Date Change for Mid-Term 2

Wednesday, November 5

iInstead of Friday, November 7

Multiple Programs

How do programs communicate?

-

-

Multiple Programs

How do programs communicate? Files...

-

%

-

Lo

.

Multiple Programs

How do programs communicate? Files... Network...

L

Multiple Programs

How do programs communicate? Files... Network... Etc.

L

But what's in a file or sent over the network?

Byte Streams

Operating systems provide files, network connections, etc. as
byte stream objects

A byteis a number between 0 and 255

A stream is a sequence with a pointer and an operation: read orwite
|

104 101 108 108 111
*

Byte Streams

Operating systems provide files, network connections, etc. as
byte stream objects

A byteis a number between 0 and 255

A stream is a sequence with a pointer and an operation: read orwite

104 101 108 108 111
1)

(read 1) - 104

Byte Streams

Operating systems provide files, network connections, etc. as
byte stream objects

A byteis a number between 0 and 255

A stream is a sequence with a pointer and an operation: read orwite

104 101 108 108 111
*

(read 1) - 104
(read 1) - 101

Byte Streams and Networks

Byte Streams and Networks

(wite 104 o) [] []

- (voi d)

104

Byte Streams and Networks

(wite 104 o) [] []

- (voi d)

(wite 101 o)
> (voi d) >
101 104

Byte Streams and Networks

(wite 104 o)
- (voi d)

(wite 101 o)
> (voi d)

-

-

101

(read 1)
- 104

Byte Streams and Networks

(wite 104 o) [] Ej (read 1)

- (voi d) - 104
(wite 101 o) (read 1)
> (voi d) > - 101

Encoding

To communicate information other than small numbers, it must be
encoded

To encode English text, map each character to a byte

#\a U 97
#\b O 08
#\c O 99
#\A [65
#\ ((] 40
#\) (] 41

#\1 [0 48

Character Streams

This character encoding is so popular that byte streams are sometimes
viewed as character streams

#\h #\e #\| # 1 #\ o
*

Character Streams

This character encoding is so popular that byte streams are sometimes
viewed as character streams

#\h #\e #\| # | #\ o
*

(read-char 1) - #\h

Character Streams

This character encoding is so popular that byte streams are sometimes
viewed as character streams

#\h #\e #\| #1 #\ o
*

(read-char 1) - #\h

(read-char 1) - #\e

Character Streams in Scheme

(define o (open-output-file "ex1"))
(wite-char #\h o)

(wite-char #\e o)

(cl ose-out put - port o)

(define 1 (open-input-file "exl1l"))
(read-char i) "should be" #\h
(read-char i) "should be" #\e

(cl ose-I nput-port 1)

Note: Scheme term for stream is port

Communicating More Than Characters

read- char andwr it e- char are sufficient for communicating character
sequences (or small-number seguences)

To read and write aquariums, we need to communicate lists of (large)
numbers

19

Communicating More Than Characters

read- char andwr it e- char are sufficient for communicating character
sequences (or small-number seguences)

To read and write aquariums, we need to communicate lists of (large)
numbers

One again, we must encode:

enpty 0 #\.
' (10000) O #1 #0 #\0 #\ 0 #\ space #\.
(1 2) 0 #\1 #\space #\2 #\space #\.

20

Number List Example

A<num ist>is
#\ .
<nun® #\ space <num | st >

A <nune is
<digit>
<nunk <di gi t >

A<digit>is
#\ 0
#\ 1

#\ 9

Number List Writer

wite-numist : list-of-numoutput-port -> void
(define (wite-numist | p)
(cond

[(empty? |) (wite-char #\. p)]

[el se (begin
(wite-num (first |) p)
(write-char #\space p)
(wite-numist (rest |) p))]))

