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Abstract

Many knowledge bases like Google and Facebook’s

knowledge/social graphs are represented and stored as

RDF graphs, where users can issue structured queries

on such graphs using SPARQL. With massive queries

over large and constantly growing RDF data, it is im-

perative that an RDF graph store should provide low la-

tency and high throughput for concurrent query process-

ing. However, prior systems still experience high per-

query latency over large datasets and most prior designs

have poor resource utilization such that each query is

processed in sequence.

We present Wukong1, a distributed graph-based RDF

store that leverages RDMA-based graph exploration to

support highly concurrent and low-latency queries over

large data. Following a graph-centric design, Wukong

builds indexes by extending the graphs with index ver-

tices and leverages differentiated graph partitioning to

retain locality (for normal vertices) while exploiting par-

allelism (for index vertices). To explore the low-latency

feature of RDMA, Wukong leverages a new RDMA-

friendly, predicate-based key/value store to store the par-

titioned graphs. To provide low latency and high par-

allelism, Wukong decomposes a query into sub-queries,

each of which may be distributed over and handled by a

set of machines in parallel. For each sub-query, Wukong

leverages RDMA to provide communication-aware op-

timizations to balance between execution and data mi-

gration. To reduce inter-query interference, Wukong

leverages a worker-obliger work stealing mechanism to

oblige queries in straggler workers. Evaluation on a 6-

node RDMA-capable cluster shows that Wukong signif-

icantly outperforms state-of-the-art systems like TriAD

and Trinity.RDF for both latency and throughput, usually

at the scale of orders of magnitude.

1 INTRODUCTION

Many large datatsets, especially for a knowledge base,

are increasingly published using the Resource Descrip-

1Short for Sun Wukong, who is known as the Monkey King and is a

main character in the Chinese classical novel “Journey to the West”. Since

Wukong is known for his swift reactions to complex situations and ability to

do massive multi-tasking, both in large scale input (e.g. space and time), we

term our system as Wukong. The source code of Wukong is available from

http://ipads.se.sjtu.edu.cn/projects/wukong.

tion Framework (RDF) format, which represents a

dataset as a set of 〈sub ject, predicate,ob ject〉 triples that

form a directed and labeled graph. Examples include

Google’s knowledge graph [11] and Facebook’s social

graph [31], and a number of public knowledge bases in-

cluding DBpedia [1], Probase [35], PubChemRDF [18]

and Bio2RDF [6]. There are also a number of public and

commercial websites like Google and Bing providing on-

line queries through SPARQL2 to such datasets.

With the increasing scale of RDF datasets and the

growing number of queries per second received by these

applications, it is imperative that an RDF store provides

low latency and high throughput over highly concurrent

queries. In response, much recent research has been

devoted to develop scalable and high performance sys-

tems to index RDF data and to process SPARQL queries.

Early RDF stores like RDF-3X [19, 20], SW-Store [4],

HexaStore [33] usually use a centralized design, while

later designs such as TriAD [12], Trinity.RDF [39],

H2RDF [23, 22] and SHARD [25] explore a distributed

store in response to the growing data sizes.

An RDF dataset is essentially a highly connected, di-

rected graph. Hence, an RDF store may either store

a set of triples as records in a relational table (i.e., a

triple store) [19, 20, 12, 23, 38], or manage them as

a native graph (i.e., a graph store) [38, 5, 39]. Prior

work [39] shows that while using a triple store may en-

joy query optimizations designed for database queries,

handling SPARQL queries extensively relies on join op-

erations over potentially large tables, which usually gen-

erates huge redundant intermediate data. Besides, using

a relational store may limit the types of queries the stores

can support natively, such as general graph queries like

reachability analysis and community detection.

In this paper, we describe Wukong, a distributed in-

memory RDF store that provides low-latency, concur-

rent queries over large RDF datasets. To make it easy

to scale out, Wukong follows a graph-based design by

storing RDF triples as a native graph and leverages graph

exploration to handle queries. Unlike prior graph-based

RDF stores that are only designed to handle one query at

a time, Wukong is also designed to provide high through-

put such that it can handle hundreds of thousands of con-

2An acronym for both SPARQL Protocol and RDF Query Language.
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Figure 1: An example RDF graph.

current queries per second. A key design of Wukong is

to use fast network primitives like one-sided RDMA as

much as possible. Besides, Wukong also contributes a

set of new designs and techniques for query processing

over RDF graphs.

Flexible graph-based model and storage (§4). Be-

sides storing RDF triples as a graph by treating ob-

ject/subject as vertices and predicate as edges, Wukong

extends an RDF graph by introducing index vertices so

that indexes are naturally part of the graph. To partition

and distribute data to multiple machines, Wukong applies

a differentiated partition scheme [8] to embrace both lo-

cality (for normal vertices) and parallelism (for index

vertices) during query processing. Besides, Wukong in-

corporates predicate-based finer-grained partitioning into

a refined, RDMA-friendly distributed hashtable [32] for

efficiently storing the RDF graph.

Fast and scalable query processing (§5). Depending

on the selectivity and complexity of queries, the query

execution time may vary significantly (more than 5,000X

for queries in standard benchmark like LUBM [2]).

Wukong decomposes a query into a sequence of sub-

queries and handles multiple independent subqueries si-

multaneously. For each subquery, Wukong adopts a

RDMA communication-aware mechanism: for small

(selective) queries, it uses in-place execution that lever-

ages one-sided RDMA READ to fetch necessary data

so that there is no need to move intermediate data; for

large (non-selective) queries, it uses one-sided RDMA

write to distribute the query processing to all related ma-

chines. Moreover, being aware of the cost-insensitivity

of RDMA operations with respect to data size, Wukong

leverages full-history pruning such that Wukong can pre-

cisely prune unnecessary immediate data and thus avoid

the costly final aggregation of results from multiple ma-

chines. To avoid large queries from blocking small

queries for handling concurrent queries, Wukong lever-

ages a latency-centric work stealing scheme to dynami-

cally oblige queries in straggling workers.

We have implemented Wukong and evaluated it on a

6-node cluster using a set of common RDF query bench-

marks over a set of synthetic (e.g., LUBM and WSDTS)

and real-life (e.g., DBPSB and YAGO2) datasets. Our

experiment shows that Wukong provides orders of mag-

nitude lower latency compared to centralized (e.g., RDF-

3X and BitMat) and distributed (e.g., TriAD and Trin-

ity.RDF) state-of-the-art systems. An evaluation using

a mixture of LUBM queries shows that Wukong can

achieve up to 185K queries per second on 6 machines

with 0.80 milliseconds (geometric mean) median latency.

