Symbols

Our favorite | i st - of - symprogram:

eat-apples : list-of-sym-> |ist-of-sym
(define (eat-apples I)
(cond
[(empty? I) enpty]
[(cons? I)
(local [(define ate-rest (eat-apples (rest 1)))]
(cond

[(synbol =? (first |) "apple) ate-rest]
[el se (cons (first |) ate-rest)]))]))

¢ How about eat - bananas?

® How about eat - non- appl es?

We know where this leads...

Filtering Symbols

; filter-syns : (sym-> bool) list-of-sym
; -> list-of-sym
(define (filter-syms PRED |)
(cond
[(empty? |) enpty]
[(cons? I)
(local [(define r
(filter-syms PRED (rest 1)))]
(cond
[(PRED (first 1))
(cons (first 1) r)]
[elser]))]))

This looks really familiar

Last Time: Filtering Numbers

; filter-nums @ (num-> bool) |ist-of-num
7 -> list-of-num
(define (filter-nunms PRED I|)
(cond
[(enpty? |) enpty]
[(cons? I)
(local [(define r
(filter-nuns PRED (rest 1)))]
(cond
[(PRED (first 1))
(cons (first |) r)]
[elser]))]))

How do we avoid cut and paste?

Filtering Lists

We know this function will work for both number and symbol lists:

;o filter
(define (filter PRED I)
(cond
[(empty? |) enpty]
[(cons? I)

(local [(define r

(filter PRED (rest 1)))]
(cond
[(PRED (first 1))
(cons (first I) r)]
[elser]))]))

But what is its contract?

The Contract of Filter

How about this?

(num OR-sym -> bool) list-of-numOR-1ist-of-sym
-> list-of-numOR-1ist-of-sym

; AnumOR-symis either
;- num
;- sym

; Alist-of-numOR-list-of-symis either
. - list-of-num
;- list-of-sym

The Contract of Filter

How about this?

(num OR-sym -> bool) list-of-numOR-1ist-of-sym
-> |list-of-num OR-list-of-sym

This contract is too weak to define eat - appl es

; eat-apples : list-of-sym-> list-of-sym
(define (eat-apples I)
(filter not-apple? 1))

; not-apple? : sym-> bool
(define (not-apple? s)
(not (synbol =? s "apple)))

eat - appl es must return al i st - of - sym but by its contract, fi | t er
might return al i st - of - num

The Contract of Filter

How about this?

(num OR-sym -> bool) list-of-numOR-1ist-of-sym
-> list-of -num OR-11ist-of-sym

This contract is too weak to define eat - appl es

; eat-apples : list-of-sym-> |ist-of-sym
(define (eat-apples |)
(filter not-apple? 1))

; not-apple? : sym-> bool
(define (not-apple? s)
(not (synmbol =? s "apple)))

not - appl e? only works on symbols, but by its contract fi | t er might
give ita num

The Contract of Filter

The reason fil t er works is that if we giveital i st-of - sym theniit
returnsal i st-of -sym

Also, ifwe givefilter ali st-of-sym then it calls PRED with symbols

only

A better contract:

filter

((num -> bool) list-of-num
-> list-of-num

OR

((sym-> bool) list-of-sym
-> list-of-sym

But what about a list of i mages, posns, or snakes?

The True Contract of Filter

The real contract is
filter : ((X ->bool) list-of-X -> list-of-X)

where X stands for any type

e The caller of fi |l t er gets to pick a type for X

e All Xs in the contract must be replaced with the same type

Data definitions need type variables, too:

c Alist-of-X is either

;- enpty
;- (cons X enpty)

Using Filter
The fi | t er function is so useful that is't built in

New solution for HW 4 that works in Intermediate:

(define (eat-apples I)
(local [(define (not-apple? s)
(not (synbol=? s "apple)))]
(filter not-apple? 1)))

Looking for Other Built-In Functions

Recall i nfl at e- by- 4%

; inflate-by-4%: list-of-num-> |ist-of-num
(define (inflate-by-4%1)
(cond

[(empty? |) enpty]
[else (cons (* (first |) 1.04)
(inflate-by-4% (rest 1)))]))

Is there a built-in function to help?

