
Aquarium

Our zoo was so successful, let’s start an aquarium

For a fish, we only care about its weight, so for two fish:

; An aquarium is

; (make-aq num num)

(define-struct aq (first second))

1

Aquarium Template

; An aquarium is

; (make-aq num num)

Generic template:
; func-for-aq : aquarium -> ...

;

;

(define (func-for-aq a)

 ... (aq-first a) ... (aq-second a) ...)

2

Aquarium Template

; An aquarium is

; (make-aq num num)

Generic template:
; func-for-aq : aquarium -> ...

;

;

(define (func-for-aq a)

 ... (aq-first a) ... (aq-second a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

 (+ (aq-first a) (aq-second a)))

(aq-weight (make-aq 7 8)) "should be" 15

3

Aquarium Template

; An aquarium is

; (make-aq num num)

Generic template:
; func-for-aq : aquarium -> ...

;

;

(define (func-for-aq a)

 ... (aq-first a) ... (aq-second a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

 (+ (aq-first a) (aq-second a)))

(aq-weight (make-aq 7 8)) "should be" 15

And so on, for many other simple aquarium functions...
4

Tragedy Strikes the Aquarium

Poor blue fish... now we have only one

5

Tragedy Strikes the Aquarium

Poor blue fish... now we have only one

Worse, we have to re-write all our functions...

; An aquarium is

; (make-aq num)

(define-struct aq (first))

6

Aquarium Template, Revised

; An aquarium is

; (make-aq num)

; func-for-aq : aquarium -> ...

;

;

(define (func-for-aq a)

 ... (aq-first a) ...)

7

Aquarium Template, Revised

; An aquarium is

; (make-aq num)

; func-for-aq : aquarium -> ...

;

;

(define (func-for-aq a)

 ... (aq-first a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

 (aq-first a))

(aq-weight (make-aq 7)) "should be" 7

8

Aquarium Template, Revised

; An aquarium is

; (make-aq num)

; func-for-aq : aquarium -> ...

;

;

(define (func-for-aq a)

 ... (aq-first a) ...)

; aq-weight : aquarium -> num

(define (aq-weight a)

 (aq-first a))

(aq-weight (make-aq 7)) "should be" 7

And so on, for all of the aquarium functions...

9

The Aquarium Expands

Hooray, we have two new fish!

10

The Aquarium Expands

Hooray, we have two new fish!

Unfortunately, we have to re-re-write all our functions...

; An aquarium is

; (make-aq num num num)

(define-struct aq (first second third))

11

A Flexible Aquarium Representation

Our data choice isn’t working

An aquarium isn’t just 1 fish, 2 fish, or 100 fish  it’s a collection
containing an arbitrary number of fish

No data definition with just 1, 2, or 100 numbers will work

To represent an aquarium, we need a list of numbers

We don’t need anything new in the language, just a new idea

12

Structs as Boxes

Pictorially,

define-struct lets us define a new kind of box

The box can have as many compartments as we want, but we have to
pick how many, once and for all

(define-struct snake (name weight food))

⇒

(define-struct ant (weight loc))

⇒

13

Boxes Stretch

The boxes stretch to fit any one thing in each slot:

’slinky 12 ’rats

Even other boxes:

0.002 2 3

Still, the number of slots is fixed

14

Packing Boxes

Suppose that

You have four things to pack as one

You only have 2-slot boxes

Every slot must contain exactly one thing

How can you create a single package?

15

Packing Boxes

This isn’t good enough

because it’s still two boxes...

16

Packing Boxes

This isn’t good enough

because it’s still two boxes...

But this works!

17

Packing Boxes

And here’s 8 fish:

18

Packing Boxes

And here’s 8 fish:

And here’s 16 fish!

19

Packing Boxes

And here’s 8 fish:

And here’s 16 fish!

But what if we just add 1 fish, instead of doubling the fish?

But what if we have 0 fish?

