
Extended Example (Iterative Refinement)

A maze consists of rooms and doors:

An door is either

a door into a room

an escape to a particular place

A room has two doors, left and right

Door Data Definition

abstract class Door {

}

class Into extends Door {

 Room next;

 Into(Room next) {

 this.next = next;

 }

}

class Escape extends Door {

 String name;

 Escape(String name) {

 this.name = name;

 }

}

Copy

Room Data Definition

class Room {

 Door left;

 Door right;

 Room(Door left, Door right) {

 this.left = left;

 this.right = right;

 }

}

Copy

Factory for Examples

class Factory {

 Factory() { }

 Room Example() {

 Door meadow = new Escape("meadow");

 Door street = new Escape("street");

 Room ms = new Room(meadow, street);

 Room planets = new Room(new Escape("mars"),

 new Escape("venus"));

 return new Room(new Into(ms),

 new Into(planets));

 }

}

Copy

Local definitions ⇒ Intermediate Java

1-4

Finding Paths

Implement the Door method canEscape that takes a string and returns a
boolean indicating whether an escape with the given name is available

Replace the canEscape method with a escapePath method that takes a
string and returns either a path of "left" and "right" leading to the exit, or a
failure value

Path escapePath(String dest)

Paths

A path result is either

failure

immediate success

left followed by a (succesful) path

right followed by a (successful) path

We’ll need a Path abstract class with an isOk method

Paths

abstract class Path {

 abstract boolean isOk();

}

class Fail extends Path {

 Fail() { }

 boolean isOk() { return false; }

}

class Success extends Path {

 Success() { }

 boolean isOk() { return true; }

}

class Right extends Path {

 Path rest;

 Right(Path rest) { this.rest = rest; }

 boolean isOk() { return true; }

}

class Left extends Path {

 Path rest;

 Left(Path rest) { this.rest = rest; }

 boolean isOk() { return true; }

} Copy

Door Variations and Person Attributes

Eventually, we want locked doors, short doors, magic doors, and other
kinds of doors

Finding an escape will depend on having keys, being a certain height,
etc.

Instead of adding more and more arguments to escapePath, let’s
introduce a Person to carry attributes

Replace the destination-string argument of escapePath with a Person
argument, where a Person has a destination and height

5-10

Short Doors

Add a new kind of exit, a short door, where a person must be less that the
door’s height to pass

Adding a short door requires only the declaration of a Short class  no
other code changes!

Locked Doors

Add a new kind of exit, a locked door, where a person must have a key to pass

Besides adding Locked, we change Person to add the notion of keys to
the person

In contrast to adding new variants, adding new operations requires
changing the class

Scheme versus Java

Scheme:

New variant ⇒ change old functions

New function ⇒ no changes to old code

Java:

New variant ⇒ no changes to old code

New method ⇒ change old classes

This is the essential difference between functional programming and
object-oriented programming

11-15

