Date Change for Mid-Term 2

Wednesday, November 5

instead of Friday, November 7

Multiple Programs

How do programs communicate?

_

Multiple Programs

How do programs communicate? Files...

]
o«

B

Multiple Programs

How do programs communicate? Files... Network...

_

Y

|

Multiple Programs

How do programs communicate? Files... Network... Etc.

] [

Y

But what's in a file or sent over the network?

Byte Streams

Operating systems provide files, network connections, etc. as
byte stream objects

A byte is a number between 0 and 255

A stream is a sequence with a pointer and an operation: read orwrite

104 101 108 108 111
1

Byte Streams

Operating systems provide files, network connections, etc. as
byte stream objects

A byteis a number between 0 and 255

A stream is a sequence with a pointer and an operation: read orwri t e

104 121 108 108 111

(read i) - 104

Byte Streams

Operating systems provide files, network connections, etc. as
byte stream objects

A byte is a number between 0 and 255

A stream is a sequence with a pointer and an operation: read orwite

104 101 128 108 111

(read i) - 104

(read i) - 101

Byte Streams and Networks

] —

Y

Byte Streams and Networks

(wite 104 o)
- (void)

Y

_

104

Byte Streams and Networks

(wite 104 o) B B

- (voi d)

(wite 101 o)
- (voi d)

Y

101 104

Byte Streams and Networks

(wite 104 o)
- (void)

(wite 101 o)
- (voi d)

_

101

(read i)
- 104

Byte Streams and Networks

(wite 104 o) D D (read i)

- (void) ~ 104
(wite 101 o) (read i)
- (voi d) > - 101

To communicate information other than small numbers, it must be

encoded

To encode English text, map each character to a byte

Encoding

#\ a
#\ b
#\ ¢

#\ A
#\ (

#\)
#\ 1

U
U
U

97
98
99

65

40

41
48

Character Streams

This character encoding is so popular that byte streams are sometimes
viewed as character streams

T

#\h #\e #\| #| #\ o
1t

Character Streams

This character encoding is so popular that byte streams are sometimes
viewed as character streams

(read-char

t*

#\h #\ e #\|

#\ |

—
#\ o

i) - #\h

13-16

Character Streams

This character encoding is so popular that byte streams are sometimes
viewed as character streams

#\h #\e #\| #I| #o
*

(read-char i) - #\h

(read-char i) - #\e

Character Streams in Scheme
(define o (open-output-file "ex1"))
(write-char #\h o)

(write-char #\e 0)

(cl ose-out put-port o)

(define i (open-input-file "ex1"))
(read-char i) "should be" #\h

(read-char i) "should be" #\e

(cl ose-input-port i)

Note: Scheme term for stream is port

Communicating More Than Characters

read- char and wri t e- char are sufficient for communicating character
sequences (or small-number sequences)

To read and write aquariums, we need to communicate lists of (large)
numbers

One again, we must encode:

enpty 0 #\ .
'’ (10000) O #1#0 #0 # 0 #\ space #\.
(1 2) O #\1 #\ space #\ 2 #\ space #\.

Number List Example

A<numi i st>is
#\ .
<nun® #\ space <nuni i st >

A <nunw is
<digit>
<nume <di gi t >

A<digit>is
#\0
#\ 1

#\9

17-21

Number List Writer

; wite-nunmlist : list-of-numoutput-port -> void
(define (wite-numist | p)
(cond

[(empty? |I) (wite-char # . p)]

[el se (begin
(write-num (first |) p)
(write-char #\ space p)
(wite-nunmist (rest 1) p))]))

; write-num: num output-port -> void
(define (wite-numn p)
(cond
[(<n 10) (wite-digit n p)]
[el se (begin
(write-num (quotient n 10) p)
(wite-digit (remainder n 10) p))1))

; wite-digit : num (0-9) output-port -> void
(define (wite-digit n p)
(cond
[(=n 0) (wite-char #\0 p)]

ik;n 9) (wite-char #\9 p)]))

