
How to Design A Program (So Far)

Data Representation and Contract

Examples

Maybe Abstract

Use Existing

Template

Body

Test

1

Challenge Problem

Implement the function odd-items which takes a list-of-X and produces a
list-of-X containing every other item in the given list (including the first item)

2

Data Representation and Contract

Already done for us:

; odd-items : list-of-X -> list-of-X

3

Examples

(odd-items empty) "should be" empty

(odd-items ’(1 2 3 4 5))

"should be" ’(1 3 5)

(odd-items ’(apple banana cherry))

"should be" ’(apple cherry)

(odd-items (list true false))

"should be" (list true)

4

Maybe Abstract

Use Existing

or

Template

Body

?

5

Maybe Abstract

Use Existing

or

Template

Body

?

We know that foldr captures the template for list-of-X, so choose
the left branch  and abstraction is done already!

6

Maybe Abstract

Use Existing

(define (odd-items l)

 (foldr (lambda (item odd-rest)

 ...)

 empty l))

7

Maybe Abstract

Use Existing

(define (odd-items l)

 (foldr (lambda (item odd-rest)

 ...)

 empty l))

Problem: the odd items of the rest of the list are useless for the odd items
of the whole list

(odd-items ’(1 2 3 4)) "should be" ’(1 3)

but

(odd-items ’(2 3 4)) "should be" ’(2 4)

8

Template

Body

?

9

Template

Body

?

(define (odd-items l)

 (cond

 [(empty? l) empty]

 [(cons? l)

 ... (first l)

 ... (odd-items (rest l)) ...]))

Same problem  it’s not just a reuse problem...

10

Structural Recursion

For recursively defined data, our recipe so far always produces
structurally recursive programs

11

Structural Recursion

For recursively defined data, our recipe so far always produces
structurally recursive programs

In a sense, it always works:

(define (odd-items l)

 (first

 (foldr (lambda (item odds+evens)

 (list (cons item

 (second odds+evens))

 (first odds+evens)))

 (list empty empty) l)))

But making structural recursion work sometimes requires more creativity
than solving the problem a different way

12

Generative Recursion

Structural recursion is a powerful tool, but we need more tools

13

Generative Recursion

Structural recursion is a powerful tool, but we need more tools

Our new tool is generative recursion:

(define (func v)

 (cond

 [(trivially-solvable? v) ...]
 [else ...

 (func generated-v_1)

 .
.
.

 (func generated-v_n)
 ...]))

Structural recursion is a special case of generative recursion that is
especially common

14

Back to Odd Items

When the list given to odd-items has less than two items, the problem
is trivial to solve:

(define (odd-items l)

 (cond

 [(or (empty? l)

 (empty? (rest l)))

 l]

 [else ...]))

15

Back to Odd Items

Otherwise, it’s helpful to have the rest of the rest:

(define (odd-items l)

 (cond

 [(or (empty? l)

 (empty? (rest l)))

 l]

 [else (cons

 (first l)

 (odd-items (rest (rest l))))]))

16

How to Design A Program

Data Representation and Contract

Examples

Maybe Abstract

Use Existing

Template

Body

Trivial Cases

Recur on Smaller

Test

17

Guessing a Number

; make-secret-checker : num -> (num -> sym)

(define (make-secret-checker n)

 (local [(define secret (random n))]

 (lambda (m)

 (cond

 [(= m secret) ’perfect]

 [(< m secret) ’too-small]

 [(> m secret) ’too-large]))))

18

Guessing a Number

; make-secret-checker : num -> (num -> sym)

(define (make-secret-checker n)

 (local [(define secret (random n))]

 (lambda (m)

 (cond

 [(= m secret) ’perfect]

 [(< m secret) ’too-small]

 [(> m secret) ’too-large]))))

Implement the function discover-number which takes a number n and a
function produced by (make-secret-checker n), and returns the secret
number in the function

19

Data Representation and Contract

Apparently done already:

; discover-number : num (num -> sym) -> num

20

Examples

(discover-number 1 (make-secret-checker 1))

"should be" 0

(discover-number 3 (make-secret-checker 3))

"should be" "0 or 1 or 2"

21

Maybe Abstract

Use Existing

or

Template

Body

or

Trivial Cases

Recur on Smaller

?

22

Maybe Abstract

Use Existing

or

Template

Body

or

Trivial Cases

Recur on Smaller

?

