How to Design A Program (So Far)

Data Representation and Contract

\ 4
Examples
" 4) -
Maybe Abstract Template
\ 4 \ 4
Use EXisting Body
"

Test

Challenge Problem

¢ |mplement the function odd- i t ens which takes alist-of-X and produces a
list-of-X containing every other item in the given list (including the first item)

Data Representation and Contract

Already done for us:

- odd-1tens : list-of-X -> |list-of-X

Examples

(odd-itens enpty) "should be" enpty

(odd-itens '(1 2 3 4 5))
"should be" (1 3 5)

(odd-itens ' (apple banana cherry))
"shoul d be" ’(apple cherry)

(odd-itens (list true false))
"shoul d be" (list true)

Maybe Abstract

Use EXisting

or

Template

Body

Maybe Abstract Template

or ?

Use Existing Body

We know that f ol dr captures the template for | i st - of - X, so choose
the left branch I and abstraction is done already!

Maybe Abstract

\ 4

Use EXisting

(define (odd-itens |)
(foldr (lanbda (item odd-rest)

)
empty 1))

Maybe Abstract
\ 4

Use EXisting

(define (odd-itens |)
(foldr (lanbda (item odd-rest)
)

enpty 1))
Problem: the odd items of the rest of the list are useless for the odd items
of the whole list
(odd-itens (1 2 3 4)) "should be" " (1 3)
but

(odd-itens '(2 3 4)) "should be"™ " (2 4)

Template

Body

Template

\ 4 ?

Body

(define (odd-itens |)
(cond
[(enpty? |) enpty]
[(cons? |)
(first 1)
(odd-itenms (rest |)) ...]))

Same problem 0 it’s not just a reuse problem...

Structural Recursion

e [or recursively defined data, our recipe so far always produces
structurally recursive programs

11

Structural Recursion

e [or recursively defined data, our recipe so far always produces
structurally recursive programs

® |n a sense, it always works:

(define (odd-itens |)
(first
(foldr (lanbda (item odds+evens)
(ltst (cons item
(second odds+evens))
(first odds+evens)))

(l1st enpty enmpty) 1)))

But making structural recursion work sometimes requires more creativity
than solving the problem a different way

Generative Recursion

Structural recursion is a powerful tool, but we need more tools

13

Generative Recursion

Structural recursion is a powerful tool, but we need more tools
Our new tool is generative recursion:.

(define (func v)
(cond
| (trivially-solvable? v) ...]
lelse ...
(func generated-v 1)

(func generated-v_n)

1))

Structural recursion is a special case of generative recursion that is
especially common

14

Back to Odd Iltems

When the list given to odd- i t ens has less than two items, the problem
IS trivial to solve:

(define (odd-itens |)
(cond
[(or (enpty? |)
(enpty? (rest |)))
]
lelse ...]))

Back to Odd Iltems

Otherwise, it’s helpful to have the r est of the rest:

(define (odd-itens |)
(cond
[(or (enmpty? |)
(enmpty? (rest 1)))
]
| el se (cons
(first 1)
(odd-itens (rest (rest [))))]))

How to Design A Program

Data Representation and Contract

\ g

Examples

Maybe Abstract

\ 4

\ 4

Use EXisting

Template

\ g

Body
\ 4

Test

Trivial Cases

\ g

Recur on Smaller

17

Guessing a Number

, make-secret-checker : num-> (num-> sym
(defi ne (make-secret-checker n)

(l ocal [(define secret (randomn))|

(Il anbda (m
(cond

(= msecret) ’'perfect]
(< msecret) 'too-snall]
(> msecret) 'too-large]))))

Guessing a Number

, make-secret-checker : num-> (num-> sym
(defi ne (make-secret-checker n)

(local [(define secret (randomn)) |

(Il anbda (m
(cond

(= msecret) ’'perfect]
(< msecret) 'too-snall]
(> msecret) 'too-largel))))

¢ |mplement the function di scover - nunber which takesanumber n and a
function produced by (nrake- secr et - checker n), and returns the secret
number in the function

Data Representation and Contract

Apparently done already:

di scover-nunber : num (num -> sym

- > num

20

Examples

(di scover-nunber 1 (nake-secret-checker 1))
"shoul d be" 0

(di scover-nunber 3 (nmake-secret-checker 3))
"should be" "0 or 1 or 2"

Maybe Abstract

Use EXisting

or

Template

Body

or

Trivial Cases

Recur on Smaller

22

Maybe Abstract

Use EXisting

or

Template

Body

e Abstract/reuse: nothing obvious

or

Trivial Cases

Recur on Smaller

23

Maybe Abstract

or

Use EXisting

Template

Body

e Abstract/reuse: nothing obvious

e Template: nothing for num

or

Trivial Cases

Recur on Smaller

24

Maybe Abstract

or

Use EXisting

Template

Body

e Abstract/reuse: nothing obvious

e Template: nothing for num

or

Trivial Cases

Recur on Smaller

... but is it really nat ?

