Data So Far
e Built-in atomic data: num bool , sym and i mage
® Built-in compound data: posn

e Programmer-defined compound data: def i ne- st ruct plus a data
definition

e Programmer-defined data with varieties: data definition with "either"

Today: more examples

Example 1: Managing Grades

Suppose that we need to manage exam grades

Example 1: Managing Grades

Suppose that we need to manage exam grades

100

Example 1: Managing Grades

Suppose that we need to manage exam grades

100

-

Example 1: Managing Grades

Suppose that we need to manage exam grades

®
oy

o o R,

Example 1: Managing Grades

Suppose that we need to manage exam grades

® Record a grade for each student

¢ Distinguish zero grade from missing the exam

We want to implement passed- exanf?

Programming with Grades
Data

e Use a number for a grade, obviously

Programming with Grades

Data
e Use a number for a grade, obviously

® For a non-grade, use the built-in constant enpt vy

enpt y Is something that you can use to represent nothing.

It's not a num bool , sym i nage, or posn.

Programming with Grades
Data

, A grade iIs either
, - num
, - enpty

Data

Examples:

Programming with Grades

, A grade iIs either
, - num
, - enpty

100

enpty

Programming with Grades
Contract, Purpose, and Header

, passed-exan? : grade -> bool

Programming with Grades
Contract, Purpose, and Header

, passed-exan? : grade -> bool
, Determ nes whether g is 70 or better

Programming with Grades
Contract, Purpose, and Header

, passed-exan? : grade -> bool
, Determ nes whether g is 70 or better
(defi ne (passed-exanf? Q)

)

Programming with Grades
Examples

, passed-exan? : grade -> bool
, Determ nes whether g is 70 or better
(defi ne (passed-exanf? Q)

)

(passed- exan?? 100) "shoul d be" true
(passed-exan?? 0) "shoul d be" fal se
(passed- exan? enpty) "should be" fal se

Programming with Grades
Template

passed-exan? : grade -> bool
, Determ nes whether g is 70 or better
(defi ne (passed-exanf? Q)
(cond
[(nunber? qg) ...]

[(enmpty? g) ...]))

varieties [J cond

(passed-exan?? 100) "shoul d be" true
(passed-exan?? 0) "shoul d be" false
(passed- exan? enpty) "should be" fal se

Programming with Grades
Body

passed-exan? : grade -> bool
Determ nes whether g is 70 or better
(defi ne (passed-exanf? Q)
(cond
[(nunber? g) ...]
, [(enpty? g) ...]))
(defi ne (passed-exanf? @)
(cond
[(number? g) (>= g 70)]
[(enpty? g) false]))

(passed- exan?? 100) "shoul d be" true
(passed-exan? 0) "shoul d be" false
(passed- exan? enpty) "should be" false

Suppose that we allow one re-test per student

100

Grades and Re-takes

.

®)

-

Grades and Re-takes

Suppose that we allow one re-test per student

100 0[1 807

, A grade is either
;- num

, - posn

, - enpty

®
oy

Programming with Grades and Retests
Contract, Purpose, and Header

, passed-exan? : grade -> bool
, Determ nes whether g is 70 or better
(defi ne (passed-exanf? @)

)

Programming with Grades and Retests

Examples

, passed-exan? : grade -> bool
, Determ nes whether g is 70 or better
(defi ne (passed-exanf? @)

)

(passed- exan? 100) "shoul d be" true
(passed- exan? (nmake-posn O 80)) "shoul d" true
(passed- exan®? enpty) "should be" fal se

Programming with Grades and Retests
Template

passed- exan?? : grade -> bool
, Determ nes whether g is 70 or better
(defi ne (passed-exanf? @)
(cond
(nunber? g) ...]
' (posn? g) ...]
(empty? g) ...]))

varieties [J cond

(passed- exan? 100) "shoul d be" true
(passed- exan? (nmake-posn O 80)) "shoul d" true
(passed- exan? enpty) "should be" fal se

Programming with Grades and Retests
Template

passed- exan?? : grade -> bool
, Determ nes whether g is 70 or better
(defi ne (passed-exanf? @)

(cond
(nunber? g) ...]
' (posn? g) ... (posn-passed-exant? g) ...]
(enpty? g) ...]))

data-defn reference I template reference

(passed- exan? 100) "shoul d be" true
(passed- exan? (nmake-posn O 80)) "shoul d" true
(passed- exan®? enpty) "should be" false

Complete Function

, passed-exan? : grade -> bool
(defi ne (passed-exanf? g)

(cond
(nunber? g) (>= g 70)]
' (posn? g) (posn-passed-exan? Q)|
(enmpty? g) false]))

, posn-passed-exan? : posn -> bool
(defi ne (posn-passed-exan? p)
(or (>= (posn-x p) 70)
(>= (posn-y p) 70)))

Plus tests and templates...

