Extended Example (Iterative Refinement)

A maze consists of rooms and doors:
® An door is either

© a door into a room

© an escape to a particular place

® A room has two doors, left and right

Door Data Definition

abstract class Door {

}

class Into extends Door {
Room next ;
I nt o(Room next) {
thi s. next = next;
}
}

cl ass Escape extends Door ({
String namne;
Escape(String nane) {
this. name = nane;
}
}

Copy
Room Data Definition Factory for Examples
cl ass Room { class Factory {
Door left; Factory() { }
Door right; Room Exanpl e() {
Roor{ Door |eft, Door right) { Door neadow = new Escape("neadow');
this left = | ;aft' Door street = new Escape("street");
hi . h __ . h) Room ns = new Room(neadow, street);
this.right = right; Room pl anets = new Roon{new Escape("nmars"),
} new Escape("venus"));
} return new Room(new | nto(ns),
new | nto(pl anets));
Co
Lopy }
}
Copy

Local definitions O Intermediate Java

Finding Paths

¢ |mplement the Door method canEscape that takes astring and returns a
boolean indicating whether an escape with the given nameis available

® Replacethe canEscape method with aescapePat h method that takes a
string and returns either a path of "left" and "right" leading to the exit, or a
failure value

Pat h escapePat h(String dest)

Paths

A path result is either

e failure

® immediate success

¢ |eft followed by a (succesful) path

¢ right followed by a (successful) path

We'll need a Pat h abstract class with an i sCk method

Paths

abstract class Path {
abstract bool ean isCk();

}

class Fail extends Path {
Fail() { }
bool ean isCk() { return false; }

}

class Success extends Path {
Success() { }
bool ean isCk() { return true; }

}

class Right extends Path {
Path rest;
Right(Path rest) { this.rest = rest; }
bool ean isCk() { return true; }

}

class Left extends Path {
Path rest;
Left(Path rest) { this.rest = rest; }
bool ean isOk() { return true; }

} Copy

Door Variations and Person Attributes
Eventually, we want locked doors, short doors, magic doors, and other
kinds of doors

Finding an escape will depend on having keys, being a certain height,
etc.

Instead of adding more and more arguments to escapePat h, let's
introduce a Per son to carry attributes

® Replace the destination-string argument of escapePat h with aPer son
argument, where aPer son has a destination and height

Short Doors Locked Doors

e Add anew kind of exit, a short door, where a person must be less that the ¢ Add anew kind of exit, alocked door, where a person must have akey to pass
door’ s height to pass

Besides adding Locked, we change Per son to add the notion of keys to
Adding a short door requires only the declaration of a Short class 0 no the person

other code changes!
9 In contrast to adding new variants, adding new operations requires

changing the class

Scheme versus Java

Scheme:
© New variant [0 change old functions
© New function O no changes to old code
Java:
© New variant 0 no changes to old code
© New method O change old classes

This is the essential difference between functional programming and
object-oriented programming

11-15