Write-num: num out put-port -> void
(define (wite-numn p)
(cond
[(<n 10) (wite-digit n p)]
[el se (begin
(wite-num (quotient n 10) p)
(wite-digit (remainder n 10) p))]))

wite-digit : num(0-9) output-port -> void
(define (wite-digit n p)
(cond
[(=n 0) (wite-char #\0 p)]

t.(.:n9) (wite-char #\9 p)])) Copy

22

Number List Example

A<num ist>is
#\ .
<nun® #\ space <num | st >

A <nune is
<digit>
<nunk <di gi t >

A<digit>is
#\ 0
#\ 1

#\ 9

Number List Example

Parsing algorithms [J use the following equivalent form:

A<nunm i st>Is
#\ .
#\ 0 <nun® <nun | st >

#\ 9 <nunP <nun | st >

A <nun® is
#\ space
#\ 0 <nunp

#\ 9 <nunp

24

Number List Reader

read-num ist : input-port -> list-of-num
(define (read-numist p)
(local [(define ¢ (read-char p))]
(cond
[(char=? #\. c) enpty]
[(char-digit? c) (cons (read-nunber p (digit-val
(read-numist p))])))

; read-nunber : input-port num-> num
(define (read-nunber p n)
(local [(define ¢ (read-char p))]
(cond
[(char=? #\space c¢) n]
[(char-digit? c)
(read-nunmber p (+ (* n 10) (digit-val c¢)))])))

char-digit? : char -> bool

digit-val : char -> num

c))

Copy

25

read and write
That’s the idea, but you usually don’t have to start from scratch

e Built iInto Scheme: read andw i te

© Like read-from stri ng, but handles strings, chars, etc.

e Next time: read-xm andw it e-xmni

© A generalization of HTML

Using read/write libraries means easier encoding

26

Family Trees

Afamly-tree is either Copy
, - enpty
;- (make-child famly-tree famly-tree sym
(define-struct child (father nother nane))

(define MY-FAM LY (nmake-child enpty enpty ' Matt hew))
, add-nother! : symsym-> void
(define (add-nother! c-nane m nane)
(set! MY-FAM LY (add-nother MY-FAMLY c-name m nane)))
, add-nother : famly-tree symsym-> famly-tree
; find-relative : sym-> famly-tree-or-fal se
(define (find-relative c-nane)

(find-person MY-FAM LY c-nane))

;, find-person : famly-tree sym-> famly-tree-or-fal se

27

Writing Family Trees

;, famly-tree->sexp : famly-tree -> sexp
(define (famly-tree->sexp ft)
(cond
[(empty? ft) " ()]
[else (list (famly-tree->sexp (child-father ft))
(fam ly-tree->sexp (child-nother ft))
(child-nanme ft))]))

(fam ly-tree->sexp enpty) "should be" ()
(fam ly-tree->sexp (make-child enpty enpty ' Matthew))
"should be" "(() () Matthew)
(fam ly-tree->sexp
(make-child (make-child enpty enpty 'Raynond) enpty ’Matthew))
"should be" "((() () Raynond) () Matthew)

wite-famly-tree : famly-tree output-port -> void
(define (wite-famly-tree ft p)
(wite (famly-tree->sexp ft) p))

(define o (open-output-port "ny tree"))

(wite-famly-tree MY-FAMLY 0)
(cl ose-out put-port o)

28

Reading Family Trees

; sexp->famly-tree : sexp -> famly-tree
(define (sexp->famly-tree sexp)
(cond
[(enpty? sexp) enpty]
[el se (nmake-child
(sexp->famly-tree (first sexp))
(sexp->famly-tree (second sexp))
(third sexp))]))

(sexp->famly-tree '()) "should be" enpty
(sexp->famly-tree " (() () Matthew))
"shoul d be" (make-child enpty enpty ' Natthew)

, read-famly-tree : input-port -> famly-tree
(define (read-famly-tree i)
(sexp->famly-tree (read i)))

(define i (open-input-port "ny tree"))
(set! MY-FAMLY (read-famly-tree i))
(cl ose-input-port i)

29

Summary

Input/output (or I/O for short): files, network, and more

e Output [J choose a representation in terms of an existing writer

® |nput L1 parse representation from an existing reader

Base reader/writer (practically all operating systems): bytes

... but there are always better libraries

30