25

Maybe Abstract

or

Use EXisting

Template

Body

e Abstract/reuse: nothing obvious

e Template: nothing for num

or

Trivial Cases

Recur on Smaller

... but is it really nat ?

Yes, starting from 1

26

Template

4

Body

, discover-nunber : nat (nat -> synm -> nat
(define (discover-nunber n checker)

(cond
[(=n 1) ...]
[el se

(di scover-nunber (subl n) checker)

.-1))

Template

4

Body

, discover-nunber : nat (nat -> synm -> nat
(define (discover-nunber n checker)

(cond
[(=n 1) O]
[el se

(di scover-nunber (subl n) checker)

.-1))

Template

\ 4

Body

di scover-nunber : nat (nat -> sym -> nat
(define (discover-nunber n checker)

(cond
[(=n 1) 0]
[el se
(cond
[(synbol =? (checker n) 'perfect) n]
[el se

(di scover-nunber (subl n) checker)])]))

Template

\ 4

Body

, discover-nunber : nat (nat -> synm -> nat
(define (discover-nunber n checker)

(cond
[(=n 1) 0]
[el se
(cond
[(synbol =? (checker n) 'perfect) n]
[el se

(di scover-nunber (subl n) checker)])]))

This works, but is there a better way?

Guessing a Number

If you know a number is between 0 and 9:

0

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

32

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

0 9

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

; —
0 9

"1 mper f ect

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

| —
0 3 9

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

} —
0 3 9

"1 mper f ect

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

} —
0 7 9

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

} —
0 7 9

"1 mper f ect

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

} —
0 6 9

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

} —
0 6 9

"1 mper f ect

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

} —
0 5 9

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ' perfect or’ i nperfect answers to guesses, there’s
no better way to find the number

} —
0 5 9

' perfect

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get’ perfect,’ too-snuall,or’too-I| arge answers, it's
better to guess in the middle

43

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get’ perfect,’ too-snuall,or’too-I| arge answers, it's
better to guess in the middle

0 4 9

44

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get’ perfect,’ too-snuall,or’too-I| arge answers, it's
better to guess in the middle

— }
0 4 9

"t 0o0-snal |

45

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get’ perfect,’ too-snuall,or’too-I| arge answers, it's
better to guess in the middle

— }
0 6 9

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get’ perfect,’ too-snuall,or’too-I| arge answers, it's
better to guess in the middle

———
0 6 9

't oo-1arge

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get’ perfect,’ too-snuall,or’too-I| arge answers, it's
better to guess in the middle

———
0 5 9

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get’ perfect,’ too-snuall,or’too-I| arge answers, it's
better to guess in the middle

———
0 5 9

' perfect

Trivial Cases

\ 4

Recur on Smaller

———

0 5 9

' perfect

* Trivially solvable if mid-pointis’ per f ect

e Otherwise, mid-point results cuts the range in half I try again

50

Guessing A Number with Generative Recursion

(define (discover-nunber n checker)
(di scover-in-range O (subl n) checker))

di scover-in-range : nat nat (nat -> bool) -> num
Fi nds the nunber between | o and hi (i nclusive)
(define (discover-in-range | o hi checker)
(cond
[trivial? ...]
[el se
(di scover-in-range ...)

)

51

Guessing A Number with Generative Recursion

(define (discover-nunber n checker)
(di scover-in-range O (subl n) checker))

di scover-in-range : nat nat (nat -> bool) -> num
Fi nds the nunber between | o and hi (i nclusive)
(define (discover-in-range | o hi checker)
(local [(define md (quotient (+ o hi) 2))]
(cond
[trivial ? ...]
[el se
(di scover-in-range ...)

D))

52

Guessing A Number with Generative Recursion

(define (discover-nunber n checker)
(di scover-in-range O (subl n) checker))

di scover-in-range : nat nat (nat -> bool) -> num
Fi nds the nunber between | o and hi (i nclusive)
(define (discover-in-range | o hi checker)
(local [(define md (quotient (+ o hi) 2))]
(cond
[(synbol =? (checker md) 'prefect) md]
[el se
(di scover-in-range ...)

