
Aquarium

Our zoo was so successful, let’s start an aquarium

For a fish, we only care about its weight, so for two fish:

; An aquarium is

;  (make-aq num num)

(define-struct aq (first second))

1



Aquarium Template

; An aquarium is

;  (make-aq num num)

 

Generic template:
; func-for-aq : aquarium -> ...

; 

; 

(define (func-for-aq a)

  ... (aq-first a) ... (aq-second a) ...)
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Aquarium Template

; An aquarium is

;  (make-aq num num)

 

Generic template:
; func-for-aq : aquarium -> ...

; 

; 

(define (func-for-aq a)

  ... (aq-first a) ... (aq-second a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

  (+ (aq-first a) (aq-second a)))

 

(aq-weight (make-aq 7 8)) "should be" 15
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Aquarium Template

; An aquarium is

;  (make-aq num num)

 

Generic template:
; func-for-aq : aquarium -> ...

; 

; 

(define (func-for-aq a)

  ... (aq-first a) ... (aq-second a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

  (+ (aq-first a) (aq-second a)))

 

(aq-weight (make-aq 7 8)) "should be" 15

And so on, for many other simple aquarium functions...
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Tragedy Strikes the Aquarium

Poor blue fish... now we have only one
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Tragedy Strikes the Aquarium

Poor blue fish... now we have only one

Worse, we have to re-write all our functions...

; An aquarium is

;  (make-aq num)

(define-struct aq (first))
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Aquarium Template, Revised

; An aquarium is

;  (make-aq num)

 

; func-for-aq : aquarium -> ...

; 

; 

(define (func-for-aq a)

  ... (aq-first a) ...)
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Aquarium Template, Revised

; An aquarium is

;  (make-aq num)

 

; func-for-aq : aquarium -> ...

; 

; 

(define (func-for-aq a)

  ... (aq-first a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

  (aq-first a))

 

(aq-weight (make-aq 7)) "should be" 7
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Aquarium Template, Revised

; An aquarium is

;  (make-aq num)

 

; func-for-aq : aquarium -> ...

; 

; 

(define (func-for-aq a)

  ... (aq-first a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

  (aq-first a))

 

(aq-weight (make-aq 7)) "should be" 7

And so on, for all of the aquarium functions...
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The Aquarium Expands

Hooray, we have two new fish!
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The Aquarium Expands

Hooray, we have two new fish!

Unfortunately, we have to re-re-write all our functions...

; An aquarium is

;  (make-aq num num num)

(define-struct aq (first second third))
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A Flexible Aquarium Representation

Our data choice isn’t working

An aquarium isn’t just 1 fish, 2 fish, or 100 fish  it’s a collection
containing an arbitrary number of fish

No data definition with just 1, 2, or 100 numbers will work

To represent an aquarium, we need a list of numbers

We don’t need anything new in the language, just a new idea
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Structs as Boxes

Pictorially,

define-struct lets us define a new kind of box

The box can have as many compartments as we want, but we have to
pick how many, once and for all

(define-struct snake (name weight food))

⇒

(define-struct ant (weight loc))

⇒
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Boxes Stretch

The boxes stretch to fit any one thing in each slot:

’slinky 12 ’rats

Even other boxes:

0.002 2 3

Still, the number of slots is fixed
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Packing Boxes

Suppose that

You have four things to pack as one

You only have 2-slot boxes

Every slot must contain exactly one thing

How can you create a single package?
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Packing Boxes

This isn’t good enough

because it’s still two boxes...
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Packing Boxes

This isn’t good enough

because it’s still two boxes...

But this works!
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Packing Boxes

And here’s 8 fish:
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Packing Boxes

And here’s 8 fish:

And here’s 16 fish!
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Packing Boxes

And here’s 8 fish:

And here’s 16 fish!

But what if we just add 1 fish, instead of doubling the fish?

But what if we have 0 fish?
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General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time
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General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

empty
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General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

empty

empty
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General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

empty

empty

empty
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General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

empty

empty

empty

empty
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General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list
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General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list

empty
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General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list

empty

(make-bigger-list 10 empty)
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General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list

empty

(make-bigger-list 10 empty)

(make-bigger-list 5 (make-bigger-list 10 empty))
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General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list

empty

(make-bigger-list 10 empty)

(make-bigger-list 5 (make-bigger-list 10 empty))

(make-bigger-list 7 (make-bigger-list 5 (make-bigger-list 10 empty)))
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List of Numbers

; A list-of-num is either

;  - empty

;  - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))
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List of Numbers

; A list-of-num is either

;  - empty

;  - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

 

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

  ...)
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List of Numbers

; A list-of-num is either

;  - empty

;  - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

 

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

  (cond

  [(empty? l) ...]

