and Jakubowski,
M. H. (2002). Oblivious hashing: A stealthy software integrity verification
primitive. In Proc. of the International Workshop on Information Hiding (IH),
pages 400–414.

[Cheng et al., 2006] Cheng, W., Pang, H., and Tan, K. (2006). Authenticating multi-
dimensional query results in data publishing. In DBSec.

[Comer, 1979] Comer, D. (1979). The ubiquitous B-tree. ACM Computing Surveys,
11(2):121–137.

[Cormode and Muthukrishnan, 2003] Cormode, G. and Muthukrishnan, S. (2003). What’s
hot and what’s not: tracking most frequent items dynamically. In PODS, pages
296–306.

[Cormode and Muthukrishnan, 2005] Cormode, G. and Muthukrishnan, S. (2005). An
improved data stream summary: the count-min sketch and its applications.
Journal of Algorithms, 55(1):58–75.

[Cranor et al., 2003a] Cranor, C., Johnson, T., Spatscheck, O., and Shkapenyuk, V.
(2003a). Gigascope: A stream database for internet databases. In SIGMOD.

[Cranor et al., 2003b] Cranor, C., Johnson, T., Spatscheck, O., and Shkapenyuk, V.
(2003b). Gigascope: A stream database for internet databases. In SIGMOD,
pages 647–651.

[Crypto++ Library, 2005] Crypto++ Library (2005). http://www. eskimo. com/
∼weidai/ cryptlib.html.

[Datar et al., 2002] Datar, M., Gionis, A., Indyk, P., and Motwani, R. (2002). Main-
taining stream statistics over sliding windows. In SODA, pages 635–644.

[de Berg et al., 2000] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf,
O. (2000). Computational Geometry: Algorithms and Applications. Springer.

[Devanbu et al., 2003] Devanbu, P., Gertz, M., Martel, C., and Stubblebine, S. (2003).
Authentic data publication over the internet. Journal of Computer Security,
11(3):291–314.

[Devanbu et al., 2000] Devanbu, P., Gertz, M., Martel, C., and Stubblebine, S. G.
(2000). Authentic third-party data publication. In IFIP Workshop on Database
Security (DBSec), pages 101–112.

[Evfimievski et al., 2003] Evfimievski, A., Gehrke, J., and Srikant, R. (2003). Limiting
privacy breaches in privacy preserving data mining. In PODS, pages 211–222.

144

[Flajolet and Martin, 1985] Flajolet, P. and Martin, G. N. (1985). Probabilistic count-
ing algorithms for data base applications. Journal of Computer and System
Sciences, 31(2):182–209.

[Freivalds, 1979] Freivalds, R. (1979). Fast probabilistic algorithms. In Proc. of
International Symposium on Mathematical Foundations of Computer Science
(MFCS), pages 57–69.

[Fu et al., 2002] Fu, K., Kaashoek, M. F., and Mazieres, D. (2002). Fast and secure
distributed read-only file system. ACM Trans. Comput. Syst., 20(1):1–24.

[Ganguly et al., 2004] Ganguly, S., Garofalakis, M., and Rastogi, R. (2004). Track-
ing set-expression cardinalities over continuous update streams. The VLDB
Journal, 13(4):354–369.

[Garofalakis et al., 2007] Garofalakis, M., Hellerstein, J. M., and Maniatis, P. (2007).
Proof sketches: Verifiable in-network aggregation. In ICDE.

[Ge and Zdonik, 2007] Ge, T. and Zdonik, S. (2007). Fast, secure encryption for index-
ing in a column-oriented dbms. In ICDE.

[Gilbert et al., 2002] Gilbert, A. C., Kotidis, Y., Muthukrishnan, S., and Strauss, M.
(2002). How to summarize the universe: Dynamic maintenance of quantiles. In
VLDB, pages 454–465.

[Golab, 2006] Golab, L. (2006). Sliding Window Query Processing over Data Streams.
PhD thesis, University of Waterloo, Canada.

[Goldwasser et al., 1988] Goldwasser, S., Micali, S., and Rivest, R. L. (1988). A dig-
ital signature scheme secure against adaptive chosen-message attacks. SIAM
Journal on Computing, 17(2):96–99.

[Goodrich et al., 2003] Goodrich, M. T., Tamassia, R., Triandopoulos, N., and Cohen,
R. (2003). Authenticated data structures for graph and geometric searching.
In CT-RSA, pages 295–313.

[Guttman, 1984] Guttman, A. (1984). R-trees: A dynamic index structure for spatial
searching. In SIGMOD, pages 47–57.