Abstract/reuse: nothing obvious

23

Maybe Abstract

Use Existing

or

Template

Body

or

Trivial Cases

Recur on Smaller

?

Abstract/reuse: nothing obvious

Template: nothing for num

24

Maybe Abstract

Use Existing

or

Template

Body

or

Trivial Cases

Recur on Smaller

?

Abstract/reuse: nothing obvious

Template: nothing for num

... but is it really nat?

25

Maybe Abstract

Use Existing

or

Template

Body

or

Trivial Cases

Recur on Smaller

?

Abstract/reuse: nothing obvious

Template: nothing for num

... but is it really nat?

Yes, starting from 1

26

Template

Body

; discover-number : nat (nat -> sym) -> nat

(define (discover-number n checker)

 (cond

 [(= n 1) ...]

 [else

 ...

 (discover-number (sub1 n) checker)

 ...]))

27

Template

Body

; discover-number : nat (nat -> sym) -> nat

(define (discover-number n checker)

 (cond

 [(= n 1) 0]

 [else

 ...

 (discover-number (sub1 n) checker)

 ...]))

28

Template

Body

; discover-number : nat (nat -> sym) -> nat

(define (discover-number n checker)

 (cond

 [(= n 1) 0]

 [else

 (cond

 [(symbol=? (checker n) ’perfect) n]

 [else

 (discover-number (sub1 n) checker)])]))

29

Template

Body

; discover-number : nat (nat -> sym) -> nat

(define (discover-number n checker)

 (cond

 [(= n 1) 0]

 [else

 (cond

 [(symbol=? (checker n) ’perfect) n]

 [else

 (discover-number (sub1 n) checker)])]))

This works, but is there a better way?

30

Guessing a Number

If you know a number is between 0 and 9:

0 9

31

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

32

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

0 99

33

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

0 99

’imperfect

34

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

0 98

35

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

0 98

’imperfect

36

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

0 97

37

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

0 97

’imperfect

38

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

0 96

39

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

0 96

’imperfect

40

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

0 95

41

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get ’perfect or ’imperfect answers to guesses, there’s
no better way to find the number

0 95

’perfect

42

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get ’perfect, ’too-small, or ’too-large answers, it’s
better to guess in the middle

43

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get ’perfect, ’too-small, or ’too-large answers, it’s
better to guess in the middle

0 94

44

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get ’perfect, ’too-small, or ’too-large answers, it’s
better to guess in the middle

0 94

’too-small

45

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get ’perfect, ’too-small, or ’too-large answers, it’s
better to guess in the middle

0 96

46

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get ’perfect, ’too-small, or ’too-large answers, it’s
better to guess in the middle

0 96

’too-large

47

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get ’perfect, ’too-small, or ’too-large answers, it’s
better to guess in the middle

0 95

48

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get ’perfect, ’too-small, or ’too-large answers, it’s
better to guess in the middle

0 95

’perfect

49

Trivial Cases

Recur on Smaller

0 95

’perfect

Trivially solvable if mid-point is ’perfect

Otherwise, mid-point results cuts the range in half  try again

50

Guessing A Number with Generative Recursion

(define (discover-number n checker)

 (discover-in-range 0 (sub1 n) checker))

; discover-in-range : nat nat (nat -> bool) -> num

; Finds the number between lo and hi (inclusive)

(define (discover-in-range lo hi checker)

 (cond

 [trivial? ...]
 [else

 ... (discover-in-range ...)

 ...]))

51

Guessing A Number with Generative Recursion

(define (discover-number n checker)

 (discover-in-range 0 (sub1 n) checker))

; discover-in-range : nat nat (nat -> bool) -> num

; Finds the number between lo and hi (inclusive)

(define (discover-in-range lo hi checker)

 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [trivial? ...]
 [else

 ... (discover-in-range ...)

 ...])))

52

Guessing A Number with Generative Recursion

(define (discover-number n checker)

 (discover-in-range 0 (sub1 n) checker))

; discover-in-range : nat nat (nat -> bool) -> num

; Finds the number between lo and hi (inclusive)

(define (discover-in-range lo hi checker)

 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [(symbol=? (checker mid) ’prefect) mid]

 [else

 ... (discover-in-range ...)

 ...])))