Shapes of Data and Functions

As always, the shape of the function matches the shape of the data

;, A grade is either
- num
- posn

- enpty

; A posn is
(make- posn num num

(define (func-for-grade g)
(cond
[(nunmber? g) ...]

[(posn? g) ... (func-for-posn g) ...

[(empty? g) ...]))

(define (func-for-posn p)
. (posn-x p) ... (posn-y p) ..)

24

Example #2: Day Planning

Suppose that we need to manage day-planner entries

@lab

Each day-plan is either empty or an
appointment with person and place

25

Example #2: Day Planning

Suppose that we need to manage day-planner entries

@V @office

Each day-plan is either empty or an
appointment with person and place

Implement cl ose- bl i nds?

for Adam’s sensitive eyes during
office meetings

26

Programming with Day-Plans

Data

An day-plan is either
- enpty
;- (make-appt i nmage sym
(defi ne-struct appt (who where))

Programming with Day-Plans

Data

, An day-plan is either

, - enpty

;- (make-appt i nmage sym

(defi ne-struct appt (who where))
Examples:

(make- appt KD ' of fi ce)

Programming with Day-Plans
Contract, Purpose, and Header

, close-blinds? : day-plan -> bool

Programming with Day-Plans

Contract, Purpose, and Header

cl ose-blinds? : day-plan -> bool
Det erm nes whether dp is a neeting
wth Adam at office

Programming with Day-Plans

Contract, Purpose, and Header

cl ose-blinds? : day-plan -> bool
Det erm nes whether dp is a neeting
, WMth Adam at office

(define (close-blinds? dp)

)

Programming with Day-Plans

Examples

, close-blinds? : day-plan -> bool
, Determ nes whether dp is a neeting
, WMth Adam at office
(define (close-blinds? dp)
)

(cl ose-blinds? enpty) "should be" false

-

L : i
i, - i
A --.-d!:.‘. ‘;__ 5 ._}
* T

baalll ' of fice))

(cl ose-blinds? (make- appt
"shoul d be" true
(cl ose-blinds? (nmake-appt | ab))

"shoul d be" fal se

Programming with Day-Plans
Template

, close-blinds? : day-plan -> bool

, Determ nes whether dp is a neeting
, WMth Adam at office

(define (close-blinds? dp)

)

, An day-plan is either

, - enpty
;- (make-appt i nmage sym

Programming with Day-Plans
Template

cl ose-blinds? : day-plan -> bool
Det erm nes whether dp is a neeting
wth Adam at office
(define (close-blinds? dp)
(cond
[(enpty? dp) ...]
[(appt? dp) ...]))

varieties [J cond

An day-plan is either

- enpty
;- (make-appt i nmage sym

Programming with Day-Plans
Template

cl ose-blinds? : day-plan -> bool
Det erm nes whether dp is a neeting
wth Adam at office
(define (close-blinds? dp)
(cond
[(enpty? dp) ...]
[(appt ? dp)
(appt - who dp)
(appt-where dp) ...]))

compound data [J extract parts

An day-plan is either

- enpty
;- (make-appt i nmage sym

Programming with Day-Plans
Body

cl ose-blinds? : day-plan -> bool
Det erm nes whether dp is a neeting
wth Adam at office
(define (close-blinds? dp)
(cond
[(enpty? dp) false]
[(appt ? dp)
(and

(symbol =2 (appt -where dp) "of {1 ce))1))

Shapes of Data and Functions

As always, the shape of the function matches the shape of the data

An day-plan is either

- enpty
- (make-appt 1 mage sym

(define (close-blinds? dp)
(cond
[(enpty? dp) ...]
[(appt ? dp)
(appt -who dp)
(appt-where dp) ...]))

Summary

Today’s examples show:
e A data definition with variants need not involve structure choices
e A data definition with variants can include nake- something directly
... usually when the structure by itself isn’t useful

¢ Implementation shape still matches the data shape

No recipe changes!

38