2 BACKGROUND

2.1 RDF and SPARQL

The RDF dataset is a graph (aka RDF graph)

composed by triples, where a triple is formed as

〈sub ject, predicate,ob ject〉. A triple can be regarded as

a directed edge (predicate) connecting two vertices (from

subject to object). Thus, an RDF graph can be alterna-

tively viewed as a directed graph G = (V,E), where V is

the collection of all vertices (subjects and objects), and

E is the collection of all edges, which are categorized

by their labels (predicates). W3C has provided a set of

unified vocabularies (as part of the RDF standard) to en-

code the rich semantics, where the rdfs:type predicate (or

type for short) provides a classification of vertices of an

RDF graph into different groups. As shown in Figure 1,

a simplified sample RDF graph of LUBM dataset [2], the

entity Feifei has type Professor3, and there are four cate-

gories of edges linking entities, namely, memberOf (mo),

takesCourse (tc), teacherOf (to), and advisor (ad).

SPARQL, a W3C recommendation, is the standard

query language for RDF datasets. The most common

type of SPARQL queries is as follows:

Q := SELECT RD WHERE GP

where, GP is a set of triple patterns and RD is a re-

sult description. Each triple pattern is of the form

〈sub ject, predicate,ob ject〉, where each of the subject,

predicate and object may denote either a variable or a

constant. Given an RDF data graph G, the triple pat-

tern GP searches on G for a set of subgraphs of G, each

of which matches the graph pattern defined by GP (by

binding pattern variables to values in the subgraph). The

result description RD contains a subset of variables in the

graph patterns.

mo

toSELECT ?Y WHERE { 
?X memberOf IPADS .
?X type Professor .
?X teacherOf ?Y .

}
IPADS

Prof

?X
ty

?Y
OS

DS

SPARQL Graph Results

Figure 2: A SPARQL query (Q1) on sample RDF graph.

For example, as shown in Figure 2, the query Q1 re-

trieves all objects that were taught (to) by a Professor

who is a member (mo) of IPADS. The query can also be

graphically represented by a query graph, in which ver-

tices represent the subjects and objects of triple patterns;

black vertices represent constants, and red vertices repre-

sent variables; Edges represent predicates in the required

3To save space, we use color circles to represent the type of entities.
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SELECT ?X ?Y ?Z WHERE { 
?X teacherOf ?Y .
?Z takesCourse ?Y .
?Z advisor ?X .

}
OS

tc

to

ad

Haibo

Xingda

ad
tc

?X
?Y

to

?Z

SPARQL Graph Results

Figure 3: A SPARQL query (Q2) on sample RDF graph.

patterns (GP). The query results (?Y, described in RD)

include DS and OS.

2.2 Existing Solutions

We next discuss two representative approaches adopted

in existing state-of-the-art RDF systems.

Triple Store and triple Join: A majority of existing

systems store and index RDF data as a set of triples in

relational databases, and excessively leverage triple join

operations to process SPARQL queries. Generally, query

processing consists of two phases: Scan and Join. In

the Scan phase, the RDF engine decomposes a SPARQL

query into a set of triple patterns. For the query in Fig-

ure 2, the triple patterns are {?X memberOf IPADS}, {?X

type Professor} and {X? teacherOf ?Y}. For each triple

pattern, it generates a temporary query table with bind-

ings by scanning triple store. In Join phase, the query

tables are joined to produce the final query results.

Some prior work [39] has summarized inherent limi-

tations of triple-store based approach. First, triple stores

rely excessively on costly join operations, especially for

distributed merge/hash-join. Second, the scan-join ap-

proach may generate large redundant intermediate re-

sults. Finally, while using redundant six primary SPO4

permutation indexes [33] can accelerate scan operations,

such indexes lead to heavy memory pressure.

Graph Store and graph exploration: Instead of join-

ing query tables, Trinity.RDF [33] stores RDF data in a

native graph model on top of a distributed in-memory

key/value store, and leverages fast graph-exploration

strategy for query processing. It further adopts one-step

pruning ( i.e., the constraint in the immediately prior

step) to reduce the intermediate results. As an example,

considering Q1 in Figure 2 over the data in Figure 1, af-

ter exploring the type of Professor for each member of

IPADS wrt the data in Figure 1, we find that the possible

binding for ?X is only Rong and Haibo, and the rest of

members are pruned.

However, the graph exploration in Trinity.RDF relies

on a final centralized join to filter out non-matching re-

sults, which is a potential bottleneck [12, 22], especially

for queries with cycles and/or large intermediate results.

For example, the query Q2 in Figure 3 asks for advisors

(?X), courses (?Y) and students (?Z) such that the ad-

visor advises (ad) the student who also takes a course

(tc) taught by (tc) the advisor. After exploring all three

triple patterns in Q2 wrt to the data in Figure 1, the non-

4S, P and O stand for subject, predict and object accordingly.
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Figure 4: (a) The throughput and (b) the latency of random
reads using one-sided RDMA READ and TCP/IP with differ-
ent sizes of payload.

matching bindings, namely, Haibo to OS, OS tc Jiaxin

and Jiaxin ad Rong will not be pruned until a final join.

2.3 RDMA and Its Characteristics

Remote Direct Memory Access (RDMA) is a cross-node

memory access technique with low-latency and low CPU

overhead, due to complete bypassing of target OS kernel

and/or CPU. RDMA provides both two-sided message

passing interfaces like SEND/RECV Verbs as well as

one-sided operations such as read, write and two atomic

operations (fetch-and-add and compare-and-swap).

As noted in prior work [9, 32], one-sided operations

are usually more efficient than its two-sided counterpart

due to no CPU involvement in the target CPU. Further,

as shown in Figure 4, the cost of one-sided RDMA oper-

ations are usually relatively insensitive to data sizes. For

example, the latency only increases slightly even if the

payload size increases to 2048 bytes and the throughput

are almost the same till 128 Bytes for our RDMA NICs.

Figure 5: The architecture overview of Wukong.

3 OVERVIEW

Setting: Wukong assumes a cluster that is connected

with high-speed, low-latency network with RDMA fea-

tures. Wukong targets SPARQL queries over a large vol-

ume of RDF data; it scales by partitioning an RDF graph

into a large number of shards across multiple machines.

Wukong may create replicas for vertices to make sure

each machine contains a complete subgraph of the in-

put RDF graph, for better locality. Wukong also cre-

ates indexes vertices to assist queries. In each machine,

Wukong employs a worker-thread model by running n

worker threads atop n cores; each worker thread executes

a query at a time.
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Figure 6: Two types of index vertex of Wukong.

Architecture: An overview of Wukong’s architecture

is shown in figure 5. Wukong follows a decentralized

model in the server side, where each machine can di-

rectly serve clients’ requests. Each client5 contains a

client library that parses SPARQL queries into a set of

stored procedures, which are sent to the server side to

handle the request. Alternatively, Wukong can also use a

set of dedicated proxies to run the client-side library and

balance client requests. To avoid sending long strings to

the server and thus save network bandwidth, each string

is first converted into a unique ID by the string server.

