
Max of a List

Implement the function max-item which returns the biggest number in a list
of numbers

1

Data and Contract

Data: list-of-num, obviously

Contract:

; max-item : list-of-num -> num

2

Examples

(max-item ’(2 7 5)) "should be" 7

3

Examples

(max-item ’(2 7 5)) "should be" 7

(max-item empty) "should be" ...

4

Examples

(max-item ’(2 7 5)) "should be" 7

(max-item empty) "should be" ...

Problem: max-item makes no sense on an empty list

5

Data and Contract, Again

Data: nonempty-list-of-num

; A nonempty-list-of-num is either

; - (cons num empty)

; - (cons num nonempty-list-of-num)

6

Data and Contract, Again

Data: nonempty-list-of-num

; A nonempty-list-of-num is either

; - (cons num empty)

; - (cons num nonempty-list-of-num)

Contract:

; max-item : nonempty-list-of-num -> num

7

Examples, Again

(max-item ’(2 7 5)) "should be" 7

(max-item ’(2)) "should be" 2

8

Implementation

No existing functions on non-empty lists, so start with the template

; A nonempty-list-of-num is either

; - (cons num empty)

; - (cons num nonempty-list-of-num)

9

Implementation

No existing functions on non-empty lists, so start with the template

; A nonempty-list-of-num is either

; - (cons num empty)

; - (cons num nonempty-list-of-num)

(define (max-item nel)

 (cond

 [(empty? (rest nel)) ... (first nel) ...]

 [else

 ... (first nel)

 ... (max-item (rest nel)) ...]))

10

Implementation Complete

(define (max-item nel)

 (cond

 [(empty? (rest nel)) (first nel)]

 [else

 (cond

 [(> (first nel) (max-item (rest nel)))

 (first nel)]

 [else

 (max-item (rest nel))])]))

11

Test

(max-item ’(2)) "should be" 2

works fine

12

Test

(max-item ’(2)) "should be" 2

works fine

(max-item ’(1 2 3 4 5 6 7 8 9 10))

"should be" 10

works fine

13

Test

(max-item ’(2)) "should be" 2

works fine

(max-item ’(1 2 3 4 5 6 7 8 9 10))

"should be" 10

works fine

(max-item ’(1 2 3 4 5 6 7 8 9 10

 11 12 13 14 15 16 17 18 19 20

 21 22 23 24 25 26 27 28 29 30))

"should be" 30

answer never appears!

14

The Speed of max-item

Somewhere around 20 items, the max-item function starts to take way
too long

15

The Speed of max-item

Somewhere around 20 items, the max-item function starts to take way
too long

Even if you buy a computer that’s 10 times faster, the problem shows up
with about 23 items...

16

The Speed of max-item

Somewhere around 20 items, the max-item function starts to take way
too long

Even if you buy a computer that’s 10 times faster, the problem shows up
with about 23 items...

How can we understand how long a program takes to run?

17

Counting Steps

How long does

(+ 1 (* 6 7))

take to execute?

18

Counting Steps

How long does

(+ 1 (* 6 7))

take to execute?

Computer speeds differ in "real time", but we can count steps:

(+ 1 (* 6 7)) → (+ 1 42) → 43

So, evaluation takes 2 steps

19

Steps for max-item and 1 Element

How long does this expression take?

(max-item ’(2))

20

Steps for max-item and 1 Element

How long does this expression take?

(max-item ’(2))

(max-item ’(2))

→ (cond [(empty? (rest ’(2))) (first ’(2))] ...)

→ (cond [(empty? empty) (first ’(2))] ...)

→ (cond [true (first ’(2))] ...)

→ (first ’(2))

→ 2

5 steps  and any list with one item will take five steps

21

Steps for max-item and 2 Elements

How long does this expression take?

(max-item ’(2 1))

22

Steps for max-item and 2 Elements

How long does this expression take?

(max-item ’(2 1))

(max-item ’(2 1))

→ (cond [(empty? (rest ’(2 1))) (first ’(2 1))] [else ...])

→ (cond [(empty? ’(1)) (first ’(2 1))] [else ...])

→ (cond [false (first ’(2 1))] [else ...])