53

Guessing A Number with Generative Recursion

(define (discover-number n checker)

 (discover-in-range 0 (sub1 n) checker))

; discover-in-range : nat nat (nat -> bool) -> num

; Finds the number between lo and hi (inclusive)

(define (discover-in-range lo hi checker)

 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [(symbol=? (checker mid) ’prefect) mid]

 [else

 ... (discover-in-range lo mid)

 ... (discover-in-range hi hi) ...])))

54

Guessing A Number with Generative Recursion

(define (discover-number n checker)

 (discover-in-range 0 (sub1 n) checker))

; discover-in-range : nat nat (nat -> bool) -> num

; Finds the number between lo and hi (inclusive)

(define (discover-in-range lo hi checker)

 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [(symbol=? (checker mid) ’prefect) mid]

 [else

 (cond

 [(symbol=? (checker mid) ’too-large)

 (discover-in-range lo mid)]

 [else

 (discover-in-range mid hi)])])))

55

Running the Guesser

(discover-number 10 check-7)

56

Running the Guesser

(discover-number 10 check-7)

→

(discover-in-range 0 9 check-7)

using (define (discover-number n checker)
 (discover-in-range 0 (sub1 n) checker))

57

Running the Guesser

(discover-in-range 0 9 check-7)

58

Running the Guesser

(discover-in-range 0 9 check-7)

→

(cond

 [(symbol=? (check-7 4) ’perfect) 4]

 [else

 (cond

 [(symbol=? (check-7 4) ’too-large)

 (discover-in-range 0 4 check-7)]

 [else

 (discover-in-range 4 9 check-7)])])

using (define (discover-in-range lo hi checker)
 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [(symbol=? (checker mid) ’prefect) mid]

 [else

 (cond

 [(symbol=? (checker mid) ’too-large)

 (discover-in-range lo mid)]

 [else

 (discover-in-range mid hi)])])))

59

Running the Guesser

(cond

 [(symbol=? (check-7 4) ’perfect) 4]

 [else

 (cond

 [(symbol=? (check-7 4) ’too-large)

 (discover-in-range 0 4 check-7)]

 [else

 (discover-in-range 4 9 check-7)])])

60

Running the Guesser

(cond

 [(symbol=? (check-7 4) ’perfect) 4]

 [else

 (cond

 [(symbol=? (check-7 4) ’too-large)

 (discover-in-range 0 4 check-7)]

 [else

 (discover-in-range 4 9 check-7)])])

→

(cond

 [(symbol=? (check-7 4) ’too-large)

 (discover-in-range 0 4 check-7)]

 [else

 (discover-in-range 4 9 check-7)])

61

Running the Guesser

(cond

 [(symbol=? (check-7 4) ’too-large)

 (discover-in-range 0 4 check-7)]

 [else

 (discover-in-range 4 9 check-7)])

62

Running the Guesser

(cond

 [(symbol=? (check-7 4) ’too-large)

 (discover-in-range 0 4 check-7)]

 [else

 (discover-in-range 4 9 check-7)])

→

(discover-in-range 4 9 check-7)

63

Running the Guesser

(discover-in-range 4 9 check-7)

64

Running the Guesser

(discover-in-range 4 9 check-7)

→

(cond

 [(symbol=? (check-7 6) ’perfect) 6]

 [else

 (cond

 [(symbol=? (check-7 6) ’too-large)

 (discover-in-range 4 6 check-7)]

 [else

 (discover-in-range 6 9 check-7)])])

65

Running the Guesser

(cond

 [(symbol=? (check-7 6) ’perfect) 6]

 [else

 (cond

 [(symbol=? (check-7 6) ’too-large)

 (discover-in-range 4 6 check-7)]

 [else

 (discover-in-range 6 9 check-7)])])

66

Running the Guesser

(cond

 [(symbol=? (check-7 6) ’perfect) 6]

 [else

 (cond

 [(symbol=? (check-7 6) ’too-large)

 (discover-in-range 4 6 check-7)]

 [else

 (discover-in-range 6 9 check-7)])])

→

(discover-in-range 6 9 check-7)

67

Running the Guesser

(discover-in-range 6 9 check-7)

68

Running the Guesser

(discover-in-range 6 9 check-7)

→

(cond

 [(symbol=? (check-7 7) ’perfect) 7]

 [else

 (cond

 [(symbol=? (check-7 7) ’too-large)

 (discover-in-range 6 7 check-7)]

 [else

 (discover-in-range 7 9 check-7)])])

69

Running the Guesser

(cond

 [(symbol=? (check-7 7) ’perfect) 7]

