Last Time

(define TOTAL 0O)
(define WORKI NG 0)

RS (define PREV-OP +)
£l
1/ 2| 3 (define (add-digit n) ...)
= (define (change-total n OP) ...)
484

=

The add- di gi t and change-t ot al functions "remember" using TOTAL
, WORKI NG, and PREV- CP

Designing Functions with State

® New design tool: organizational charts

e Contract, Purpose, and Header becomes
Contract, Purpose, Effect, and Header

e Examples include starting state and effect

e Template includes potential assignments

Organizational Chart, Effects, Templates

n add-di gi t
H’V\(RKI NG

——> change-t ot al

@TOTAL @ PREV- OP

Organizational Chart, Effects, Templates

n add-di gi t

*%WDRKING

——> change-t ot al

@TOTAL @ PREV- OP

add-digit : num-> true

, Adds a digit to the nunber being entered
, Effect: extends nunber, updates GU
(define (add-digit n)

n

WORKI NG ... (set! WORKING ...) ...)

Organizational Chart, Effects, Templates

n add-di gi t

V\ORKI NG

——> change-t ot al

@TOTAL @ PREV- OP

change-t ot al num (num num -> nun) -> true
Conbi nes nunber and t ot al

;, Effect: sets total, resets nunber, sets op,
(define (change-total n OP)

updat es GUI

... n ... OP
. WORKING ... (set! WORKING ...)
PREV-OP ... (set! PREV-OP ...)

. TOTAL ... (set! TOTAL ...) ...)

Examples

(begi n
(set! WORKI NG 0)
(add-digit 5) "should be" true
WORKI NG "shoul d be" 5)

(begin
(set! WORKI NG 10)
(add-digit 5) "should be" true
WORKI NG "shoul d be" 105)

Examples

(begi n
(set! TOTAL 3)
(set! WORKI NG 5)
(set! PREV-OP *)
(change-total 5 +) "should be" true
TOTAL "shoul d be" 15
WORKI NG "shoul d be" 0
PREV- OP "shoul d be" +)

Simpler Example

Suppose we want a GUI to manage a fish

i =hk]

/
F

eed 1

Feed 3'|J

Run

Simpler Example

Suppose we want a GUI to manage a fish

Run

New rule: keep the view and control separate from the model
® The view and control are in the GUI

® The model is a fish with a weight

Simpler Example

Suppose we want a GUI to manage a fish

Run

New rule: keep the view and control separate from the model
® The view and control are in the GUI
® The model is a fish with a weight

Design the model first

Fish Model

® The only operation in the model is f eed

, feed : num-> num
, Gows the fish by n, returns new size
, FEffect: adjusts the fish's wei ght

Fish Model

® The only operation in the model is f eed

, feed : num-> num
, Gows the fish by n, returns new size
, FEffect: adjusts the fish's wei ght

n feed

bver o

Fish Model

® The only operation in the model is f eed

, feed : num-> num
, Gows the fish by n, returns new size
, FEffect: adjusts the fish's wei ght

n feed (define (feed n)
@ .. on ... V\EIGHT
VEL GHT .. (set! WEIGHT ...)

Fish Model

® The only operation in the model is f eed

, feed : num-> num
, Gows the fish by n, returns new size
, FEffect: adjusts the fish's wei ght

n feed (define (feed n)
@ .. n ... VEIGHT
VEL GHT ... (set! WEIGHT ...)
(begi n

(set! WEIGHT 1)
(feed 10) "should be" 11
VEEI GHT "shoul d be" 11)

Fish Model Implementation

, feed : num-> num
, Gows the fish by n, returns new size
, FEffect: adjusts the fish's weight
(define (feed n)
(begin
(set! VEIGHT (+ WEI GHT n))
VEI GHT))

(begin
(set! VEIGHT 1)
(feed 10) "should be" 11
VEEI GHT "shoul d be" 11)

Implementing the View and Controller

7
LFeed 1 Feed 37|J

Use the GUI teachpack to construct view and control

® Message objects implement the view

¢ Button callbacks implement the control

View Control Model

Often, the model never calls the control

Complete Fish Program

- The nodel :
(define VEIGHT 3)
feed : num -> num

(define (feed n)
(begin
(set! VWEIGHT (+ n WEIGHT))
VIEI GHT))
... tests here ...