[Hacigümüs et al., 2002a] Hacigümüs, H., Iyer, B. R., Li, C., and Mehrotra, S. (2002a).
Executing SQL over encrypted data in the database service provider model. In
SIGMOD, pages 216–227.

[Hacigümüs et al., 2002b] Hacigümüs, H., Iyer, B. R., and Mehrotra, S. (2002b). Pro-
viding database as a service. In ICDE, pages 29–40.

[Hammad and et al., 2004] Hammad, M. and et al. (2004). Nile: A query processing
engine for data streams. In ICDE.

145

[Hammad et al., 2004] Hammad, M. A., Mokbel, M. F., Ali, M. H., Aref, W. G., Catlin,
A. C., Elmagarmid, A. K., Eltabakh, M., Elfeky, M. G., Ghanem, T. M.,
Gwadera, R., Ilyas, I. F., Marzouk, M., and Xiong, X. (2004). Nile: A query
processing engine for data streams. In ICDE, page 851.

[Ho et al., 1997] Ho, C.-T., Agrawal, R., Megiddo, N., and Srikant, R. (1997). Range
queries in OLAP data cubes. In SIGMOD, pages 73–88.

[Hore et al., 2004] Hore, B., Mehrotra, S., and Tsudik, G. (2004). A privacy-preserving
index for range queries. In VLDB, pages 720–731.

[Huebsch et al., 2003] Huebsch, R., Hellerstein, J. M., Lanham, N., Loo, B. T., Shenker,
S., and Stoica, I. (2003). Querying the internet with pier. In VLDB.

[Jürgens and Lenz, 1999] Jürgens, M. and Lenz, H. (1999). Pisa: Performance models
for index structures with and without aggregated data. In SSDBM, pages 78–87.

[Kamel and Faloutsos, 1993] Kamel, I. and Faloutsos, C. (1993). On packing R-Trees.
In CIKM, pages 490–499.

[Knuth, 1997] Knuth, D. E. (1997). The Art of Computer Programming. Addison-
Wesley.

[Lazaridis and Mehrotra, 2001] Lazaridis, I. and Mehrotra, S. (2001). Progressive ap-
proximate aggregate queries with a multi-resolution tree structure. In SIGMOD,
pages 401–412.

[Li et al., 2006a] Li, F., Hadjieleftheriou, M., Kollios, G., and Reyzin, L. (2006a). Au-
thenticated index sturctures for aggregation queries in outsourced databases.
Technical report, CS Dept., Boston University.

[Li et al., 2006b] Li, F., Hadjieleftheriou, M., Kollios, G., and Reyzin, L. (2006b). Dy-
namic authenticated index structures for outsourced databases. In SIGMOD.

[Li et al., 2007] Li, F., Yi, K., Hadjieleftheriou, M., and Kollios, G. (2007). Proof-
infused streams: Enabling authentication of sliding window queries on streams.
In VLDB.

[Manku and Motwani, 2002] Manku, G. S. and Motwani, R. (2002). Approximate Fre-
quency Counts over Data Streams. In VLDB, pages 346–357.

[Martel et al., 2004] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., and
Stubblebine, S. (2004). A general model for authenticated data structures.
Algorithmica, 39(1):21–41.

[McCurley, 1990] McCurley, K. (1990). The discrete logarithm problem. In Proc. of
the Symposium in Applied Mathematics, pages 49–74. American Mathematical
Society.

146

[Merkle, 1978] Merkle, R. C. (1978). Secure communications over insecure channels.
CACM, 21(4):294–299.

[Merkle, 1989] Merkle, R. C. (1989). A certified digital signature. In CRYPTO, pages
218–238.

[Micali, 1996] Micali, S. (1996). Efficient certificate revocation. Technical Report
MIT/LCS/TM-542b, Massachusetts Institute of Technology, Cambridge, MA.

[Miklau, 2005] Miklau, G. (2005). Confidentiality and Integrity in Distributed Data
Exchange. PhD thesis, University of Washington.

[Miklau and Suciu, 2003] Miklau, G. and Suciu, D. (2003). Controlling access to pub-
lished data using cryptography. In VLDB, pages 898–909.

[Miklau and Suciu, 2005] Miklau, G. and Suciu, D. (2005). Implementing a tamper-
evident database system. In ASIAN.

[Mitra et al., 2006] Mitra, S., Hsu, W., and Winslett, M. (2006). Trustworthy keyword
search for regulatory-compliant record retention. In VLDB, pages 1001–1012.

[Motwani and Raghavan, 1995] Motwani, R. and Raghavan, P. (1995). Randomized
Algorithms. Cambridge University Press.