Number List Example

A<numist>is
#\ .
<nun® #\ space <nuni i st >

A <nune is
<digit>
<nun® <di gi t >

A<digit>is
0
#1

#\9

Number List Example

Parsing algorithms O use the following equivalent form:

A<nunlist>is
#\ .
#\ 0 <nun® <num i st >

#\ 9 <nun® <nunl i st >

A <nun® is
#\ space
#\ 0 <nun®

#\ 9 <nun®

Number List Reader

; read-numlist : input-port -> [ist-of-num
(define (read-nunlist p)
(local [(define c (read-char p))]
(cond
[(char=? #\. c¢) enpty]
[(char-digit? c) (cons (read-nunber p (digit-val c))
(read-numist p))1)))

; read-nunber : input-port num-> num
(define (read-nunber p n)
(local [(define c (read-char p))]
(cond
[(char=? #\space c) n]
[(char-digit? c)
(read-nunber p (+ (* n 10) (digit-val c)))])))

; char-digit? : char -> boo

; digit-val : char -> num

22-25

read and write
That's the idea, but you usually don’t have to start from scratch

® Built into Scheme: read andwite

o Like r ead- f rom st ri ng, but handles strings, chars, etc.

e Next time: read-xm andwit e-xni

© A generalization of HTML

Using read/write libraries means easier encoding

Family Trees

A famly-tree is either
;- enpty
;- (make-child famly-tree famly-tree sym
(define-struct child (father nother nane))

(define MY-FAM LY (meke-child enpty enpty ' Matthew))
; add-nmother! : symsym-> void
(define (add-nother! c-name m nane)
(set! MY-FAMLY (add-nother My-FAMLY c-nanme mnane)))
; add-nother : famly-tree symsym-> fanmily-tree
find-relative : sym-> famly-tree-or-fal se
(define (find-relative c-nane)

(find-person My-FAM LY c-nane))

find-person : famly-tree sym-> famly-tree-or-fal se

Copy

Writing Family Trees

; family-tree->sexp : famly-tree -> sexp
(define (famly-tree->sexp ft)
(cond
[(empty? ft) " ()]
[else (list (famly-tree->sexp (child-father ft))
(fam ly-tree->sexp (child-nother ft))
(child-name ft))]))

(fam ly-tree->sexp enpty) "should be" ' ()

(fam ly-tree->sexp (make-child enpty enpty ' Matthew))

"shoul d be" " (() () Matthew)

(fam ly-tree->sexp

(make-child (make-child enpty enpty 'Raynond) enpty ' Matthew))
"should be" " ((() () Raynond) () Matthew)

; wite-famly-tree : famly-tree output-port -> void
(define (wite-famly-tree ft p)
(wite (famly-tree->sexp ft) p))

(define o (open-output-port "ny tree"))
(wite-fanmily-tree MY-FAMLY o)
(cl ose-out put-port o)

Reading Family Trees

; sexp->famly-tree : sexp -> fanmily-tree
(define (sexp->fanily-tree sexp)
(cond
[(enpty? sexp) enpty]
[el se (make-child
(sexp->famly-tree (first sexp))
(sexp->fam |ly-tree (second sexp))
(third sexp))]))

(sexp->famly-tree '()) "should be" empty
(sexp->famly-tree "(() () Matthew))
"shoul d be" (make-child enpty enpty ' Matthew)

; read-famly-tree : input-port -> famly-tree
(define (read-famly-tree i)
(sexp->famly-tree (read i)))

(define i (open-input-port "ny tree"))
(set! MY-FAMLY (read-famly-tree i))
(cl ose-input-port i)

26-29

Summary

Input/output (or I/O for short): files, network, and more

e Qutput 0 choose a representation in terms of an existing writer

® Input [0 parse representation from an existing reader

Base reader/writer (practically all operating systems): bytes
... but there are always better libraries

30-31