D))

53

Guessing A Number with Generative Recursion

(define (discover-nunber n checker)
(di scover-in-range O (subl n) checker))

di scover-in-range : nat nat (nat -> bool) -> num
Fi nds the nunber between | o and hi (i nclusive)
(define (discover-in-range | o hi checker)
(local [(define md (quotient (+ o hi) 2))]
(cond
[(synbol =? (checker md) 'prefect) md]
[el se
(di scover-in-range o md)
(di scover-in-range hi hi) ...])))

54

Guessing A Number with Generative Recursion

(define (discover-nunber n checker)
(di scover-in-range O (subl n) checker))

di scover-in-range : nat nat (nat -> bool) -> num
Fi nds the nunber between | o and hi (i nclusive)
(define (discover-in-range | o hi checker)
(local [(define md (quotient (+ o hi) 2))]
(cond
[(synbol =? (checker md) 'prefect) md]
[el se
(cond
[(synbol =? (checker md) ’'too-I|arge)
(di scover-in-range o md)]
[el se
(di scover-in-range md hi)])])))

55

Running the Guesser

(di scover-nunber 10 check-7)

56

Running the Guesser

(di scover-nunber 10 check-7)

—

(di scover-in-range 0 9 check-7)

US"KJ (define (discover-nunber n checker)
(di scover-in-range 0 (subl n) checker))

57

Running the Guesser

(di scover-in-range 0 9 check-7)

58

Running the Guesser

(di scover-in-range 0 9 check-7)

(cond

[(synbol =? (check-7 4) 'perfect) 4]

[el se

(cond
[(synbol =? (check-7 4) 'too-Ilarge)
(di scover-in-range 0 4 check-7)]
[el se
(di scover-in-range 4 9 check-7)])1])

l]f;|r]§J (define (discover-in-range | o hi checker)
(local [(define md (quotient (+ o hi) 2))]
(cond
[(synmbol =? (checker mid) 'prefect) md]
[el se
(cond
[(synmbol =? (checker mid) ’'too-Ilarge)
(discover-in-range |lo md)]
[el se
(discover-in-range md hi)])])))

59

Running the Guesser

(cond

[(synmbol =? (check-7 4) ’'perfect) 4]

[el se

(cond
[(synbol =? (check-7 4) '"too-I|arge)
(di scover-in-range O 4 check-7)]
[el se
(di scover-in-range 4 9 check-7)])])

60

Running the Guesser

(cond

[(symbol =? (check-7 4) '"perfect) 4]

[el se

(cond
[(synbol =? (check-7 4) '"too-I|arge)
(di scover-in-range O 4 check-7)]
[el se
(di scover-in-range 4 9 check-7)])])

—

(cond
[(synmbol =? (check-7 4) "too-large)
(di scover-in-range O 4 check-7)]
[el se
(di scover-in-range 4 9 check-7)])

61

Running the Guesser

(cond
[(synbol =? (check-7 4) '"too-large)
(di scover-in-range 0 4 check-7)]
[el se
(di scover-in-range 4 9 check-7)])

62

Running the Guesser

(cond
[(synbol =? (check-7 4) '"too-large)
(di scover-in-range 0 4 check-7)]
[el se
(di scover-in-range 4 9 check-7)])

—

(di scover-in-range 4 9 check-7)

63

Running the Guesser

(di scover-in-range 4 9 check-7)

64

Running the Guesser

(di scover-in-range 4 9 check-7)

(cond

[(synbol =? (check-7 6) "perfect) 6]

[el se

(cond
[(synbol =? (check-7 6) '"too-large)
(di scover-in-range 4 6 check-7)]
[el se
(di scover-in-range 6 9 check-7)])1])

65

Running the Guesser

(cond

[(synbol =? (check-7 6) 'perfect) 6]

[el se

(cond
[(synbol =? (check-7 6) "too-I|arge)
(di scover-in-range 4 6 check-7)]
[el se
(di scover-in-range 6 9 check-7)])])

66

Running the Guesser

(cond

[(synbol =? (check-7 6) 'perfect) 6]

[el se

(cond
[(synbol =? (check-7 6) "too-I|arge)
(di scover-in-range 4 6 check-7)]
[el se
(di scover-in-range 6 9 check-7)]1)])

—

(di scover-in-range 6 9 check-7)

67

Running the Guesser

(di scover-in-range 6 9 check-7)

68

Running the Guesser

(di scover-in-range 6 9 check-7)

(cond

[(synbol =? (check-7 7) 'perfect) 7]

[el se

(cond
[(synbol =? (check-7 7) '"too-large)
(di scover-in-range 6 7 check-7)]
[el se
(di scover-in-range 7 9 check-7)])1])