Each server consists of two separate layers: query en-

gine and graph store. The query engine layer binds a

worker thread on each core with a logical task queue to

continuously handle requests. Graph store layer adopts

an RDMA-friendly key/value store over distributed parti-

tions of the RDF graph, which is shared by all of worker

hashtable to support a partitioned global address space.

Each machine threads on the same machine.

Query processing: Wukong is designed to provide

low-latency to multiple concurrent queries from clients.

The client or the proxy decides which server a request

will be first sent to according to the request types. For

a query starting with a constant vertex, Wukong sends

the request to the server holding the master replica of the

vertex. For a query starting with a set of vertices with a

specific type or predicate, Wukong then send the request

to all replicas of the corresponding index vertex.

Each query may be represented as a chain of sub-

queries. Each machine handles a sub-query and then

dispatches the remaining sub-queries to other machines

when necessary. A sub-query may be executed immedi-

ately, or pushed into the task queue to be scheduled.

4 GRAPH-BASED RDF DATA MODELING

In this section, we provide a detailed description of the

graph indexing, partitioning and storing strategies em-

ployed by Wukong, which is the base to sequentially and

concurrently process SPARQL queries on RDF data.

4.1 Graph Model and Indexes

Wukong uses a directed graph to model and store RDF

data, where each vertex corresponds to an entity in an

RDF triple (subject or object) and each edge is labeled

as a predicate and points from subjects to objects. As

SPARQL queries may rely on retrieving a set of subject-

s/object vertices connected by edges with certain pred-

5The client may be not the end user but the front-end of Web service.
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Figure 7: A hybrid graph partitioning on two servers.

icates, we provide two types of index vertices to assist

such graph queries, as shown in Figure 6. To avoid con-

fusion, we use the normal vertex to refer subjects and

objects.

For the query pattern with a certain predicate, like {?Y

teacherOf ?Z} (see Q2 in Figure 3), we propose the pred-

icate index (P-idx) to maintain all of subjects and objects

labeled with the particular predicate using its in and out

edges respectively. For example, in Figure 6, a predicate

index teacherOf (to) links to all normal vertices whose

in-edges (DS and OS) or out-edges (Rong and Haibo)

contain the label to. This corresponds to the PSO and

POS indexes in triple store approaches.

Further, the special predicate type (ty) is used to group

a set of subjects that belong to a certain type, like {?X

type Prof} (see Q1 in Figure 2). Therefore we treat the

objects of such predicate as the type index (T-idx). For

example, a type index Prof in Figure 6(b) maintains all

normal vertices which are of the type of professors.

Unlike prior graph-based approaches that manage in-

dexes using separate data structures, Wukong treats in-

dexes as essential parts (vertices and edges) of RDF

graph and also takes into consideration the graph parti-

tioning and storing of them. This has two benefits. First,

this eases query processing using graph exploration such

that the graph exploration can directly start from an in-

dex vertex. Second, this makes it easy and efficient to

distribute the indexes among multiple servers, as shown

in the following sections.

4.2 Differentiated Graph Partitioning

One key step of supporting distributed query is partition-

ing a graph among multiple machines, while still pre-

serving good access locality and enabling parallelism.

We observe that complex queries usually involve a large

number of vertices through a certain predicate or type,

which should be executed on multiple machines to ex-

ploit parallelism.

Inspired by PowerLyra [8], Wukong adopts differenti-

ated partitioning algorithms to normal and index vertex.

As shown in Figure 7 Each normal vertex (e.g., DS) will

be randomly assigned to one and only machine with all

of edges by hashing the vertex ID. Note that the edges

linked to predicate index (i.e. dotted arrows) will not be

included in the edge list of normal vertices, since there is

4
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Figure 8: The design of predicate-based key/value store.

no need to find a predicate index vertex via normal ver-

tices and this can save plenty of memory space. Different

from normal vertex, each index vertex (e.g., takesCourse

and Course) will be split and replicated to multiple ma-

chines with edges linked to normal vertices on the same

machine. This naturally distributes the indexes and their

workload among each machine.

4.3 Predicate-based RDMA-friendly Store

Similar to Trinity.RDF [39], Wukong uses a distributed

key/value store to physically store the graph. However,

unlike prior work that simply uses vertex ID (vid) as

the key, and the in and out edge list (each element is

a 〈predicate,vid〉 pair) as the value, Wukong uses a

combination of the vertex ID (vid), predicate/type ID

(p/tid) and in/out direction (d) as the key (in the form

of 〈vid, p/tid,d〉), and the list of neighboring vertex IDs

or predicate/type IDs as the value. The main observation

is that a SPARQL query is usually concerned with query-

ing upon partial neighboring vertices satisfying a partic-

ular predicate (e.g., X predicate ?Y). Therefore, missing

the predicate and direction in key would lead to plenty

of unnecessary computation cost and networking traf-

fic. The finer-grained partitioning of vertices using pred-

icates also makes it possible to build local predicate in-

dexing, which corresponds to the PSO and POS indexes

in triple store approaches.

To uniformly store normal and index vertices and

adapt differentiated partitioning strategies, Wukong sep-

arates the ID mapping for vertex ID (vid) and predicate/-

type ID (p/tid). The ID 0 of vid (INDEX) is reserved for

the index vertex, while the ID 0 and 1 of p/tid are re-

served for the type and predicate indexes respectively.

Figure 8 illustrates detailed cases on the sample graph.

The key of normal vertex starts from a nonzero vid and

relies on p/tid to distinguish different meanings of the

value. The p/tid ID 0 and 1 represent the value as a list of

predicate IDs and a type ID for the vertex respectively,

otherwise the value is a list of normal vertices linked to

the normal vertex with a certain predicate (p/tid). For

example, the predicates labeled on out-edges of vertex

Rong is represented as the key 〈2|0|1〉, and the value

〈1,3,5〉 means type, teacherOf and memberOf. While the

type of vertex Rong is represented as the key 〈2|1|1〉, and

the value 〈6〉 means Professor. The key of index vertex

always starts from a zero vid, and linked to a list of local

to

to

to

to

H: Rong to H: Haibo to
Rong Haibo

H: Rong to DS
DS OS

Youyang Jiaxin

H: Haibo to OS

H: Rong to DS tc Youyang H: Haibo to OS tc Jiaxin
Haibo to OS tc Xingda

tc tctc
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DS|tc Youyang

Jiaxin|ad Rong

INDEX|to Haibo

Haibo|to OS

OS|tc Jiaxin,Xingda

Xingda|ad Haibo

Figure 9: A sample of execution flow on Wukong

normal vertices. For example, all subjects of the pred-

icate memberOf on Sever 0 (Rong, Jiaxin and Youyang)

and Sever 1 (Haibo, Yanzhe and Xingda) are stored with

the same key 〈0|5|0〉 but different servers.