[Muthukrishnan, 2003] Muthukrishnan, S. (2003). Data streams: algorithms and ap-
plications.

[Mykletun et al., 2004a] Mykletun, E., Narasimha, M., and Tsudik, G. (2004a). Au-
thentication and integrity in outsourced databases. In NDSS.

[Mykletun et al., 2004b] Mykletun, E., Narasimha, M., and Tsudik, G. (2004b). Sig-
nature bouquets: Immutability for aggregated/condensed signatures. In ES-
ORICS, pages 160–176.

[Mykletun and Tsudik, 2006] Mykletun, E. and Tsudik, G. (2006). Aggregation queries
in the database-as-a-service model. In DBSec.

[Nagell, 1981] Nagell, T. (1981). Introduction to Number Theory. Chelsea Publishing
Company, second edition.

[Naor and Nissim, 1998] Naor, M. and Nissim, K. (1998). Certificate revocation and
certificate update. In Proceedings of the USENIX Security Symposium.

[Narasimha and Tsudik, 2005] Narasimha, M. and Tsudik, G. (2005). Dsac: Integrity
of outsourced databases with signature aggregation and chaining. In CIKM,
pages 235–236.

[National Institute of Standards and Technology, 1995] National Institute of Standards
and Technology (1995). FIPS PUB 180-1: Secure Hash Standard. National
Institute of Standards and Technology.

147

[OpenSSL, 2005] OpenSSL (2005). http://www.openssl.org.

[Pang et al., 2005] Pang, H., Jain, A., Ramamritham, K., and Tan, K.-L. (2005). Veri-
fying completeness of relational query results in data publishing. In SIGMOD,
pages 407–418.

[Pang and Tan, 2004] Pang, H. and Tan, K.-L. (2004). Authenticating query results in
edge computing. In ICDE, pages 560–571.

[Rivest et al., 1978] Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for
obtaining digital signatures and public-key cryptosystems. CACM, 21(2):120–
126.

[Rizvi et al., 2004] Rizvi, S., Mendelzon, A., Sudarshan, S., and Roy, P. (2004). Ex-
tending query rewriting techniques for fine-grained access control. In SIGMOD,
pages 551–562.

[Rusu and Dobra, 2007] Rusu, F. and Dobra, A. (2007). Pseudo-random number gen-
eration for sketch-based estimations. TODS, 32(2).

[Saroiu et al., 2002] Saroiu, S., Gummadi, P. K., Dunn, R., Gribble, S., and Levy, H.
(2002). An analysis of internet content delivery systems. In OSDI.

[Schwartz, 1980] Schwartz, J. T. (1980). Fast probabilistic algorithms for verification
of polynomial identities. Journal of the ACM, 27(4):701–717.

[Siegel, 1989] Siegel, A. (1989). On universal classes of fast high performance hash
functions, their time-space tradeoff, and their applications. In FOCS, pages
20–25.

[Sion, 2004] Sion, R. (2004). Proving ownership over categorical data. In ICDE.

[Sion, 2005] Sion, R. (2005). Query execution assurance for outsourced databases. In
VLDB, pages 601–612.

[Sion et al., 2003] Sion, R., Atallah, M., and Prabhakar, S. (2003). Rights protection
for relational data. In SIGMOD.

[Sion et al., 2004] Sion, R., Atallah, M., and Prabhakar, S. (2004). Protecting rights
over relational data using watermarking. IEEE TKDE, 16(12):1509–1525.

[Sion et al., 2006] Sion, R., Atallah, M., and Prabhakar, S. (2006). Rights protection
for discrete numeric streams. TKDE, 18(5):699–714.

[Tamassia and Triandopoulos, 2005a] Tamassia, R. and Triandopoulos, N. (2005a). Com-
putational bounds on hierarchical data processing with applications to informa-
tion security. In Proc. of the International Colloquim on Automata, Languages
and Programming (ICALP), pages 153–165.

148

[Tamassia and Triandopoulos, 2005b] Tamassia, R. and Triandopoulos, N. (2005b). Ef-
ficient content authentication over distributed hash tables. Technical report,
Brown University.

[Tao and Papadias, 2004a] Tao, Y. and Papadias, D. (2004a). Performance analysis of
R*-Trees with arbitrary node extents. TKDE, 16(6):653–668.

[Tao and Papadias, 2004b] Tao, Y. and Papadias, D. (2004b). Range aggregate pro-
cessing in spatial databases. TKDE, 16(12):1555–1570.

[Tatbul et al., 2003] Tatbul, N., Cetintemel, U., Zdonik, S., Cherniack, M., and Stone-
braker, M. (2003). Load shedding in a data stream manager. In VLDB, pages
309–320.