20

General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

21

General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

empty

22

General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

empty

empty

23

General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

empty

empty

empty

24

General Strategy for Packing Boxes

Here’s a general strategy:

For 0 fish, use empty

If you have a package and a new fish, put them together

To combine many fish, start with empty and add fish one at a time

empty

empty

empty

empty

25

General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list

26

General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list

empty

27

General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list

empty

(make-bigger-list 10 empty)

28

General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list

empty

(make-bigger-list 10 empty)

(make-bigger-list 5 (make-bigger-list 10 empty))

29

General Strategy for a List of Numbers

To represent the aquarium as a list of numbers, use the same idea:

For 0 fish, use empty

If you have a list and a number, put them together with
make-bigger-list

empty

(make-bigger-list 10 empty)

(make-bigger-list 5 (make-bigger-list 10 empty))

(make-bigger-list 7 (make-bigger-list 5 (make-bigger-list 10 empty)))

30

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

31

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 ...)

32

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l) ...]))

33

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

 ... (bigger-list-first l)

 ... (bigger-list-rest l)

 ...]))

34

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

 ... (bigger-list-first l)

 ... (bigger-list-rest l)

 ...]))

35

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)

(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num -> ...

(define (func-for-lon l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

 ... (bigger-list-first l)

 ... (func-for-lon (bigger-list-rest l))

 ...]))

36

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

37

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

(aq-weight empty) "should be" 0

38

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

39

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 ...)

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7

40

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 (cond

 [(empty? l) ...]

 [(bigger-list? l)

 ... (bigger-list-first l)

 ... (aq-weight (bigger-list-rest l))

 ...]))

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7

41

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 (cond

 [(empty? l) 0]

 [(bigger-list? l)

 (+ (bigger-list-first l)

 (aq-weight (bigger-list-rest l)))]))

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7

42

Aquarium Weight

; aq-weight : list-of-num -> num

; Sums the fish weights in l

(define (aq-weight l)

 (cond

 [(empty? l) 0]

 [(bigger-list? l)

 (+ (bigger-list-first l)

 (aq-weight (bigger-list-rest l)))]))

Try examples in the stepper

(aq-weight empty) "should be" 0

(aq-weight (make-bigger-list 2 empty))

"should be" 2

(aq-weight (make-bigger-list 5 (make-bigger-list 2 empty)))

"should be" 7

43

Shortcuts

The name make-bigger-list is awfully long

DrScheme has built-in shorter versions

make-bigger-list ⇒ cons

bigger-list-first ⇒ first

bigger-list-rest ⇒ rest

bigger-list? ⇒ cons?

44

Shortcuts

The name make-bigger-list is awfully long

DrScheme has built-in shorter versions

make-bigger-list ⇒ cons

bigger-list-first ⇒ first

bigger-list-rest ⇒ rest

bigger-list? ⇒ cons?

(first (cons 1 empty)) → 1

(rest (cons 1 empty)) → empty

(cons? empty) → false

45

Lists using the Shortcuts

; A list-of-num is either

; - empty

; - (cons num list-of-num)

; aq-weight : list-of-num -> num

(define (aq-weight l)

 (cond

 [(empty? l) 0]

 [(cons? l) (+ (first l)

 (aq-weight (rest l)))]))

(aq-weight empty) "should be" 0

(aq-weight (cons 5 (cons 2 empty)))

"should be" 7

46

Design Recipe for Lists

Design recipe changes for today:

None

47

Design Recipe for Lists

Design recipe changes for today:

None

Granted, the self-reference was slightly novel...

; A list-of-num is either

; - empty

; - (cons num list-of-num)

48

Recursion

A self-reference in a data definition leads to a recursive function  one
that calls itself

(define (aq-weight l)

 (cond

 [(empty? l) 0]

 [(cons? l) (+ (first l)

 (aq-weight (rest l)))]))

49

Recursion

A self-reference in a data definition leads to a recursive function  one
that calls itself

(define (aq-weight l)

 (cond

 [(empty? l) 0]

 [(cons? l) (+ (first l)

 (aq-weight (rest l)))]))

Recursion is rumored to be a difficult topic...

50

Recursion

A self-reference in a data definition leads to a recursive function  one
that calls itself

(define (aq-weight l)

 (cond

 [(empty? l) 0]

 [(cons? l) (+ (first l)

 (aq-weight (rest l)))]))

Recursion is rumored to be a difficult topic...

... but now you know better

51

