
Date Change for Mid-Term 2

Wednesday, November 5
instead of Friday, November 7

1

Multiple Programs

How do programs communicate?

2

Multiple Programs

How do programs communicate? Files...

3

Multiple Programs

How do programs communicate? Files... Network...

4

Multiple Programs

How do programs communicate? Files... Network... Etc.

But what’s in a file or sent over the network?

5

Byte Streams

Operating systems provide files, network connections, etc. as
byte stream objects

A byte is a number between 0 and 255

A stream is a sequence with a pointer and an operation: read or write

104 101 108 108 111

6

Byte Streams

Operating systems provide files, network connections, etc. as
byte stream objects

A byte is a number between 0 and 255

A stream is a sequence with a pointer and an operation: read or write

104 101 108 108 111

(read i) → 104

7

Byte Streams

Operating systems provide files, network connections, etc. as
byte stream objects

A byte is a number between 0 and 255

A stream is a sequence with a pointer and an operation: read or write

104 101 108 108 111

(read i) → 104

(read i) → 101

8

Byte Streams and Networks

9

Byte Streams and Networks

(write 104 o)

 → (void)

104

10

Byte Streams and Networks

(write 104 o)

 → (void)

(write 101 o)

 → (void)

101 104

11

Byte Streams and Networks

(write 104 o)

 → (void)

(write 101 o)

 → (void)

101

(read i)

 → 104

12

Byte Streams and Networks

(write 104 o)

 → (void)

(write 101 o)

 → (void)

(read i)

 → 104

(read i)

 → 101

13

Encoding

To communicate information other than small numbers, it must be
encoded

To encode English text, map each character to a byte

#\a ⇒ 97

#\b ⇒ 98

#\c ⇒ 99

...
#\A ⇒ 65

...
#\(⇒ 40

#\) ⇒ 41

#\1 ⇒ 48

...

14

Character Streams

This character encoding is so popular that byte streams are sometimes
viewed as character streams

#\h #\e #\l #\l #\o

15

Character Streams

This character encoding is so popular that byte streams are sometimes
viewed as character streams

#\h #\e #\l #\l #\o

(read-char i) → #\h

16

Character Streams

This character encoding is so popular that byte streams are sometimes
viewed as character streams

#\h #\e #\l #\l #\o

(read-char i) → #\h

(read-char i) → #\e

17

Character Streams in Scheme

(define o (open-output-file "ex1"))

(write-char #\h o)

(write-char #\e o)

...

(close-output-port o)

(define i (open-input-file "ex1"))

(read-char i) "should be" #\h

(read-char i) "should be" #\e

...

(close-input-port i)

Note: Scheme term for stream is port

18

Communicating More Than Characters

read-char and write-char are sufficient for communicating character
sequences (or small-number sequences)

To read and write aquariums, we need to communicate lists of (large)
numbers

19

Communicating More Than Characters

read-char and write-char are sufficient for communicating character
sequences (or small-number sequences)

To read and write aquariums, we need to communicate lists of (large)
numbers

One again, we must encode:

empty ⇒ #\.

’(10000) ⇒ #\1 #\0 #\0 #\0 #\space #\.

’(1 2) ⇒ #\1 #\space #\2 #\space #\.

...

20

Number List Example

A <numlist> is
 #\.
 <num> #\space <numlist>

A <num> is
 <digit>
 <num> <digit>

A <digit> is
 #\0
 #\1
 ...
 #\9

21

Number List Writer

; write-numlist : list-of-num output-port -> void

(define (write-numlist l p)

 (cond

 [(empty? l) (write-char #\. p)]

 [else (begin

 (write-num (first l) p)

 (write-char #\space p)

 (write-numlist (rest l) p))]))

; write-num : num output-port -> void

(define (write-num n p)

 (cond

 [(< n 10) (write-digit n p)]

 [else (begin

 (write-num (quotient n 10) p)

 (write-digit (remainder n 10) p))]))

; write-digit : num (0-9) output-port -> void

(define (write-digit n p)

 (cond

 [(= n 0) (write-char #\0 p)]

 ...