Finally, due to the goal of leveraging the advanced

networking features such as RDMA, Wukong is built

upon an RDMA-friendly distributed hashtable derived

from DrTM-KV [32] and thus enjoys its nice features

like RDMA-friendly cluster hashing and location-based

cache. However, as the key/value store in Wukong is

designed for query processing instead of transaction pro-

cessing, we notably simplify the design by removing un-

necessary metadata for checking consistency and sup-

porting transactions.

5 QUERY PROCESSING

5.1 Basic Query Processing

An RDF query can be represented as a subgraph with

free variables (i.e., not bound to specific subjects/ob-

jects yet). The goal of the query is to find bindings of

specific subjects/objects to the free variables while re-

specting the subgraph pattern. However, it is well-known

that using subgraph matching would be very costly due

to the frequent yet costly joins [39]. Hence, like prior

work [39], Wukong leverages graph exploration by walk-

ing the graph in specific orders according to each edge of

the subgraph.

There are several cases for each edge in a graph query,

depending on whether the subject, the predicate or the

object are free variables. For the common cases where

predicate is known but subject/object are free variables,

Wukong can leverage the predicate index to start the

graph exploration. Take the Q2 in Figure 3 as an ex-

ample, which aims at querying advisors, courses and

students such that the advisor advises the student who

also takes a course taught by the advisor. The query

forms a cyclic subgraph containing three free variables.

Wukong chooses an order of exploration according to

some heuristics6. As shown in Figure 9, Wukong starts

exploration from the teacherOf predicate (to). Since

Wukong extends the graph with predicate indexes, it can

6like the selectivity of triples, a detailed cost-based optimization is out of the

scope of this paper.
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start exploration from the index vertex for teacherOf in

each machine in parallel, whose neighbors contain Rong

and Haibo in each server accordingly. In Step2, Wukong

combines Rong and teacherOf to form a key to get the

corresponding courses, which are {Rong to DS} and

{Haibo to OS} accordingly. In Step3, Wukong contin-

ues to explore the graph from the course vertex for each

tuple in parallel and tries to get all students that take the

course. Thanks to the differentiated graph partitioning,

there is no communication through Step1-3. In Step4,

Wukong leverages the constraint information to filter out

non-matching results to get the final result.

For (rare) cases where the predicate is unknown,

Wukong starts graph exploration from a constant vertex

(in cases where either subject or object is known) with

a p/tid 1 (Pred). The value is the list of predicates as-

sociated with the vertex, and then Wukong iterates them

one by one. The remaining process is similar to those

described above.

5.2 Full-history Pruning

Note that there could be tuples that should be filtered out

during the graph exploration. For example, since there

is no expected advisor predicate (ad) for Youyang, the

related tuples should be filtered out to minimize redun-

dant computation and communication. Further, in Step

4, as Jiaxin’s advisor is Rong instead of Haibo, the graph

exploration path also should be pruned as well.

Prior graph-exploration strategies [39] usually use a

one-step pruning approach by leveraging the constraint

in the immediately prior step to filter some unnecessary

information out. In the final step, it leverages a single

machine to aggregate and conduct a final join over the

results to filter out non-matching results. However, re-

cent study [12, 22] found that, the final join can easily

become the bottleneck of a query since all results need to

be aggregated into a single machine for joining.

Instead, Wukong adopts a full-history pruning ap-

proach such that Wukong passes the full exploration his-

tory to the next step across machines. The main observa-

tion is that, the cost of RDMA operations are insensitive

to the size of the payload when it is smaller than a cer-

tain size (e.g., 256 Bytes) [10, 32]. Besides, the steps

in an RDF query are usually not many (i.e., less than

10) and thus there won’t be too much information car-

ried even for the final few steps. Hence, the cost remains

the same for passing more history information across ma-

chines since each history item only contains subject/ob-

ject/predicate IDs and thus won’t be very large even for a

long path of queries. Further, passing full history locally

is roughly like adding more query variables in each step

and thus the cost is negligible. As shown in Figure 9,

Wukong passes {Rong to}, {Rong to DS} and {Rong to

DS tc Youyang} in locally Sever 0 in each step; Youyang

Figure 10: A sample of (a) in-place and (b) fork-join execution.

can be simply pruned without using history information

due to no expected predicate (ad). Sever 0 can leverage

the full history ({Haibo to OS tc Jiaxin}) from Server 1

to prune Jiaxin as Jiaxin’s advisor is not Haibo.

As Wukong has the full history during graph explo-

ration, there is no need of a final join to filter out non-

matching results. Thought it appears that Wukong may

bring additional network traffic when fetching cross-

machine history, the fact that Wukong can prune non-

matching results early may save network traffic as well.

5.3 Migrating Execution or Data

During the graph exploration process, there will be dif-

ferent tradeoffs on whether migrating execution or data.

Wukong supports in-place and fork-join executions ac-

cordingly. For a query step, if only a few vertices need

to fetch from remote machines, Wukong uses in-place

execution mode that synchronously leverages one-sided

RDMA READ to directly fetch vertices from remote

machines, as shown in Figure 10(a). Using one-sided

RDMA READ can enjoy the benefit of bypassing remote

CPU and OS. For example, in Figure 9, Server 1 can di-

rectly read the advisor of Jiaxin with RDMA READ, and

locally generate ({Haibo to OS tc Jiaxin ad RONG}).

For a query step, if many vertices may be fetched,

Wukong leverages a fork-join execution mode that

asynchronously splits the following query computation

into multiple sub-queries running on remote machines.

Wukong leverages one-sided RDMA WRITE to directly

push a sub-query with full history to the task queue of

a remote machine, as shown in Figure 10(b). This can

also be done without bothering remote CPU and OS. For

example, in Figure 9, Server 1 can send a sub-query with

the full history ({Haibo to OS tc Jiaxin}) to Server 0.

Server 0 will locally execute the sub-query to generate

({Haibo to OS tc Jiaxin ad Rong}). Note that, depending

on the sub-query, the target machine may further do a

fork-join operation to remote machines, forming a query

tree. Each fork point then joins its forked sub-queries

and returns the results to the parent fork point.