69

Running the Guesser

(cond

[(synmbol =? (check-7 7) 'perfect) 7]

[el se

(cond
[(synbol =? (check-7 7) "too-I|arge)
(di scover-in-range 6 7 check-7)]
[el se
(di scover-in-range 7 9 check-7)])])

70

Running the Guesser

(cond

[(synmbol =? (check-7 7) 'perfect) 7]

[el se

(cond
[(synbol =? (check-7 7) "too-I|arge)
(di scover-in-range 6 7 check-7)]
[el se
(di scover-in-range 7 9 check-7)])])

71

Running the Guesser Again

(di scover - nunber 3 check-2)

72

Running the Guesser Again

(di scover - nunber 3 check-2)

(di scover-in-range 0 2 check-2)

73

Running the Guesser Again

(di scover-in-range 0 2 check-2)

74

Running the Guesser Again

(di scover-in-range 0 2 check-2)

(cond

[(synbol =? (check-2 1) ’perfect) 1]

[el se

(cond
[(synbol =? (check-2 1) '"too-large)
(di scover-in-range 0O 1 check-2)]
[el se
(di scover-in-range 1 2 check-2)])])

75

Running the Guesser Again

(cond

[(synbol =? (check-2 1) 'perfect) 1]

[el se

(cond
[(synbol =? (check-2 1) "too-I|arge)
(di scover-in-range O 1 check-2)]
[el se
(discover-in-range 1 2 check-2)])])

76

Running the Guesser Again

(cond

[(synbol =? (check-2 1) 'perfect) 1]

[el se

(cond
[(synbol =? (check-2 1) "too-I|arge)
(di scover-in-range O 1 check-2)]
[el se
(discover-in-range 1 2 check-2)])])

—

(di scover-in-range 1 2 check-2)

7

Running the Guesser Again

(di scover-in-range 1 2 check-2)

78

Running the Guesser Again

(di scover-in-range 1 2 check-2)

(cond

[(synbol =? (check-2 1) ’perfect) 1]

[el se

(cond
[(synbol =? (check-2 1) "too-small)
(di scover-in-range 1 2 check-7)]
[el se
(di scover-in-range 1 2 check-2)])])

79

Running the Guesser Again

(cond

[(synbol =? (check-2 1) 'perfect) 1]

[el se

(cond
[(synbol =? (check-2 1) "too-snall)
(di scover-in-range 1 2 check-7)]
[el se
(discover-in-range 1 2 check-2)])])

80

Running the Guesser Again

(cond

[(synbol =? (check-2 1) 'perfect) 1]

[el se

(cond
[(synbol =? (check-2 1) "too-snall)
(di scover-in-range 1 2 check-7)]
[el se
(discover-in-range 1 2 check-2)])])

—

(di scover-in-range 1 2 check-2)

81

Running the Guesser Again

(di scover-in-range 1 2 check-2)

82

Running the Guesser Again

(di scover-in-range 1 2 check-2)

(di scover-in-range 1 2 check-2)

83

Running the Guesser Again

(di scover-in-range 1 2 check-2)

84

Running the Guesser Again

(di scover-in-range 1 2 check-2)

(di scover-in-range 1 2 check-2)

Infinite loop!

85

Generative Recursion and Termination

¢ \With structural recursion, a program always terminates

© Every value is finite

¢ \With generative recursion, termination becomes more tricky

© You have to argue that the problem size definitely gets smaller for
every recursive call

86

Guessing a Number, Corrected

(define (discover-in-range | o hi checker)
(local [(define md (quotient (+ 1o hi) 2))]
(cond

[(synbol =? (checker md) 'prefect) md]

[el se

(cond
[(synbol =? (checker md) ’'too-Ilarge)
(di scover-in-range o (subl md))]
[el se
(di scover-in-range (addl md) hi)])])))

87

Algorithms

Our di scover -i n-range function is an example of a general
algorithm called binary search

88

Algorithms

Our di scover -i n-range function is an example of a general
algorithm called binary search

Many algorithms are less obvious than binary search
Mostly you'll use general algorithms, not invent them
¢ Algorithm textbooks are like "recipe"” books

® Few people design new general algorithms

89

Algorithms

Our di scover -i n-range function is an example of a general
algorithm called binary search

Many algorithms are less obvious than binary search

Mostly you’ll use general algorithms, not invent them

¢ Algorithm textbooks are like "recipe"” books

® Few people design new general algorithms

Generative recursion is far more common than general algorithms, and
It’s often merely structural recursion

90