 [(= n 9) (write-char #\9 p)])) Copy

22

Number List Example

A <numlist> is
 #\.
 <num> #\space <numlist>

A <num> is
 <digit>
 <num> <digit>

A <digit> is
 #\0
 #\1
 ...
 #\9

23

Number List Example

Parsing algorithms ⇒ use the following equivalent form:

A <numlist> is
 #\.
 #\0 <num> <numlist>
 ...
 #\9 <num> <numlist>

A <num> is
 #\space
 #\0 <num>
 ...
 #\9 <num>

24

Number List Reader

; read-numlist : input-port -> list-of-num

(define (read-numlist p)

 (local [(define c (read-char p))]

 (cond

 [(char=? #\. c) empty]

 [(char-digit? c) (cons (read-number p (digit-val c))

 (read-numlist p))])))

; read-number : input-port num -> num

(define (read-number p n)

 (local [(define c (read-char p))]

 (cond

 [(char=? #\space c) n]

 [(char-digit? c)

 (read-number p (+ (* n 10) (digit-val c)))])))

; char-digit? : char -> bool

...

; digit-val : char -> num

... Copy

25

read and write

That’s the idea, but you usually don’t have to start from scratch

Built into Scheme: read and write

Like read-from-string, but handles strings, chars, etc.

Next time: read-xml and write-xml

A generalization of HTML

Using read/write libraries means easier encoding

26

Family Trees

; A family-tree is either

; - empty

; - (make-child family-tree family-tree sym)

(define-struct child (father mother name))

(define MY-FAMILY (make-child empty empty ’Matthew))

; add-mother! : sym sym -> void

(define (add-mother! c-name m-name)

 (set! MY-FAMILY (add-mother MY-FAMILY c-name m-name)))

; add-mother : family-tree sym sym -> family-tree

...

; find-relative : sym -> family-tree-or-false

(define (find-relative c-name)

 (find-person MY-FAMILY c-name))

; find-person : family-tree sym -> family-tree-or-false

...

Copy

27

Writing Family Trees

; family-tree->sexp : family-tree -> sexp

(define (family-tree->sexp ft)

 (cond

 [(empty? ft) ’()]

 [else (list (family-tree->sexp (child-father ft))

 (family-tree->sexp (child-mother ft))

 (child-name ft))]))

(family-tree->sexp empty) "should be" ’()

(family-tree->sexp (make-child empty empty ’Matthew))

"should be" ’(() () Matthew)

(family-tree->sexp

 (make-child (make-child empty empty ’Raymond) empty ’Matthew))

"should be" ’((() () Raymond) () Matthew)

; write-family-tree : family-tree output-port -> void

(define (write-family-tree ft p)

 (write (family-tree->sexp ft) p))

(define o (open-output-port "my tree"))

(write-family-tree MY-FAMILY o)

(close-output-port o)

28

Reading Family Trees

; sexp->family-tree : sexp -> family-tree

(define (sexp->family-tree sexp)

 (cond

 [(empty? sexp) empty]

 [else (make-child

 (sexp->family-tree (first sexp))

 (sexp->family-tree (second sexp))

 (third sexp))]))

(sexp->family-tree ’()) "should be" empty

(sexp->family-tree ’(() () Matthew))

"should be" (make-child empty empty ’Matthew)

; read-family-tree : input-port -> family-tree

(define (read-family-tree i)

 (sexp->family-tree (read i)))

(define i (open-input-port "my tree"))

(set! MY-FAMILY (read-family-tree i))

(close-input-port i)

29

Summary

Input/output (or I/O for short): files, network, and more

Output  choose a representation in terms of an existing writer

Input  parse representation from an existing reader

Base reader/writer (practically all operating systems): bytes

... but there are always better libraries

30