Since the cost of RDMA operations are insensitive to

the size of the payload, for each query step, Wukong

makes a decision on execution mode in runtime accord-

ing to the number of RDMA operations (|N|). Each

server will decide individually. For fork-join, |N| is twice

the number of servers. For in-place, |N| is equal to

the number of required vertices. Wukong simply uses a
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1 int next = 1

OBLIGER()
2 s = state[(tid+next)%N]

3  q = NULL

4 s.lock()

5 if (s.cur == tid

6   || s.end < now)

7 s.cur = tid; 

8 s.end = now + T

9 next++

10 q = s.dequeue()

11 s.unlock()

12 return q

SELF()
13 s = state[tid]

14 s.lock()

15 s.cur = tid

16 s.end = now + T

17 next = 1

18 q = s.dequeue()

19 s.unclock()

20 return q

NEXT_QUERY()
21 if (q = OBLIGER())

22 return q

23 return SELF()

Figure 11: The pseudo-code of worker-obliger algorithm.

heuristic fixed threshold according to the setting of clus-

ter. Further, some vertices have a significant large num-

ber of edges with the same predicate, resulting in slower

RDMA READ due to oversize payload. Wukong can la-

bel such vertices associated with the predicate to enforce

using fork-join mode when partitioning the RDF graph.

5.4 Handling Concurrent Queries

Depending on the complexity and selectivity, the la-

tency (i.e., execution time) of a query could vary signifi-

cantly. For example, the latency differences among seven

queries in LUBM [2] can reach around 5,000X (0.2ms

and 1040ms for L5 and L7 queries accordingly). Hence,

dedicating an entire cluster for a single query, as done in

prior approaches [39, 12], is not cost-effective.

Wukong is designed to handle a massive number of

queries concurrently while trying to parallelize a single

query to reduce the query latency. The difficulty is that,

given the significantly varied query latencies, how to

minimize intra-query interference while providing good

utilization of resources, e.g., a lengthy query should not

significantly extend the latency of a quick query.

The online sub-query decomposition and the dynamic

execution mode switching serve as a keystone to support

massive queries in parallel. Specifically, Wukong uses a

private FIFO queue to schedule queries for each worker

thread, which works well for small queries. However, if

there is a lengthy query, it will monopolize the worker

thread and impose queuing delays on the execution of

small waiting queries. This will incur much higher la-

tency than necessary. Worse even, a lengthy query with

multi-threading enabled (section 6) may monopolize the

entire cluster.

To this end, Wukong uses a worker-obliger work steal-

ing algorithm for multiple workers in each machine, as

shown in Figure 11. Each worker is designated to oblige

next few neighboring workers in case they are busy with

processing a lengthy (sub-)query. After finishing a (sub-

)query, a worker first checks a neighboring worker in turn

if its (sub-)query has finished in time (e.g., s.end <

now). If not, that worker might be handling a lengthy

query and thus its following up queries may be delayed.

Figure 12: The logical task queue in Wukong.

In this case, this obliging worker steals one query from

that worker’s queue to handle. After obliging its neigh-

boring workers (if needed), the worker will not forget to

handle its own queries by dequeuing from its own queue.

Note that, when all workers can handle their queries

within a threshold (i.e., T), each worker only needs

to handle queries in its own queue. The checking

code is also very lightweight and the state lock (i.e.,

s.lock()) won’t be contended as there will only at

most two workers (i.e., SELF and OBLIGER) may try to

acquire the lock. It could be possible that an obliger may

get sucked in handling a lengthy query for others; in this

case, another worker may oblige him similarly.

6 IMPLEMENTATION

The Wukong prototype comprises around 6,000 lines of

C++ code. It currently runs atop an RDMA-capable clus-

ter. This section describes some implementation issues.

Task queues: Wukong binds a worker thread on each

core with a logical private task queue, which is used by

both clients and worker threads on other servers to sub-

mit (sub-)queries. Wukong leverages RDMA operations

(especially one-sided RDMA) to accelerate the commu-

nication among worker threads; however, the clients may

still connect servers using general interconnects.

The logical queue per thread in Wukong consists of

one client queue (Client-Q) and multiple server queues

(Server-Q). For the client queue, Wukong follows tradi-

tional concurrent queue to serve the queries from many

clients. But due to the lack of expressiveness of one-

sided RDMA operations, implementing RDMA-based

concurrent queue may incur large overhead. On the con-

trary, using separate task queues for each worker threads

of each remote machine may exponentially increase the

number of queues. Fortunately, we observe that there is

no need to allow all worker threads on a remote machine

sending queries to all local worker threads. To remedy

this, Wukong only provides a one-to-one mapping be-

tween the work threads on different machines, as shown

in Figure 12. This can avoid not only the burst of task

queues but also complicated concurrent mechanisms.

Launching query: To launch a query, the start point

of a query can be a normal vertex (e.g., {?X memberOf

IPADS}) or a predicate or type index (e.g., {?X teacherOf

?Y}). Since the index vertex is replicated to multiple

servers, Wukong allows the client library to send the

7



Table 1: A collection of real-life and synthetic datasets.

Dataset #Triples #Subjects #Objects #Predicates

LUBM-10240 1,410M 222M 165M 17

WSDTS 109M 5.2M 9.8M 86

DBPSB 15M 0.3M 5.2M 14,128

YAGO2 190M 10.5M 54.0M 99

same query to all servers such that the query can be dis-

tributed from the beginning. However, distributed ex-

ecution may not be worthwhile for a low-degree index

vertex. Therefore, Wukong will decide whether repli-

cas of an index vertex need to process the query or not

when partitioning the RDF graph. For low-degree index

vertices, the master will process the query alone by ag-

gregating data from replicas through one-sided RDMA

READ, and the replicas will simply discard queries. For

high-degree index vertices, both the master and replicas

will individually process the query on local graph.

Multi-threading: By default, Wukong processes a

(sub-)query using only a single thread on each server.

To reduce latency of a query, Wukong also allows run-

ning a time-consuming query with multiple threads on

each server, at the requests of clients. A worker thread

received the multi-threaded (MT) query will invite other

worker threads on the same server to process the query

in parallel. Wukong adopts a data-parallel approach to

automatically parallelize the query after the first graph

exploration. Each worker thread will individually pro-

cess the query on a part of subgraph. Note that the maxi-

mum number of participants for a query is claimed by the

client, but finally restricted by an MT threshold of server.

7 EVALUATION

7.1 Experimental Setup

Hardware configuration: All evaluations were con-

ducted on a rack-scale cluster with 6 machines. Each

machine has two 10-core Intel Xeon E5-2650 v3 proces-

sors and 128GB of DRAM. We disabled hyperthread-

ing on all machines. Each machine is equipped with

a ConnectX-3 MCX353A 56Gbps InfiniBand NIC via

PCIe 3.0 x8 connected to a Mellanox IS5025 40Gbps In-

finiBand Switch. All machines run Ubuntu 14.04 with

Mellanox OFED v3.0-2.0.1 stack.

In all experiments, We reserve two cores on each pro-

cessor to generate requests for all machines to avoid

the impact of networking between clients and servers as

done in prior OLTP work [32, 10, 30, 29]. For a fair

comparison, we measure the query execution time by ex-

cluding the cost of literal/ID mapping. All experimental

results are the average of five runs.