; The view
(define nsg (nmake-nessage (nunber->string WEIGHT)))
, The control:
(define (feed-button n)
(make-button (string-append "Feed " (nunber->string n))
(1 anbda (evt)
(draw nessage
nsg
(nunber->string (feed n))))))
(creat e-w ndow
(list (list nmeg) (list (feed-button 1) (feed-button 3))))

17

Multiple Fish

As we saw last time, if we want multiple fish, we can use | ocal

(define (make-fish init-weight)
(local [(define WEIGHT init-weight)
(define (feed n)
(begin
(set! WVEIGHT (+ WEIGHT n))
VIEI GHT))
_—

(creaté-mﬂndOM/...)))

18

Evaluating make-fish

(define (make-fish init-weight)
(local [(define VWEIGHT init-weight)
(define (feed n)
(begin
(set! WVEIGHT (+ WEIGHT n))
V\EI GHT))
]
(create-w ndow ...)))
(make-fish 5)

Evaluating make-fish

(define (make-fish init-weight)
(local [(define VWEIGHT init-weight)
(define (feed n)
(begin
(set! WVEIGHT (+ WEIGHT n))
V\EI GHT))
]
(create-w ndow ...)))
(make-fish 5)

—

(local [(define WEIGHT 5)
(define (feed n)
(begin
(set! VEIGHT (+ WEIGHT n))
VAEI GHT))
]

(create-w ndow ...))

Evaluating make-fish

(local [(define WElIGHT 5)
(define (feed n)
(begin
(set! WEIGHT (+ WEIGHT n))
VAEI GHT))
.

(create-w ndow ...))

Evaluating make-fish

(local [(define WElIGHT 5)
(define (feed n)
(begin
(set! WEIGHT (+ WEIGHT n))
VAEI GHT))
.

(create-w ndow ...))

—

(define WEI GHTg 5)
(define (feeds n)
(begin
(set! WEIGHTs (+ VEI GHTg n))
VEI GHTs))

(create-w ndow ...)

Multiple Fish

Every time we call nake-fi sh a new WEI GHT is created for the new fish

We can make a whole aquarium....

23

Multiple Fish

Every time we call nake-fi sh a new WEI GHT is created for the new fish

We can make a whole aquarium....

® How can we get the current total weight of all fish?

® How can we auto-feed all fish?

24

Multiple Fish

Every time we call nake-fi sh a new V\EI GHT is created for the new fish

We can make a whole aquarium....

® How can we get the current total weight of all fish?

e How can we auto-feed all fish?

Problem: make- f i sh returns only a window

The renamed VEI GHT is completely hidden

25

Returning the Weight

Does this help?

, make-fish : num-> num

(define (make-fish init-weight)
(l ocal [(define WEIGHT Init-weight)

—

(begin
(create-w ndow .. .)
VEI GHT)))

Returning the Weight

Does this help?

, make-fish : num-> num
(define (make-fish init-weight)
(l ocal [(define WEIGHT Init-weight)

_—
(begin
(create-w ndow ...)
VEI GHT)))
No:

(make-fish 5)
> (local [(define WEIGHT 5) ...] ... WEIGHI)
> (define WEI GHT,; 5) ... VWEI GHT,;

~ — (define VEIGHT,; 5) ... 5

Returning the Feeder

Only functions inside nmake- f 1 sh can see EI GHT

Returning the Feeder

Only functions inside nmake- f 1 sh can see EI GHT
So maybe make- f i sh should return a function:

, make-fish : num-> (num-> num
(define (nake-fish init-weight)
(l ocal [(define VWEIGHT init-weight)

(define (feed n) ... WVEIGHT ...
]
(begi n
(create-w ndow .. .)
feed)))
(make-fish 5)
— (local [(define WEIGHT 5) (define (feed n) ... WEIGHT ...

