CS 2010
Computer Science |

Instructor: Matthew Flatt

This Course is About...

Fundamentals of programming
© From specification to implementation

© Software engineering principles

This Course is...

Not about...
© A particular programming language (e.g., Java, C++, Scheme)
© A particular programming tool (e.g., gcc, DrScheme)
© Specific libraries or protocols (e.g., Gtk, XML, HTTP)

“ How programs get translated into electronic signals

Book
How to Design Programs

HOW TO DESIGN PROGRAMS

An Infroduction fo Programming and Computing

Matthias Robert Bruce Ma tthew Shriram
Belleisen Findler Flatt Krishnamurthi

Programming Environment

DrScheme

A, editor-repl.scm - DrScheme -0l x|

File Edit Show Language Scheme Special Help

ed'rh:ur-repl.sn:ml

[define ...)

|‘_ Step

| Q, check Synkax | P Execute | @ Break

[define (sdquare n)
(* n nj)

[define [(hypotenuse 1n ht)
[2grt [+ (3guare 1ln)
Kl

-

Language: Beginning Student.
> [aquare 5)

25

> [square 12)

144

> [hypotenuse 5 12)

13

>

K

YWelcome to DrScheme, version 205,

e |

Pl

g7

Fead/Write nak Funning

What is Scheme?

® Scheme is a programming language

© Used to implement DrScheme, for example

® The language for this course matches a subset of Scheme

® The course content is not Scheme-specific

Pragmatics

® MWEF lecture

® Th/F lab sessions (3%)

® Weekly programming assignments (47%)
® Two mid-term exams (15% each)

® Final exam (20%)

http://ww. cs. ut ah. edu/ cl asses/ cs2010/

Things you Need to Do

® Read the course syllabus

® Subscribe to cs2010@s. ut ah. edu

© See the course web page for instructions
® Go to lab this week

® Do assignment 1

© On the course schedule page

Friday

No class on Friday, August 22

Getting Started:

Arithmetic, Algebra, and Computing

10

Arithmetic is Computing

® Fixed, pre-defined rules for primitive operators:
2+3=5
4x2=8

cos(0) =1

11

Arithmetic is Computing

® Fixed, pre-defined rules for primitive operators:
2+3 - b
4x2 - 8

cos(0) - 1

12

Arithmetic is Computing

® Fixed, pre-defined rules for primitive operators:
2+3 - b
4x2 - 8

cos(0) - 1

® Rules for combining other rules:
© Evaluate sub-expressions first

4x(2+3) - 4x5 - 20

13

Arithmetic is Computing

® Fixed, pre-defined rules for primitive operators:
2+3 - b
4x2 - 8

cos(0) - 1

® Rules for combining other rules:
© Evaluate sub-expressions first
4x(2+3) - 4x5 - 20
“ Precedence determines subexpressions:

4+2%x3 - 4+6 - 10

14

O Definition:

“ Expression:

f(0)

Algebra as Computing

f(x) = cos(x) + 2

- cos(0)+2 - 1+2

—

3

15

Algebra as Computing

© Definition:
f(x) = cos(x) + 2
“ Expression:

fO) - cos(0)+2 - 1+2

® First step uses the substitution rule for functions

—

3

16

Notation

® Why do some primitive operators go in the middle, like +, while others go at the
front, like cos?

® What are the precedence rules?
® How do we know which arguments go with which operators?
® \Which parentheses are redundant?

® \When does = mean definition and when does it mean a computation step?

17

Simplified Expression Notation

® Put all operators at the front
® Start every operation with an open parenthesis
® Put a close parenthesis after the last argument

® Never add extra parentheses

Old New
1+2 (+ 1 2)
4+2x3 (+ 4 (* 2 3))

cos(0) +1 (+ (cos 0) 1)

18

Simplified Definition Notation

® Use the keyword def i ne instead of =

® pPut def i ne at the front, and group with parentheses

® Move open parenthesis from after function name to before
Old New

f(x) = cos(x) + 2 (define (f x) (+ (cos x)

2))

19

Simplified Definition Notation

® Use the keyword def i ne instead of =

® pPut def i ne at the front, and group with parentheses

® Move open parenthesis from after function name to before
Old New

f(x) = cos(x) + 2 (define (f x) (+ (cos x) 2))

® Move open parenthesis in function calls
Old New
f(0) (f 0)

f(2+3) (f (+ 2 3))

20

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

21

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)
- (+ (cos 0) 2)

22

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)
- (+ (cos 0) 2)
- (+ 1 2)

23

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)
- (+ (cos 0) 2)
- (+ 1 2)
-~ 3

24

Beyond Numbers: Booleans

Numbers are not the only kind of values:

1<2

1>2

1>2

Old

true

true

true

true

New
(<12) - true
(>12) - false
(>12) - false

(>=12) - true

25

Beyond Numbers: Booleans

Old

true and false

true or false

l1<2and2>3

1<0and1=1

1#0

New
(and true false)

(or true false)

(and (<1 2) (> 2 3))
(or (<=10) (=1 1))

(not (=1 0))

26

Beyond Numbers: Symbols

(synbol =?

(synbol =?

‘appl e " appl e)

'appl e ' banana)

—

—

true

fal se

27

Beyond Numbers: Images

(solid-box 35 35 "red) - .

(solid-dot 25 25 'blue) - @

28

Beyond Numbers: Images

(solid-box 35 35 "red) - .

(solid-dot 25 25 'blue) - @

(1 mage+ ..) =

29

Beyond Numbers: Images

(solid-box 35 35 "red) - .

(solid-dot 25 25 'blue) - @

(1 mage+ ..) =

(of f set-i mage+ . 55 ‘) -

30

Beyond Numbers: Images

(solid-box 35 35 "red) - .

(solid-dot 25 25 'blue) - @
(irrage+..) -
(offset-irrage+.55‘) -

(of f set - masked-i nage+ . 55 @ ‘) - .

31

Beyond Numbers: Images

(solid-box 35 35 "red) - .

(solid-dot 25 25 'blue) - @
(image+..) -
(offset-irrage+.5 5‘) .
(offset-rrasked-irrage+.5 5") . .

(i mage=? (i mage+ L L))
- (i mge=?)

- true

32

Programming with Images

(define (anonym ze i)
(of f set - masked- i mage+

1 00

(solid-dot (inmage-wdth i) (inmage-height 1)
' bl ack)

(solid-dot (image-wdth i) (inmage-height 1)
' bl ue)))

(anonym ze

Use the stepper to see all steps

33