→ (cond [else (cond [(> (first ’(2 1)) ...) ...] [else ...])])

→ (cond [(> (first ’(2 1)) (max-item (rest ’(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item (rest ’(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item ’(1))) ...] [else ...])

→ ... → ... → ... → ...

→ (cond [(> 2 1) (first ’(2 1))] [else ...])

→ (first ’(2 1))

→ 2

23

Steps for max-item and 2 Elements

How long does this expression take?

(max-item ’(2 1))

(max-item ’(2 1))

→ (cond [(empty? (rest ’(2 1))) (first ’(2 1))] [else ...])

→ (cond [(empty? ’(1)) (first ’(2 1))] [else ...])

→ (cond [false (first ’(2 1))] [else ...])

→ (cond [else (cond [(> (first ’(2 1)) ...) ...] [else ...])])

→ (cond [(> (first ’(2 1)) (max-item (rest ’(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item (rest ’(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item ’(1))) ...] [else ...])

→ ... → ... → ... → ...

→ (cond [(> 2 1) (first ’(2 1))] [else ...])

→ (first ’(2 1))

→ 2

14 steps  where 5 came from the recursive call

24

Steps for max-item and 2 Elements

How long does this expression take?

(max-item ’(2 1))

(max-item ’(2 1))

→ (cond [(empty? (rest ’(2 1))) (first ’(2 1))] [else ...])

→ (cond [(empty? ’(1)) (first ’(2 1))] [else ...])

→ (cond [false (first ’(2 1))] [else ...])

→ (cond [else (cond [(> (first ’(2 1)) ...) ...] [else ...])])

→ (cond [(> (first ’(2 1)) (max-item (rest ’(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item (rest ’(2 1)))) ...] [else ...])

→ (cond [(> 2 (max-item ’(1))) ...] [else ...])

→ ... → ... → ... → ...

→ (cond [(> 2 1) (first ’(2 1))] [else ...])

→ (first ’(2 1))

→ 2

14 steps  where 5 came from the recursive call

Are all 2-element lists the same?

25

Steps for max-item and 2 Elements

(max-item ’(1 2))

26

Steps for max-item and 2 Elements

(max-item ’(1 2))

(max-item ’(1 2))

→ (cond [(empty? (rest ’(1 2))) (first ’(1 2))] [else ...])

→ (cond [(empty? ’(2)) (first ’(1 2))] [else ...])

→ (cond [false (first ’(1 2))] [else ...])

→ (cond [else (cond [(> (first ’(1 2)) ...) ...] [else ...])])

→ (cond [(> (first ’(1 2)) (max-item (rest ’(1 2)))) ...] [else ...])

→ (cond [(> 1 (max-item (rest ’(1 2)))) ...] [else ...])

→ (cond [(> 1 (max-item ’(2))) ...] [else ...])

→ ... → ... → ... → ...

→ (cond [(> 1 2) ...] [else ...])

→ (cond [else (max-item (rest ’(1 2)))])

→ (max-item (rest ’(1 2)))

→ (max-item ’(2))

→ ... → ... → ... → ...

→ 2

27

Steps for max-item and 2 Elements

(max-item ’(1 2))

(max-item ’(1 2))

→ (cond [(empty? (rest ’(1 2))) (first ’(1 2))] [else ...])

→ (cond [(empty? ’(2)) (first ’(1 2))] [else ...])

→ (cond [false (first ’(1 2))] [else ...])

→ (cond [else (cond [(> (first ’(1 2)) ...) ...] [else ...])])

→ (cond [(> (first ’(1 2)) (max-item (rest ’(1 2)))) ...] [else ...])

→ (cond [(> 1 (max-item (rest ’(1 2)))) ...] [else ...])

→ (cond [(> 1 (max-item ’(2))) ...] [else ...])

→ ... → ... → ... → ...

→ (cond [(> 1 2) ...] [else ...])

→ (cond [else (max-item (rest ’(1 2)))])

→ (max-item (rest ’(1 2)))

→ (max-item ’(2))

→ ... → ... → ... → ...