  [(bigger-list? l) ...]))
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List of Numbers

; A list-of-num is either

;  - empty

;  - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

 

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

  (cond

  [(empty? l) ...]

  [(bigger-list? l)

 ... (bigger-list-first l)

 ... (bigger-list-rest l)

 ...]))
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List of Numbers

; A list-of-num is either

;  - empty

;  - (make-bigger-list num list-of-num)

; A list-of-num is either

;  - empty

;  - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

 

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

  (cond

  [(empty? l) ...]

  [(bigger-list? l)

 ... (bigger-list-first l)

 ... (bigger-list-rest l)

 ...]))
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List of Numbers

; A list-of-num is either

;  - empty

;  - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

 

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

  (cond

  [(empty? l) ...]

  [(bigger-list? l)

 ... (bigger-list-first l)

 ... (func-for-lon (bigger-list-rest l))

 ...]))

36



Aquarium Weight

; aq-weight : list-of-num -> num

;  Sums the fish weights in l

(define (aq-weight l)

  ...)
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Aquarium Weight

; aq-weight : list-of-num -> num

;  Sums the fish weights in l

(define (aq-weight l)

  ...)

 

(aq-weight empty) "should be" 0
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Aquarium Weight

; aq-weight : list-of-num -> num

;  Sums the fish weights in l

(define (aq-weight l)

  ...)

 

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2
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Aquarium Weight

; aq-weight : list-of-num -> num

;  Sums the fish weights in l

(define (aq-weight l)

  ...)

 

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7
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Aquarium Weight

; aq-weight : list-of-num -> num

;  Sums the fish weights in l

(define (aq-weight l)

  (cond

  [(empty? l) ...]

  [(bigger-list? l)

 ... (bigger-list-first l)

 ... (aq-weight (bigger-list-rest l))

 ...]))

 

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7
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Aquarium Weight

; aq-weight : list-of-num -> num

;  Sums the fish weights in l

(define (aq-weight l)

  (cond

 [(empty? l) 0]

 [(bigger-list? l)

 (+ (bigger-list-first l)

   (aq-weight (bigger-list-rest l)))]))

 

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7
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Aquarium Weight

; aq-weight : list-of-num -> num

;  Sums the fish weights in l

(define (aq-weight l)

  (cond

 [(empty? l) 0]

 [(bigger-list? l)

 (+ (bigger-list-first l)

   (aq-weight (bigger-list-rest l)))]))

Try examples in the stepper
 

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7
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Shortcuts

The name make-bigger-list is awfully long

DrScheme has built-in shorter versions

make-bigger-list ⇒ cons

bigger-list-first ⇒ first

bigger-list-rest ⇒ rest

bigger-list? ⇒ cons?

44



Shortcuts

The name make-bigger-list is awfully long

DrScheme has built-in shorter versions

make-bigger-list ⇒ cons

bigger-list-first ⇒ first

bigger-list-rest ⇒ rest

bigger-list? ⇒ cons?

(first (cons 1 empty))  →  1

(rest (cons 1 empty))  →  empty

(cons? empty)  →  false
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Lists using the Shortcuts

; A list-of-num is either

;  - empty

;  - (cons num list-of-num)

 

; aq-weight : list-of-num -> num

(define (aq-weight l)

  (cond

  [(empty? l) 0]

  [(cons? l) (+ (first l)

   (aq-weight (rest l)))]))

 

(aq-weight empty) "should be" 0

 

(aq-weight (cons 5 (cons 2 empty)))

"should be" 7
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Design Recipe for Lists

Design recipe changes for today:

None
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Design Recipe for Lists

Design recipe changes for today:

None

Granted, the self-reference was slightly novel...

; A list-of-num is either

;  - empty

;  - (cons num list-of-num)
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Recursion

A self-reference in a data definition leads to a recursive function  one
that calls itself

(define (aq-weight l)

  (cond

  [(empty? l) 0]

  [(cons? l) (+ (first l)

   (aq-weight (rest l)))]))
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Recursion

A self-reference in a data definition leads to a recursive function  one
that calls itself

(define (aq-weight l)

  (cond

  [(empty? l) 0]

  [(cons? l) (+ (first l)

   (aq-weight (rest l)))]))

Recursion is rumored to be a difficult topic...

50



Recursion

A self-reference in a data definition leads to a recursive function  one
that calls itself

(define (aq-weight l)

  (cond

  [(empty? l) 0]

  [(cons? l) (+ (first l)

   (aq-weight (rest l)))]))

Recursion is rumored to be a difficult topic...

... but now you know better
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