[Tatbul and Zdonik, 2006] Tatbul, N. and Zdonik, S. (2006). Window-aware load shed-
ding for aggregation queries over data streams. In VLDB, pages 799–810.

[Theodoridis and Sellis, 1996] Theodoridis, Y. and Sellis, T. K. (1996). A model for the
prediction of r-tree performance. In PODS, pages 161–171.

[Wasserman and Blum, 1997] Wasserman, H. and Blum, M. (1997). Software reliability
via run-time result-checking. Journal of the ACM, 44(6):826–849.

[Wegman and Carter, 1981] Wegman, M. N. and Carter, J. L. (1981). New hash func-
tions and their use in authentication and set equality. Journal of Computer and
System Sciences, 22(3).

[Yang et al., 2005] Yang, S., Butt, A. R., Hu, Y. C., and Midkiff, S. P. (2005). Trust but
verify: monitoring remotely executing programs for progress and correctness. In
ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming
(PPOPP), pages 196–205.

[Yi et al., 2007] Yi, K., Li, F., Hadjieleftheriou, M., Srivastava, D., and Kollios, G.
(2007). Randomized synopses for query assurance on data streams. Technical
report, AT&T Labs Inc.

[Zhang et al., 2005] Zhang, R., Koudas, N., Ooi, B. C., and Srivastava, D. (2005). Mul-
tiple aggregations over data streams. In SIGMOD, pages 299–310.

[Zhu and Hsu, 2005] Zhu, Q. and Hsu, W. (2005). Fossilized index: The linchpin of
trustworthy non-alterable electronic records. In SIGMOD, pages 395–406.

149

CURRICULUM VITAE

Feifei Li

RM138, 111 Cummington St. Voice: (617) 353-5227
Department of Computer Sci-
ence

Fax: (617) 353-6457

Boston University E-mail: lifeifei@cs.bu.edu
Boston, MA 02215 USA Webpage: http://cs-people.bu.edu/lifeifei/

Research Interests

Security and privacy in both streaming and relational database systems, management
and indexing of large databases, spatio-temporal database applications, stream and sensor
databases.

Education

September 2002 - July 2007 (Expected) Ph.D. in Computer Science, Computer Sci-
ence Department, Boston University. Advisor: Prof. George Kollios.

September 1998 - Jan 2002 B.S. in Computer Engineering, School of Computer Engi-
neering, Nanyang Technological University, Singapore.

September 1997 - December 1997 Study in Department of Electrical Engineering, Tsin-
hua University, Beijing, China.

September 1994 - June 1997 Study in Tsinghua High School attached to Tsinhua Uni-
versity, Beijing, China.

Awards

• Best Presenter Award, in research summer interns Seminar@Luch Series, IBM T.J.
Watson Research Center, August, 2006.

• Best Paper Award, in 20th International Conference on Data Engineering(ICDE),
March, 2004.

Publications

Refereed Conferences

1. Proof-Infused Streams: Enabling Authentication of Sliding Window Queries On
Streams, by F. Li, K. Yi, M. Hadjieleftheriou, G. Kollios, (To Appear) In Proceed-
ings of the 33rd International Conference on Very Large Databases(VLDB 2007),
Vienna, Austria, September 2007.

150

2. Time Series Compressibility and Privacy, by S. Papadimitriou, F. Li, G. Kollios,
P. S. Yu, (To Appear) In Proceedings of the 33rd International Conference on Very
Large Databases (VLDB 2007), Vienna, Austria, September 2007.

3. Hiding in the Crowd: Privacy Preservation on Evolving Streams through Correlation
Tracking, by F. Li, J. Sun, S. Papadimitriou, G. Mihaila, and I. Stanoi. In Proceed-
ings of the 23nd IEEE International Conference on Data Engineering (ICDE 2007),
Istanbul, Turkey, April 2007.

4. Dynamic Authenticated Index Structures for Outsourced Databases, by F. Li, M.
Hadjieleftheriou, G. Kollios, and L. Reyzin. In Proceedings of the 2006 ACM SIG-
MOD International Conference on Management of Data (SIGMOD 2006), Chicago,
Illinois, USA, June 2006.

5. Characterizing and Exploiting Reference Locality in Data Stream Applications, by
F. Li, C. Chang, G. Kollios, and A. Bestavros. In Proceedings of the 22nd IEEE In-
ternational Conference on Data Engineering (ICDE 2006), Atlanta, Georgia, USA,
April 2006.