→ 2

20 steps  where 10 came from two recursive calls

28

Steps for max-item and N Elements

In the worst case, the step count T for an n-element list passed to
max-item is

T(n) = 10 + 2T(n-1)

29

Steps for max-item and N Elements

In the worst case, the step count T for an n-element list passed to
max-item is

T(n) = 10 + 2T(n-1)

T(1) = 5
T(2) = 10 + 2T(1) = 20
T(3) = 10 + 2T(2) = 50
T(4) = 10 + 2T(3) = 110
T(5) = 10 + 2T(4) = 230
...

30

Steps for max-item and N Elements

In the worst case, the step count T for an n-element list passed to
max-item is

T(n) = 10 + 2T(n-1)

T(1) = 5
T(2) = 10 + 2T(1) = 20
T(3) = 10 + 2T(2) = 50
T(4) = 10 + 2T(3) = 110
T(5) = 10 + 2T(4) = 230
...

In general, T(n) > 2n

Note that 230 is 1,073,741,824  which is why our last test never
produced a result

31

Repairing max-item

In the case of max-item, the problem is easily fixed with local

(define (max-item nel)

 (cond

 [(empty? (rest nel)) (first nel)]

 [else

 (local [(define r (max-item (rest nel)))]

 (cond

 [(> (first nel) r) (first nel)]

 [else r]))]))

With this definition, there’s always one recursive call

(max-item ’(1 2)) takes 17 steps

32

Steps for new max-item and N Elements

In the worst case, now, the step count T for an n-element list passed to
max-item is

T(n) = 12 + T(n-1)

33

Steps for new max-item and N Elements

In the worst case, now, the step count T for an n-element list passed to
max-item is

T(n) = 12 + T(n-1)

T(1) = 5
T(2) = 12 + T(1) = 17
T(3) = 12 + T(2) = 29
T(4) = 12 + T(3) = 41
T(5) = 12 + T(4) = 53
...

34

Steps for new max-item and N Elements

In the worst case, now, the step count T for an n-element list passed to
max-item is

T(n) = 12 + T(n-1)

T(1) = 5
T(2) = 12 + T(1) = 17
T(3) = 12 + T(2) = 29
T(4) = 12 + T(3) = 41
T(5) = 12 + T(4) = 53
...

In general, T(n) = 5 + 12(n-1)

So our last test takes only 343 steps

35

Using Local to Reduce Complexity

Before, we used local to either make the code nicer or to support
abstraction

Now we’re using local to avoid redundant calculations, which avoids
evaluation complexity

Fortunately, these reasons reinforce each other

Where a value is definitely computed and possibly computed multiple
times, always give it a name and compute it once

36

Sorting

We once wrote a sort-list function:

; sort-list : list-of-num -> list-of-num

(define (sort-list l)

 (cond

 [(empty? l) empty]

 [(cons? l) (insert (first l) (sort-list (rest l)))]))

37

Sorting

We once wrote a sort-list function:

; sort-list : list-of-num -> list-of-num

(define (sort-list l)

 (cond

 [(empty? l) empty]

 [(cons? l) (insert (first l) (sort-list (rest l)))]))

How long does it take to sort a list of n numbers?

38

Sorting

We once wrote a sort-list function:

; sort-list : list-of-num -> list-of-num

(define (sort-list l)

 (cond

 [(empty? l) empty]

 [(cons? l) (insert (first l) (sort-list (rest l)))]))

How long does it take to sort a list of n numbers?

We have only one recursive call to sort-list, so it doesn’t have the
same problem as before...

39

Insertion Sort

... but what about insert?

; sort-list : list-of-num -> list-of-num

(define (sort-list l)

 (cond

 [(empty? l) empty]

 [(cons? l) (insert (first l) (sort-list (rest l)))]))

; insert : num list-of-num -> list-of-num

(define (insert n l)

 (cond

 [(empty? l) (list n)]

 [(cons? l)

 (cond

 [(< n (first l)) (cons n l)]

 [else (cons (first l) (insert n (rest l)))])]))

On each iteration of sort-list, there’s a call to sort-list and a call
to insert

40

Insert Time

insert itself is like the repaired max-item:

; insert : num list-of-num -> list-of-num

(define (insert n l)

 (cond

 [(empty? l) (list n)]

 [(cons? l)

 (cond

 [(< n (first l)) (cons n l)]

 [else (cons (first l) (insert n (rest l)))])]))

In the worst case, insert into a list of size n takes k1 + k2n

The variables k1 and k2 stand for some constant

41

Insertion Sort Time

Given that the time for insert is k1 + k2n...