Benchmarks: We use two synthetic and two real-life

datasets, as shown in Table 1. The synthetic datasets are

the Lehigh University Benchmark (LUBM) [2] and the

Waterloo SPARQL Diversity Test Suite (WSDTS) [3].

For LUBM, we generate 5 datasets with different sizes

Table 2: The query performance (msec) on a single server.

LUBM

2560
Wukong

RDF-3X BitMat

(warm) (cold) (warm) (cold)

L1 752 2.3E5 2.5E5 abort abort

L2 146 4,494 1.1E5 36,256 38,730

L3 316 3,675 4,817 752 1,439

L4 0.19 2.2 276 55,451 57,242

L5 0.11 1.0 180 52 101

L6 0.57 37.5 465 487 696

L7 1,325 9,927 1.3E5 19,323 22,295

Geo. Mean 18 441 6,319 – –

Table 3: The query performance (msec) on a 6-node cluster.

LUBM

10240
Wukong TriAD

TriAD-SG Trinity
SHARD

(200K) .RDF

L1 516 2,110 1,422 12,648 19.7E6

L2 88 512 695 6,081 4.4E6

L3 260 1,252 1,225 8,735 12.9E6

L4 0.48 3.4 3.9 5 10.6E6

L5 0.18 3.1 4.5 4 4.2E6

L6 0.88 63 4.6 9 8.7E6

L7 1,040 10,055 11,572 31,214 12.0E6

Geo. Mean 19 190 141 450 9.1E6

using the generator v1.7 in NT format. For queries, we

use the benchmark queries published in Atre et al. [5],

which were widely used by may distributed RDF sys-

tems [12, 39, 16]. WSDTS publishes a total of 20

queries in four categories. The real-life datasets are

the DBpedia’s SPARQL Benchmark (DBPSB) [1] and

YAGO2 [13]. For DBPSB, we choose 5 queries provided

by its official website. YAGO2 is a semantic knowledge

base, derived from Wikipedia, WordNet and GeoNames.

We follow the queries defined in H2RDF+ [22].

Comparing targets: We compare the query perfor-

mance of Wukong against several state-of-the-art sys-

tems. 1) centralized systems: RDF-3X [19] and Bit-

Mat [5]; 2) distributed systems: TriAD [12], Trin-

ity.RDF [39] and SHARD [25]. Since Trinity.RDF is

not publicly available and TriAD reported superior per-

formance over it, we only directly compare the results

published in their paper [39] with the same workload.

7.2 Single Query Performance

We first study the performance of Wukong for a single

query using the LUBM dataset.

For a fair comparison to centralized systems, we also

run Wukong on a single machine. Since both RDF-3X

and BitMat are disk-based, we report both warmcache

and cold-cache time. As shown in Table 2, Wukong out-

performs the on-disk performances of RDF-3X and Bit-

Mat by more than two orders of magnitude, except for

L3. L3 has an empty final result even with huge interme-

diate results and thus there is no significant performance

difference. For in-memory performance, Wukong still

outperforms RDF-3X and BitMat by one order of mag-

nitude, due to fast graph exploration for simple queries

and efficient multi-threading for complex queries.

We further compare Wukong with distributed systems

with multi-threading enabled in Table 3. For selective

queries (L4, L5 and L6), Wukong outperforms TriAD by
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Figure 13: The latency of queries in group (I) and (II) on
LUBM-10240 with the increase of threads.

up to 71.2X (from 7.2X) due to the in-place execution

with one-sided RDMA READ. For non-selective queries

(L1, L2, L3 and L7), Wukong still outperforms TriAD

by up to 9.7X (from 4.1X), thanks to the fast graph ex-

ploration with finer-grained partitioning and full-history

pruning. The join-ahead pruning with summary graph

(SG) improves the performance of TriAD, especially for

L1 and L6, while Wukong still outperforms the average

(geometric mean) latency of TriAD-SG by 7.4X (ranging

from 2.8X to 25.4X). Compared to Trinity.RDF, which

also uses graph-exploration strategy, the improvement of

Wukong is at least one order of magnitude (from 10.2X

to 69.4X), thanks to the full-history pruning that avoids

redundant computation and communication as well as

the time-consuming final join. Note that the result of

Trinity.RDF is evaluated on a cluster with similar inter-

connects and twice the number of servers. SHARD is

several orders of magnitude slower than other systems

since it randomly partitions the RDF data and employs

Hadoop as a communication layer for handling queries.

7.3 Scalability

We evaluate the scalability of Wukong in three aspects

by scaling the number of threads, the number of servers,

and the size of dataset accordingly. We categorize seven

queries on LUBM dataset into two groups according to

the sizes of their intermediate and final results as done in

prior work [39]. Group (I): L1, L2, L3, and L7; the re-

sults of such queries increase with the growing of dataset.

Group (II): L4, L5, L6; such queries are quite selective

and produce fixed-size results regardless of the data size.

Scale-up: We first study the performance impact of

multi-threading on LUBM-10240 using fixed 6 servers.

Figure 13 shows the latency of queries on a logarithmic

scale with the logarithmic increase of threads. For group

(I), the speedup of Wukong ranges from 9.9X to 14.3X

with the increase of threads from 1 to 16. For group

(II), since the queries just involve a small subgraph and

are not CPU-intensive, Wukong always adopts a single

thread for the query and provides a stable performance.

Scale-out: We also evaluate the scalability of Wukong

with respect to the number of servers. Note that we

omit the evaluation on a single server as LUBM-10240

(amounting to 230GB in raw NT format) cannot fit into

memory. Figure 15(a) shows a linear speedup of Wukong
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Figure 14: The latency of queries in group (I) and (II) on
LUBM-10240 with the increase of machines.
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Figure 15: The latency of queries in group (I) and (II) with the
increase of LUBM datasets (160-10240).

for group (I) ranging from 2.46X to 3.54X, with the in-

crease of servers from 2 to 6. It implies Wukong can

efficiently utilize the parallelism of a distributed sys-

tem by leveraging fork-join execution mode. For group

(II), since the intermediate and final results are relatively

small and fixed-size, using more machines does not im-

prove the performance as expected, but the performance

is still stable by using in-place execution to restrict the

network overhead.

Data size: We further evaluate Wukong with the in-

crease of dataset size from LUBM-40 to LUBM-10240

while keeping the number of threads and servers fixed.

As shown in Figure 15, For group (I), Wukong scales

quite well with the growing of dataset, due to efficiently

passing full history and the elimination of the final join.

For group (II), Wukong can achieve stable performance

regardless of the increasing dataset size, due to the in-

place execution with one-sided RDMA READ.