Yes: map

Using Map

(define (map CONV |)
(cond
[(enpty? I) enpty]
[el se (cons (CONV (first 1))
(map CONV (rest 1)))]))

(define (inflate-by-4%1)
(local [(define (inflate-one n)

(* n 1.04))]

(map inflate-one 1)))

; nhegate-colors : list-of-col -> list-of-col
(define (negate-colors |)
(map negate-color 1))

14-19

The Contract for Map

(define (map CONV I)
(cond

[(enpty? |) enpty]
[el se (cons (CONV (first 1))
(map CONV (rest 1)))]))

® The | argument must be a list of X
® The CONV argument must accept each X
o |f CONV returns a new X each time, then the contract for map is

map : (X ->X) list-of-X -> list-of-X

Posns and Distances

Another function from HW 4;

; distances : list-of-posn -> |ist-of-num
(define (distances |)
(cond

[(empty? |) enpty]
[(cons? I) (cons (distance-to-0 (first 1))
(distances (rest 1)))]))

The di st ances function looks just like map, except that
di stances-to-0is

posn -> num

not
posn -> posn
The True Contract of Map More Uses of Map
Despite the contract mismatch, this works! ; nmodernize : list-of-pipe -> |ist-of-pipe

(define (distances |)
(map distance-to-0 1))

The true contract of map is

mp : (X ->Y) list-of-X ->1list-of-Y

The caller gets to pick both X and Y independently

(define (nodernize |)
; replaces 4 lines:
(map nodern-pipe |))

; nmodern-pi pe : pipe -> pipe
; rob-train : list-of-car -> list-of-car
(define (rob-train |)

; replaces 4 lines:

(map rob-car 1))

; rob-car : car -> car

20-25

Folding a List

How about sunf?
sum: list-of-num-> num

Doesn’t return a list, so neither fi | t er nor map help

But recall cormbi ne- nuns...

; combi ne-nuns : |ist-of-num num
; (num num -> nun) -> num
(define (conbine-nuns | base-n COVB)

(cond
[(enmpty? |) base-n]
[(cons? I)
(CcovB
(first 1)

(conbi ne-nuns (rest |) base-n COMB))]))

The Foldr Function

; foldr @ (XY ->Y) Ylist-of-X->Y
(define (foldr COVB base I|)
(cond
[(enpty? |) base]
[(cons? |)
(CovB (first 1)
(foldr COVB base (rest 1)))]))

The sumand pr oduct functions become trivial:

(define (suml) (foldr + 0 1))
(define (product 1) (foldr * 1 1))

The Foldr Function

; foldr @ (XY ->Y) Ylist-of-X->Y
(define (foldr COVB base |)
(cond
[(enmpty? |) base]
[(cons? I)
(CovB (first 1)
(foldr COVB base (rest 1)))]))

Useful for HW 5:

; total-blue : list-of-col -> num
(define (total-blue I)
(local [(define (add-blue c n)
(+ (color-blue ¢c) n))]
(foldr add-blue 0 1)))

The Foldr Function

; foldr @ (XY ->Y) Ylist-of-X->Y
(define (foldr COVB base |)
(cond
[(enmpty? |) base]
[(cons? I)
(CovB (first 1)
(foldr COVB base (rest 1)))]))

In fact,

(define (map f |)
(local [(define (conmb i r)
(cons (f i) r))]
(foldr conmb empty 1)))

26-31

The Foldr Function

foldr : (XY ->Y) Ylist-of-X->Y
(define (foldr COVB base |)
(cond
[(enpty? |) base]
[(cons? |)
(CovB (first 1)
(foldr COVB base (rest 1)))]))

Yes, fil ter too:

(define (filter f 1)
(local [(define (check i r)

(cond
[(f i) (cons i r)]
[else r]))]

(foldr check empty 1)))

The Source of Foldr

How can f ol dr be so powerful?

The Source of Foldr

Template:

(define (func-for-l1oX 1)

(cond
[(enpty? 1) ...]
[(cons? I) ... (first I)
(func-for-1oX (rest 1)) ...]))
Fold:
(define (foldr COVB base |)
(cond
[(empty? |) base]
[(cons? |)

(CovB (first I)
(foldr COMB base (rest 1)))]))

Other Built-In List Functions

More specializations of f ol dr :
ormap : (X -> bool) list-of-X -> bool
andmap : (X -> bool) list-of-X -> boo
Examples:

got-mlk? : list-of-sym-> boo
(define (got-milk? 1)
(local [(define (is-mlk? s)
(symbol =? s "mi|k))]
(ormap is-mlk? s)))

al | - passed? : list-of-grade -> boo
(define (all-passed? |)
(andmap passi ng-grade? 1))

32-35

What about Non-Lists?

Since it's based on the template, the concept of fold is general

fold-ftn : (symnumsymzZ Z -> 2) Z ftn -> Z
(define (fold-ftn COMB base ftn)
(cond
[(enpty? ftn) base]
[(child? ftn)
(covB (child-nane ftn) (child-date ftn) (child-eyes ftn)
(fold-ftn COVMB BASE (child-father ftn))
(fold-ftn COMB BASE (child-nmother ftn)))]))

(define (count-persons ftn)
(local [(define (add nane date color c-f c-m

(+ 1c-fc-m)j

(fold-ftn add 0 ftn)))

(define (in-famly? who ftn)
(local [(define (here? nanme date color in-f? in-nP)
(or (synbol =? nane who) in-f? in-nP))]
(fold-ftn here? false ftn)))

36- 37