; sort-list : list-of-num -> list-of-num

(define (sort-list l)

 (cond

 [(empty? l) empty]

 [(cons? l) (insert (first l) (sort-list (rest l)))]))

The time for sort-list is defined by

T(0) = k3

T(n) = k4 + T(n-1) + k1 + k2n

42

Insertion Sort Time

T(0) = k3

T(n) = k4 + T(n-1) + k1 + k2n

Even if each k were only 1:

T(0) = 1
T(1) = 4
T(2) = 8
T(2) = 13
T(3) = 19
...

In the long run, T(n) is a lot like n2

This is a lot better than 2n  but sorting a list of 10,000 items takes
more than 100,000,000 steps

43

Sorting Algorithms

The list-of-num template leads to the insertion sort algorithm

It’s not practical for large lists

Algorithms such as quick sort and merge sort are faster

44

Merge Sort

(define (merge-sort l)

 (cond

 [(or (empty? l) (empty? (rest l))) l]

 [else

 (local [(define a-half (even-items l))

 (define b-half (odd-items l))]

 (merge-lists

 (merge-sort a-half)

 (merge-sort b-half)))]))

even-items and odd-items each take k5 + k6n steps

merge-lists takes k7 + k8n steps

So, for merge-sort:

T(0) = k9

T(1) = k10

T(n) = k11 + 2T(n/2) + 2k5 + 2k6n + k7 + k8n

45

Merge Sort Time

Simplify by collapsing constants:

T(n) = k12 + 2T(n/2) + k13n

Setting constants to 1:

...
T(5) = 21
T(6) = 27
T(7) = 33
T(8) = 39
T(9) = 46
...

In the long run, T(n) is a lot like nlog2n

Sorting a list of 10,000 items takes something like 100,000 steps (which
is 1,000 times faster than insertion sort)

46

The Cost of Computation

The study of execution time is called complexity theory

Practical points:

1. Use local to avoid redundant computations

Something you can always do to tame evaluation

2. Algorithms like merge-sort are in textbooks

You learn them, not invent them

47

The Cost of Computation

The study of execution time is called complexity theory

Practical points:

1. Use local to avoid redundant computations

Something you can always do to tame evaluation

2. Algorithms like merge-sort are in textbooks

You learn them, not invent them

Other courses teach you more about the second category

Is there anything else in the first category (things you can do now)?

48

The Cost of Computation

The study of execution time is called complexity theory

Practical points:

1. Use local to avoid redundant computations

Something you can always do to tame evaluation

2. Algorithms like merge-sort are in textbooks

You learn them, not invent them

Other courses teach you more about the second category

Is there anything else in the first category (things you can do now)?

soon...

49

Vectors

The Advanced language provides vectors, which is similar to lists:

> (list 1 2 3)

(list 1 2 3)

> (vector 1 2 3)

(vector 1 2 3)

Differences:

There’s nothing like cons for vectors

The vector-ref function extracts an element from anywhere in the
vector in constant time

50

List-Ref versus Vector-Ref

; list-ref : list-of-X nat -> X

(define (list-ref l n)

 (cond

 [(zero? n) (first l)]

 [else (list-ref (rest l) (sub1 n))]))

(list-ref ’(a b c d) 1) "should be" ’b

In general, (list-ref l n) takes about n steps

51

List-Ref versus Vector-Ref

; vector-ref : vector-of-X nat -> X

(define (vector-ref l n)

 ...)

(vector-ref (vector ’a ’b ’c ’d) 1)

"should be" ’b

In general, (vector-ref v n) takes 1 step

You can’t actually define vector-ref yourself

Eventually, we’ll use vectors when we need "random access" among
arbitrarily many components

More generally, each kind of data comes with operations that have a
certain cost  a programmer has to pick the right data

52

