Final Exam

Monday, December 8 1:00-3:00

open book, open notes, closed computer

comprehensive O covers the entire semester

This Course was About...

Fundamentals of programming
© From specification to implementation

© Software engineering principles

This Course was...

Not about...
o A particular programming language (e.g., Java, C++, Scheme)
o A particular programming tool (e.g., gcc, DrScheme)
o Specific libraries or protocols (e.g., Gtk, XML, HTTP)

© How programs get translated into electronic signals

Theme 1: Data Structures

Atomic data

num

string

"appl e"

Theme 1: Data Structures

Compound data

Theme 1: Data Structures

Inductively defined data

; A posn is ® | ists
» (make-posn num num ; Alist-of-numis either
(rmake-posn 1 2) ;- enpty
;- (cons numlist-of-nunm
cl ass' Snake { (cons 1 (cons 2 enmpty))
String nane;
doubl e wei ght;
String food;
}
new Snake("slinky", 10, "rats")
Theme 1: Data Structures Theme 1: Data Structures
Inductively defined data ® Trees
® |ists Arunor-mll is either
. - enpty
abstract class Pizza { ... } - (make-gossip string runmor-m il runmor-mill)

class Crust extends Pizza {
bool ean wheat ;

}

class topping extends Pizza {
String top;
Pi zza bottom

new Toppi ng("tomato", 2, new Crust(fal se))

(rmake-gossip "Amir"

(make-gossip "Joe"
enpty
enpty)

(make- gossi p "Linsey"
enpty
enpty))

Theme 1: Data Structures

e And more:

c Adir is
(make-dir sym | ofd)

; Afileis
(make-file sym num

; Alofd is either
- enpty
- (cons file lofd)
- (cons dir lofd)

(make-dir "tnp
(list (make-file "preview ps 10)
(make-dir 'build
(list
(make-file "x.c 30)

(meke-file "a.out 10)))))

Theme 1: Data Structures

e And more:

cl ass Room {
Door |eft;
Door right;
o)
abstract class Door { ... }
cl ass Escape extends Door { ... }
class Into extends Door ({
Room next ;

new | nt o(new Roon{ new Escape("nars"),
new Escape("venus")))

Theme 2: Data Drives Design

Data

¢ Understand the input data

Contract, Purpose, and Header

® Describe (but don't write) the function

Examples

® Show what will happen when the function is done
Template

® Set up the body based on the input data (and only the input)
Body

® The most creative step: implement the function body
Test

¢ Run the examples

Theme 2: Data Drives Design

The template is a pivotal implementation step:

® Programs that match the shape of the data tend to work, and they can

be understood by others

® Programs that do not match the shape of the data tend to fail in

incomprehensible ways

: Alist-of-numis either

;- enpty
;- (cons numlist-of-num

: func : list-of-num-> ...
(define (func 1)
(cond

[(empty?) ...]

[else (first |) (func (rest 1))

1))

Theme 2: Data Drives Design

Adir is ; dir-func @ dir -> ...
(rmake-dir sym | of d) (define (dir-func d)
. (dir-nanme d)
Afileis . (lofd-func (dir-content d)) ...)

(meke-file sym num C file-func : file -> ...

(define (file-func f)

Alofd is either ... (file-name f) ... (file-size f))
- enpty
- (cons file lofd) ;o lofd-func : lofd -> ..
(define (lofd-func I)

- (cons dir |ofd)
(cond

[(empty? |) ...]
[(file? (first |))

. (file-func (first 1))

. (lofd-func (rest 1))]
[(dir? (first 1))

. (dir-func (first 1))

. (lofd-func (rest 1))]))

Theme 2: Data Drives Design

cl ass Room {
Door left;
Door right;
Pat h escapePat h(Person p) {
| ef t. escapePat h(p)
ri ght. escapePat h(p)
}
}

abstract class Door {

abstract Path escapePat h(Person p);
}
cl ass Escape extends Door ({

Pat h escapePat h(Person p) { ... }
}
class Into extends Door ({

Room next ;

Pat h escapePat h(Person p) {

next . escapePat h(p)

}

}

Theme 2: Data Drives Design

Good Java style essentially forces you to follow the template

Following the template essentially forces good Java style

Theme 3: Contracts

A contract specifies, in advance
¢ Obligations of a producer

® Restrictions for a consumer

; disk-usage : dir -> num

(define (disk-usage d)
(foldr (lanbda (f n)
(+ n (file-size f)))
0
(dir-content d)))

Producer error: di sk- usage should work on any di r

14-19

Theme 3:; Contracts

A contract specifies, in advance
® Obligations of a producer

® Restrictions for a consumer

; disk-usage : dir -> num

(di sk-usage (nake-snake 'Slinky 10 'rats))

Consumer error: di sk- usage accepts only di rs

Theme 3: Contracts

A contract identifies the relevant data definition

o for examples
o for the implementation (template)
o for testing O helps ensure coverage

; disk-usage : dir -> num
(define (disk-usage d)
(dir-nanme d)
(lofd-usage (dir-content d)) ...)