7.4 Throughput of Mixed Workloads

Unlike prior graph-based RDF stores that are only de-

signed to handle one query at a time, Wukong is also de-

signed to provide high throughput such that it can handle

hundreds of thousands of concurrent queries per second.

Therefore, we build emulated clients and various mixture

workloads to study the behavior of RDF stores serving

concurrent queries.

For Wukong, each server runs up to 4 emulated clients

on dedicated cores. All clients will send as many queries

as possible periodically until the throughput saturated.

For TriAD, a single client will send queries one by one

since it only can handle one query at a time.

We first use a mixture workload consisting of 6 classes

of queries7, all of which disable multi-threading. The

7The templates of 6 classes of queries are based on group (II) queries (L4, L5

and L6) and three additional queries from official website (A1, A2 and A3).
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query in each class has a similar behavior except that the

start point is randomly selected from the same type of

vertices (e.g., Univ0, Univ1, etc.). The distribution of

query classes follows the reciprocal of their average la-

tency. As shown in Figure 16, Wukong achieves a peak

throughput of 185K queries/second on 6 machines (75K

queries/second on 2 machines), which is at least two

orders of magnitude higher than TriAD (from 278X to

740X). Under the peak throughout, the geometric mean

of 50th (median) and 99th percentile latency is just 0.80

and 5.90 milliseconds respectively.

Multi-threading query: To further study the impact

of enabling multi-threading (MT) for time-consuming

queries. We dedicate a client to continually send MT

queries (i.e. L1) and configure Wukong with different

MT thresholds. Since the throughout does not scale be-

yond 8 threads due to the bottleneck of networking (see

Figure 17(a)), we use 8 worker threads in experiment.

As shown in Figure 17(b) and (c), with the increase of

the MT threshold, both the throughput of Wukong and

the time of interference (the latency of MT query) will

degrade. For example, under threshold 4, Wukong can

still perform 108K query/sec and the average latency of

MT query is about 1,901 msec.

Worker-obliger mechanism: The MT query will also

influence the latency of the other small waiting queries.

Figure 18(a) show the CDF of latency for 6 classes of

non-MT queries. The 80th percentile latency increases

at least two orders of magnitude and the 99th percentile

latency reaches several thousands of msec. Relying on

worker-obliger work stealing design, as shown in Fig-

ure 18(b), Wukong can recover the latency and mean-

while preserving the throughput.
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Figure 18: The CDF of latency for 6 classes of queries on 6
machines (a) w/o and (b) w/ worker-obliger mechanism. Each
server uses fixed 8 threads (threshold=4).

Table 4: A performance comparison (msec) of w/ or w/o

predicate-based key/value store (PBS) on LUBM-10240

LUBM L1 L2 L3 L4 L5 L6 L7

w/o PBS 1,265 95 270 0.53 0.21 1.37 1,072

w/ PBS 516 88 260 0.48 0.18 0.88 1,040

7.5 Predicate-based Graph Store

Predicate-based graph store (PBS) adopts the finer-

grained partitioning of vertices by predicates. Table 4

compares the latency of queries on LUBM-10240 with

and without PBS. For query L1, PBS can achieve 2.45X

improvement, since the required entities (i.e., Universi-

ties) have a large number of data with different predi-

cates. For other queries, the improvement of PBS ranges

from 1.03X to 1.56X.

Table 5: A performance comparison (msec) of various execu-

tion mode on LUBM-10240

LUBM L1 L2 L3 L4 L5 L6 L7

In-place 26,065 88 262 0.51 0.21 2.39 16,492

Fork-join 1,183 90 269 0.79 0.55 1.21 1,080

Dynamic 516 88 260 0.48 0.18 0.88 1,040

7.6 In-place vs. Fork-join Execution

To study the benefit of dynamic choice between in-place

and fork-join execution modes, we configure Wukong

with a fixed mechanism (i.e., in-place or fork-join). Ta-

ble 5 shows the latency of queries with various execution

modes. In-place execution is better for queries L4 and

L5, while fork-join execution is better for query L7. In

addition, L2 and L3 are not sensitive to the choice of

execution modes. L1 and L6 are relatively special, in

which different steps require different execution modes

for achieving optimal performance. Wukong can always

choose the best execution mode in runtime and outper-

form in-place and fork-join by up to 50.5X and 2.8X.

7.7 Other Datasets

We further study the performance of Wukong and TriAD

over more other synthetic and real-life datasets. Note

that we do not provide the performance of TriAD-SG be-

cause the hand-tuned parameter of summary graph is not

known and it only improves performance in few cases.

WSDTS: We first compare the performance of TriAD

and Wukong over WSDTS dataset using 20 diverse

queries, which are classified into linear (L), star (S),

snowflake (F) and complex (C). Table 6 shows the

geometric mean of latency for various query classes.
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Table 6: The latency (msec) of queries on WSDTS

WSDTS
L1-L5 S1-S7 F1-F5 C1-C3

(Geo. M) (Geo. M) (Geo. M) (Geo. M)

TriAD 4.5 5.3 17.5 36.6

Wukong 1.0 1.1 4.1 10.3

Wukong always outperforms TriAD by up to 20.0X

(from 1.6X). For L1, L3, S1, S7 and F5, Wukong is at

least one order of magnitude faster than TriAD since the

queries are quite selective and appropriate for graph ex-

ploration. For only two queries, F1 and C3, the improve-

ment of Wukong is less than 2.0X.

Table 7: The latency (msec) of queries on DBPSB
DBPSB D1 D2 D3 D4 D5 Geo. Mean

TriAD 4.93 4.10 5.56 7.68 3.51 4.97

Wukong 1.75 0.48 0.41 3.70 1.14 1.16

DBPSB: Table 7 shows the performance of five rep-

resentative queries on DBPSB, which is a relative small

real-life dataset, but has quite more predicates. Wukong

outperforms TriAD by at least 2X (up to 13.6X), and

the improvement of geometric mean reaches 4.3X. For

D2 and D3, the speedup reaches 8.6X and 13.6X respec-

tively since the queries are relatively selective.

Table 8: The latency (msec) of queries on YAGO2
YAGO2 Y1 Y2 Y3 Y4 Geo. Mean

TriAD 1.13 2.14 68,841 6,193 179

Wukong 0.12 0.17 38,571 3,501 41

YAGO2: Table 8 compares the performance of TriAD

and Wukong on a large real-life dataset YAGO2. For the

simple queries, Y1 and Y2, Wukong is one order of mag-

nitude faster than TriAD due to fast in-place execution.

For the complex queries, Y3 and Y4, Wukong can still

notably outperforms TriAD by about 1.8X due to full-

history pruning and RDMA-friendly task queues.