6. On Trip Planning Queries in Spatial Databases, by F. Li, D. Cheng, M. Hadjielefthe-
riou, G. Kollios, and S.-H. Teng. In Proceedings of the 9th International Symposium
on Spatial and Temporal Databases (SSTD 2005), Angra dos Reis, Brazil, August,
2005.

7. Approximate Aggregation Techniques for Sensor Databases, by J. Considine, F. Li,
G. Kollios, and J. Byers. In Proceedings of the 20th IEEE International Conference
on Data Engineering (ICDE 2004), Boston, MA, March 30 - April 2, 2004. Best
Paper Award

8. Spatio-Temporal Aggregation Using Sketches, by Y. Tao, G. Kollios, J. Considine,
F. Li, and D. Papadias. In Proceedings of the 20th IEEE International Conference
on Data Engineering (ICDE 2004), Boston, MA, March 30 - April 2, 2004.

9. WICCAP Data Model: Mapping Physical Websites to Logical Views, by Z. Liu, F.
Li, and W. Ng. In Proceedings of the 21st International Conference on Conceptual
Modeling (ER 2002), Tampere, Finland, October 8-10, 2002. Springer.

10. Web Information Collection, Collaging and Programming, by F. Li, Z. Liu, Y. Huang,
and W. Ng. In Proceedings of the 3rd IEEE International Conference on Information,
Communications & Signal Processing (ICICS 2001), Singapore, October, 2001.

Refereed Journals

1. Robust Aggregation in Sensor Networks, by G. Kollios, J. Byers, J. Considine, M.
Hadjieleftheriou, and F. Li. IEEE Data Engineering Bulletin, Vol. 28, No. 1, March
2005.

151

2. Towards Building Logical Views of Websites, by Z. Liu, W. Ng, E. Lim, F. Li. Data
& Knowledge Engineering, Vol. 49, No 2, May 2004, Elsevier. (Invited by WIDM
2002).

Refereed Workshops

1. An Information Concierge for the Web, by F. Li, Z. Liu, Y. Huang, and W. Ng. In
Proceedings of the First International Workshop on Internet Bots: Systems and Ap-
plications (INBOSA 2001), in conjunction with the 12th International Conference
on Database and Expert System Applications (DEXA 2001), Munich, Germany,
September 3-8, 2001.

Technical Reports

1. Efficient Processing of Top-k Queries on Uncertain Databases, by K. Yi, F. Li, D.
Srivastava and G. Kollios, AT&T Technical Report, June, 2007.

2. Randomized Synopsis for Query Assurance on Data Streams, by K. Yi, F. Li, M.
Hadjieleftheriou, D. Srivastava and G. Kollios, AT&T Technical Report, June, 2007.

3. Authenticated Index Structures for Aggregation Queries in Outsourced Databases,
by F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, BUCS-TR-2006-011, May,
2006.

4. GreedyDual-Join: Locality-Aware Buffer Management for Approximate Join Pro-
cessing Over Data Streams, by F. Li, C. Cheng, A. Bestavros , and G. Kollios,
BUCS-TR-2004-028, April, 2004.

Professional Experience

• Database Research Group, Microsoft Research, Redmond, WA, USA

Research Summer Intern May, 2007 - August, 2007

• Database Management Research Department, AT&T Shannon Research
Lab, Florham Park, NJ, USA

Research Consultant on Data, Network Security and Privacy Since Sep, 2006

• Database Research Group, IBM T.J.Watson Research Center, Hawthorne,
NY, USA

Research Summer Intern June, 2006 - September, 2006

• SQL Server Group, Microsoft, Redmond, WA, USA

Summer Intern June, 2005 - September, 2005

152

Professional Service

• External Reviewer for the following journals: TKDE, VLDBJ.

• External Reviewer for the following conferences: VLDB 2007, ICDE 2007, VLDB
2006, ICDE 2006, VLDB 2005.

• Conference Volunteer for the following conferences: ICDE 2004, SSDBM 2003.

Teaching Experience

• Teaching Assistant, Computer Science Department, Boston University, Fall, 2002.
Course: Introduction to Computer Science.

• Teaching Assistant, Computer Science Department, Boston University, Spring, 2003.
Course: Introduction to C++.

• Teaching Assistant, Computer Science Department, Boston University, Fall, 2003.
Course: Advanced Database Systems.

• Teaching Assistant, Computer Science Department, Boston University, Spring, 2004.
Course: Introduction to Database Systems.

Patents

• Co-Inventor, Method of Privacy-Preserving Data Stream Publishing using Dynamic
Correlations, US patent YOR9-2006-0786

• Co-Inventor, Method of Privacy-Preserving Data Stream Publishing using Dynamic
Autocorrelation, US patent YOR9-2006-0787