(di sk-usage (make-dir ' hone enpty))
"shoul d be" O

Theme 3: Contracts

A contract identifies the relevant data definition
o for examples
o for the implementation (template)

o for testing O helps ensure coverage

Incorrect and abused contracts were the primary source of homework
difficulties

Theme 4: Reuse

Armed with data definitions and templates, you can write most things from
scratch...

...but you shouldn’t

If nothing else, cut and paste (or deja vu) should trigger reuse

20-24

Theme 4: Reuse

Data Representation and Contract

¥

Examples

" 4 s 4 &

Trivial Cases

Maybe Abstract
A 4 A 4 A 4

Template

Use Existing Body Recur on Smaller

b | 4 [4

Test

Theme 4: Reuse

Reuse from abstraction:

; conbine-nums @ list-of-num
; sum: list-of-num-> num Fnum num - > num -> num
(define (suml) (define (conbine-nums | base-n COMB)
(cond (cond
[(enpty? |) base-n]
enpty? I) O
Hcgzs).’:l))] [(cons? |)
(+ (first 1) (CcovB (first 1)
(sum(rest 1)))])) (conmbi ne-nums (rest 1)
» base- n
; product : list-of-num-> num covB)) 1))
(dfilo:s (product 1) ; sum: list-of-num-> num
(define (suml)
?
{Eioﬁ’stsz.l;) Y (conbi ne-nuns | 0 +))

(* (first 1)

(product (rest 1)))1)) ; product : list-of-num-> num

(define (product I)
(combine-nuns | 1 *))

Theme 4: Reuse

Reuse from existing abstractions:

;o sum: list-of -num-> num
(define (suml)
(foldr + 1 0))

; product |ist-of -num-> num
(define (product 1)
(foldr * 1 1))

Theme 4: Reuse

Reuse from existing abstractions:

int sum List |) {
Enunerator e = |.elenents();
int s =0;
whil e (e.hasMoreEl ements()) {
Integer i = (Integer)e.nextEl enent();
s =s + i.intValue();

}

return s;

25-28

Theme 4: Reuse

Reuse by class extension:

class Into extends Door {

Pat h escapePat h(Person p) {
return this.next.escapePath(p);
}
}

class Short extends Into {

Pat h escapePat h(Person p) {
if (p.height <= this.height)
return super.escapePat h(p);
el se
return new Fail ();
}

/'l everything else is like Into

}

Theme 5: Creativity

A good design process focuses your energy on two deeply creative
problems:

© choosing and defining a data representation

© implementing the body of a function/method

Theme 5: Creativity

Problem: choose a data definition for mazes

cl ass Room {

Door left;
Door right;
.}
abstract class Door { ... }
cl ass Escape extends Door { ... }

class Into extends Door {
Room next ;

Theme 5: Creativity

Problem: combine images to check for disguises

g

same- per son- maybe- di sgui sed?
; i mage image i nmage i mage -> boo
(define (same-person-nmaybe-di sgui sed? p p2 g b)
(or (image=? p p2)
(wearing-gl asses? p p2 g)
(wearing-beard? p p2 b)
(image=? p (add-beard (add-glasses p2 g) b))))

© Which part was automatic from contracts?
© Which part required creativity?

29-35

Theme 5: Creativity Theme 5: Creativity
Problem: produce an image’s negative Data Representation and Contract
A 4
Examples
; photo-negative : inmage -> inmage o M -
(define (photo-negative i) Maybe Abstract Template Trivial Cases
(color-1list->i mage

(negate-colors (imge->color-list i)) ¥ ¥ A

(! mage- w 9“ hi) Use Existing Body Recur on Smaller

(i mage-height i)))

& L 2 " 4
© Which part was automatic from contracts?
. . L Test
© Which part required creativity?
Theme 6: Programming Tools Themes in the Final Exam
® Structures Expect the final exam to hit all of these themes:
® Functions © Data Structures
® Classes © Data Drives Design
e Methods © Contracts
e Contracts in comments and code © Reuse
® | ocal declarations o Creativity
® Assignment © Programming Tools
e Computational complexity More details next time
36-41