 [else

 (cond

 [(symbol=? (check-7 7) ’too-large)

 (discover-in-range 6 7 check-7)]

 [else

 (discover-in-range 7 9 check-7)])])

70

Running the Guesser

(cond

 [(symbol=? (check-7 7) ’perfect) 7]

 [else

 (cond

 [(symbol=? (check-7 7) ’too-large)

 (discover-in-range 6 7 check-7)]

 [else

 (discover-in-range 7 9 check-7)])])

→

7

71

Running the Guesser Again

(discover-number 3 check-2)

72

Running the Guesser Again

(discover-number 3 check-2)

→

(discover-in-range 0 2 check-2)

73

Running the Guesser Again

(discover-in-range 0 2 check-2)

74

Running the Guesser Again

(discover-in-range 0 2 check-2)

→

(cond

 [(symbol=? (check-2 1) ’perfect) 1]

 [else

 (cond

 [(symbol=? (check-2 1) ’too-large)

 (discover-in-range 0 1 check-2)]

 [else

 (discover-in-range 1 2 check-2)])])

75

Running the Guesser Again

(cond

 [(symbol=? (check-2 1) ’perfect) 1]

 [else

 (cond

 [(symbol=? (check-2 1) ’too-large)

 (discover-in-range 0 1 check-2)]

 [else

 (discover-in-range 1 2 check-2)])])

76

Running the Guesser Again

(cond

 [(symbol=? (check-2 1) ’perfect) 1]

 [else

 (cond

 [(symbol=? (check-2 1) ’too-large)

 (discover-in-range 0 1 check-2)]

 [else

 (discover-in-range 1 2 check-2)])])

→

(discover-in-range 1 2 check-2)

77

Running the Guesser Again

(discover-in-range 1 2 check-2)

78

Running the Guesser Again

(discover-in-range 1 2 check-2)

→

(cond

 [(symbol=? (check-2 1) ’perfect) 1]

 [else

 (cond

 [(symbol=? (check-2 1) ’too-small)

 (discover-in-range 1 2 check-7)]

 [else

 (discover-in-range 1 2 check-2)])])

79

Running the Guesser Again

(cond

 [(symbol=? (check-2 1) ’perfect) 1]

 [else

 (cond

 [(symbol=? (check-2 1) ’too-small)

 (discover-in-range 1 2 check-7)]

 [else

 (discover-in-range 1 2 check-2)])])

80

Running the Guesser Again

(cond

 [(symbol=? (check-2 1) ’perfect) 1]

 [else

 (cond

 [(symbol=? (check-2 1) ’too-small)

 (discover-in-range 1 2 check-7)]

 [else

 (discover-in-range 1 2 check-2)])])

→

(discover-in-range 1 2 check-2)

81

Running the Guesser Again

(discover-in-range 1 2 check-2)

82

Running the Guesser Again

(discover-in-range 1 2 check-2)

→

(discover-in-range 1 2 check-2)

83

Running the Guesser Again

(discover-in-range 1 2 check-2)

84

Running the Guesser Again

(discover-in-range 1 2 check-2)

→

(discover-in-range 1 2 check-2)

Infinite loop!

85

Generative Recursion and Termination

With structural recursion, a program always terminates

Every value is finite

With generative recursion, termination becomes more tricky

You have to argue that the problem size definitely gets smaller for
every recursive call

86

Guessing a Number, Corrected

(define (discover-in-range lo hi checker)

 (local [(define mid (quotient (+ lo hi) 2))]

 (cond

 [(symbol=? (checker mid) ’prefect) mid]

 [else

 (cond

 [(symbol=? (checker mid) ’too-large)

 (discover-in-range lo (sub1 mid))]

 [else

 (discover-in-range (add1 mid) hi)])])))

87

Algorithms

Our discover-in-range function is an example of a general
algorithm called binary search

88

Algorithms

Our discover-in-range function is an example of a general
algorithm called binary search

Many algorithms are less obvious than binary search

Mostly you’ll use general algorithms, not invent them

Algorithm textbooks are like "recipe" books

Few people design new general algorithms

89

Algorithms

Our discover-in-range function is an example of a general
algorithm called binary search

Many algorithms are less obvious than binary search

Mostly you’ll use general algorithms, not invent them

Algorithm textbooks are like "recipe" books

Few people design new general algorithms

Generative recursion is far more common than general algorithms, and
it’s often merely structural recursion

90