. feed)

— (define VWEIGHT,; 5) (define (feedg n) ... WEIGHT,, ...) ...

o]

f eedg,

Feeding an Agquarium

Alive-fish is
(num -> num

make-fish : num-> |live-fish

(define aquarium (list (make-fish 5)
(make-fish 3)
(make-fish 12)))

ag-weight : list-of-live-fish -> num
(define (ag-weight [)
(foldr (lanmbda (f r) (+ (f 0) r)) 0 1))

- feed-all : nlist-of-l1ve-fish -> ...
(define (feed-all n |)
(map (lanmbda (f) (f n)) 1))

for-each

The built-in function f or - each is like map, but it returns (voi d)

, feed-all! : nlist-of-live-fish -> (void)
;, Feeds n to each live-fish in |
, Effect: each |live-fish becones heavi er
(define (feed-all! n I)

(for-each (lanbda (f) (f n)) 1))

31

for-each

The built-in function f or - each is like map, but it returns (voi d)

, feed-all! : nlist-of-live-fish -> (void)
;, Feeds n to each live-fish in |
, Effect: each |live-fish becones heavi er
(define (feed-all! n I)

(for-each (lanbda (f) (f n)) 1))

(begin
(define | (list (make-fish 1) (nake-fish 2)))
(feed-all! 3 1) "should be" (void)

| "should be" (list (make-fish 4) (nmake-fish 5)))
?

32

for-each

The built-in function f or - each is like map, but it returns (voi d)

, feed-all! : nlist-of-live-fish -> (void)
;, Feeds n to each live-fish in |
, Effect: each |live-fish becones heavi er
(define (feed-all! n I)

(for-each (lanbda (f) (f n)) 1))

(begin
(define | (list (make-fish 1) (nake-fish 2)))
(feed-all! 3 1) "should be" (void)

| "should be" (list (make-fish 4) (nmake-fish 5)))
?

® This test doesn’t completely capture the effect

33

for-each

The built-in function f or - each is like map, but it returns (voi d)

, feed-all! : nlist-of-live-fish -> (void)
;, Feeds n to each live-fish in |
, Effect: each |live-fish becones heavi er
(define (feed-all! n I)

(for-each (lanbda (f) (f n)) 1))

(begin
(define | (list (make-fish 1) (make-fish 2)))
(feed-all! 3 1) "should be" (void)
((first I) O) "should be" 4
((first (rest [)) 0) "should be" 5)

34

for-each

The built-in function f or - each is like map, but it returns (voi d)

feed-all! : nlist-of-live-fish -> (void)
Feeds n to each l[ive-fish in |
, Effect: each |live-fish becones heavi er
(define (feed-all! n I)
(for-each (lanbda (f) (f n)) 1))

(begin
(define | (list (make-fish 1) (make-fish 2)))
(feed-all! 3 1) "should be" (void)
((first I) O) "should be" 4
((first (rest [)) 0) "should be" 5)

® Testing with state is often difficult

¢ Avoid this difficulty by avoiding state whenever possible

35

A Tale of Two Fish Representations

, Afish is
; num

, Alive-fish is
: (num -> num
e Afi sh represents a fish of a particular weight
© Feed the fish O new value
e Alive-fish represents a fish with a particular identity

© Feed the fish [same value, new state

A Tale of Two Fish Representations

, Afish is
; num

- Alive-fish iIs
: (num -> num

| 1 ve-f1 shis more closely reflects reality
¢ On the one hand, reflecting reality makes things more intuitive

® On the other hand, reality can be messy

Key guestion when designing a program: what to represent

Encapsulation

Packaging fish state with its operations is called encapsulation

More on encapsulation soon...

38

Design with State Summary

¢ Deciding to use state: often motivated by GUIs

© Split into model and view/controller

® The design recipe for state
© Charts (no handin artifact)
o Effects (handin with purpose)
© Template with assignments (handin optional)

© Multi-step tests (handin as usual)

® Design for the single-instance case, then encapsulate if necessary

39

