
CS 2010
Computer Science I

Instructor: Matthew Flatt

This Course is About...

Fundamentals of programming

From specification to implementation

Software engineering principles

This Course is...

Not about...

A particular programming language (e.g., Java, C++, Scheme)

A particular programming tool (e.g., gcc, DrScheme)

Specific libraries or protocols (e.g., Gtk, XML, HTTP)

How programs get translated into electronic signals

Book
How to Design Programs

1-4

Programming Environment

DrScheme

What is Scheme?

Scheme is a programming language

Used to implement DrScheme, for example

The language for this course matches a subset of Scheme

The course content is not Scheme-specific

Pragmatics

MWF lecture

Th/F lab sessions (3%)

Weekly programming assignments (47%)

Two mid-term exams (15% each)

Final exam (20%)

http://www.cs.utah.edu/classes/cs2010/

Things you Need to Do

Read the course syllabus

Subscribe to cs2010@cs.utah.edu

See the course web page for instructions

Go to lab this week

Do assignment 1

On the course schedule page

5-8

Friday

No class on Friday, August 22
Getting Started:

Arithmetic, Algebra, and Computing

Arithmetic is Computing

Fixed, pre-defined rules for primitive operators:

2 + 3 = 5

4 × 2 = 8

cos(0) = 1

Arithmetic is Computing

Fixed, pre-defined rules for primitive operators:

2 + 3 → 5

4 × 2 → 8

cos(0) → 1

Rules for combining other rules:

Evaluate sub-expressions first

4 × (2 + 3) → 4 × 5 → 20

Precedence determines subexpressions:

4 + 2 × 3 → 4 + 6 → 10

9-14

Algebra as Computing

Definition:

f(x) = cos(x) + 2

Expression:

f(0) → cos(0) + 2 → 1 + 2 → 3

First step uses the substitution rule for functions

Notation

Why do some primitive operators go in the middle, like +, while others go at the
front, like cos?

What are the precedence rules?

How do we know which arguments go with which operators?

Which parentheses are redundant?

When does = mean definition and when does it mean a computation step?

...

Simplified Expression Notation

Put all operators at the front

Start every operation with an open parenthesis

Put a close parenthesis after the last argument

Never add extra parentheses

Old New

1 + 2 (+ 1 2)

4 + 2 × 3 (+ 4 (* 2 3))

cos(0) + 1 (+ (cos 0) 1)

Simplified Definition Notation

Use the keyword define instead of =

Put define at the front, and group with parentheses

Move open parenthesis from after function name to before

Old New

f(x) = cos(x) + 2 (define (f x) (+ (cos x) 2))

Move open parenthesis in function calls

Old New

f(0) (f 0)

f(2+3) (f (+ 2 3))

15-20

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

 → (+ (cos 0) 2)

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

 → (+ (cos 0) 2)
 → (+ 1 2)

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

 → (+ (cos 0) 2)
 → (+ 1 2)
 → 3

21-24

Beyond Numbers: Booleans

Numbers are not the only kind of values:

Old New

1 < 2 → true (< 1 2) → true

1 > 2 → true (> 1 2) → false

1 > 2 → true (> 1 2) → false

2 ≥ 2 → true (>= 1 2) → true

Beyond Numbers: Booleans

Old New

true and false (and true false)

true or false (or true false)

1 < 2 and 2 > 3 (and (< 1 2) (> 2 3))

1 ≤ 0 and 1 = 1 (or (<= 1 0) (= 1 1))

1 ≠ 0 (not (= 1 0))

Beyond Numbers: Symbols

(symbol=? ’apple ’apple) → true

(symbol=? ’apple ’banana) → false

Beyond Numbers: Images

(solid-box 35 35 ’red) →

(solid-dot 25 25 ’blue) →

(image+) →

(offset-image+ 5 5) →

(offset-masked-image+ 5 5) →

(image=? (image+))

 → (image=?)

 → true

25-32

Programming with Images

(define (anonymize i)
 (offset-masked-image+
 i 0 0
 (solid-dot (image-width i) (image-height i)
 ’black)

 (solid-dot (image-width i) (image-height i)
 ’blue)))

(anonymize) → ... →

Use the stepper to see all steps

33-34