8 RELATED WORK

RDF query over triple and relational store: There

have been a large number of triple-based RDF stores

that use relational approaches to storing and indexing

RDF data [19, 20, 4, 33, 26, 7]. Since join is expen-

sive and a key step for query processing in such triple

stores, they perform various query optimizations includ-

ing heuristic optimizations [19], join-ordering explo-

ration [19], join-ahead pruning [20], graph summariza-

tion [40] and query caching [24]. Specially, TriAD [12]

is a most recent distributed in-memory RDF engine that

leverages join-ahead pruning and graph summarization

with asynchronous message passing for parallelization.

SHAPE [16] is a distributed engine upon RDF-3X by

statically replicating and prefetching data. As shown in

prior work [39], graph exploration can avoid many re-

dundant immediate results generated during expensive

join operations and thus typically deliver better perfor-

mance. There is also a recent study, SQLGraph [28],

that explores the idea of using a relational store to store

the RDF data, but process RDF queries as a graph store.

Their focus, however, is on query rewriting and schema

refinement; furthermore, they want to support heavy-

weight, ACID-style transactions (for updates). As a re-

sult, SQLGraph is a centralized approach and has differ-

ent objectives from our study.

RDF query over graph store: There is an increasing

interest in using native graph model to store and query

RDF data [5, 36, 38, 39]. BitMat [5], gStore [40] and

TripleBit [38] are centralized graph stores with sophisti-

cated indexes to improve query performance. Sedge [37]

is a distributed SPARQL query engine based on a sim-

ple Pregel implementation, which tries to minimize the

inter-machine communication by group-based commu-

nication. The most related work is Trinity.RDF [39], a

distributed in-memory RDF store that leverages graph

exploration to process queries. Wukong’s design centers

around the usage of fast interconnect with RDMA fea-

tures to allow fast graph exploration. Wukong also intro-

duces novel graph-based indexes as well as differentiated

graph partitioning and query processing to improve the

overall system performance.

RDF query over MapReduce: Several distributed

RDF systems are built atop existing frameworks like

MapReduce [23, 22, 25, 27], e.g., H2RDF [23, 22] and

SHARD [25]. PigSPARQL [27] maps SPARQL op-

erations into PigLatin [21] queries, which in turn is

translated into MapReduce programs. However, due

to the lack of efficient iterative computation support,

MapReduce-based computation is usually sub-optimal

for SPARQL execution, as shown in prior work [12, 39].

RDMA-centric stores: The low latency and high

throughput of RDMA-based networking stimulates

much work on RDMA-centric key/value stores [17, 15],

OLTP platforms [32, 10] and general graph analytics en-

gines [34, 14]. Specially, GraM [34] is an efficient and

scalable graph analytics engine that leverages multicore

and RDMA to provide fast batch-oriented graph ana-

lytics. However, handling SPARQL queries is signif-

icantly different from general graph analytics and thus

Wukong can hardly benefit from the design of GraM.

Further, Wukong is designed to handle highly concur-

rent queries while GraM is designed to handle one offline

graph-analytics task at a time.

9 CONCLUSION AND FUTURE WORK

This paper describes Wukong, a distributed in-memory

RDF store that leverages RDMA-based graph explo-

ration to support fast and concurrent RDF queries.

Wukong significantly outperforms state-of-the-art sys-

tems and can process a mixture of small and large queries

at 185,000 queries/second on a 6-note cluster. Currently,

we use simple heuristics to generate query plans, our fu-

ture work may include a cost-based optimal query plan-

ning algorithm for further performance optimization.
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[27] SCHÄTZLE, A., PRZYJACIEL-ZABLOCKI, M., AND LAUSEN,

G. Pigsparql: Mapping sparql to pig latin. In Proceedings of the

International Workshop on Semantic Web Information Manage-

ment (2011), ACM, p. 4.

[28] SUN, W., FOKOUE, A., SRINIVAS, K., KEMENTSIETSIDIS, A.,

HU, G., AND XIE, G. Sqlgraph: An efficient relational-based

property graph store. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data (New York,

NY, USA, 2015), SIGMOD ’15, ACM, pp. 1887–1901.

[29] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO,

P., AND ABADI, D. J. Calvin: Fast distributed transactions

for partitioned database systems. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of

Data (2012), SIGMOD’12, ACM, pp. 1–12.

[30] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN,

S. Speedy transactions in multicore in-memory databases. In

Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (2013), SOSP’13, ACM, pp. 18–32.

[31] WEAVER, J., AND TARJAN, P. Facebook linked data via the

graph api. Semantic Web 4, 3 (2013), 245–250.

12



[32] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast

in-memory transaction processing using rdma and htm. In Pro-

ceedings of the 25th Symposium on Operating Systems Principles

(New York, NY, USA, 2015), SOSP ’15, ACM, pp. 87–104.

[33] WEISS, C., KARRAS, P., AND BERNSTEIN, A. Hexastore: Sex-

tuple indexing for semantic web data management. Proc. VLDB

Endow. 1, 1 (Aug. 2008), 1008–1019.

[34] WU, M., YANG, F., XUE, J., XIAO, W., MIAO, Y., WEI, L.,

LIN, H., DAI, Y., AND ZHOU, L. Gram: Scaling graph computa-

tion to the trillions. In Proceedings of the Sixth ACM Symposium

on Cloud Computing (New York, NY, USA, 2015), SoCC ’15,

ACM, pp. 408–421.

[35] WU, W., LI, H., WANG, H., AND ZHU, K. Q. Probase: A prob-

abilistic taxonomy for text understanding. In Proceedings of the

2012 ACM SIGMOD International Conference on Management

of Data (2012), ACM, pp. 481–492.

[36] YANG, S., YAN, X., ZONG, B., AND KHAN, A. Towards effec-

tive partition management for large graphs. In Proceedings of the

2012 ACM SIGMOD International Conference on Management

of Data (2012), ACM, pp. 517–528.

[37] YANG, S., YAN, X., ZONG, B., AND KHAN, A. Towards ef-

fective partition management for large graphs. In Proceedings of

the 2012 ACM SIGMOD International Conference on Manage-

ment of Data (New York, NY, USA, 2012), SIGMOD ’12, ACM,

pp. 517–528.

[38] YUAN, P., LIU, P., WU, B., JIN, H., ZHANG, W., AND LIU,

L. Triplebit: A fast and compact system for large scale rdf data.

Proc. VLDB Endow. 6, 7 (May 2013), 517–528.

[39] ZENG, K., YANG, J., WANG, H., SHAO, B., AND WANG, Z. A

distributed graph engine for web scale rdf data. In Proceedings

of the 39th international conference on Very Large Data Bases

(2013), PVLDB’13, VLDB Endowment, pp. 265–276.

[40] ZOU, L., MO, J., CHEN, L., ÖZSU, M. T., AND ZHAO, D.
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