Mid-Term |

Mid-term | on Sept 22, in one week
® In-class

® Open-book

® Open-notes

¢ Closed-computer

HW 5 (Sept 17 - Sept 23) will be lighter than usual

Example Mid-Term

A pipe has aparticular length, and it is made of some particular material, such as
copper, lead, or plastic

A pipelineis a sequence of pipes

® Define data representations for pipes and pipelines

¢ Implement the functiont ot al - | engt h which takes a pipeline and returnsits
total length

¢ |mplement the function noder ni ze, which replacesevery ' | ead pipeina
pipelinewitha’ copper pipe of the same length
Actual exam may be shorter

Example solution on the web page

Outline

» Sorting a List
Multiple Complex Inputs

Natural Numbers

Sorting Lists

® Implementsort-1i st,whichtakesalist of numbers and returns a sorted list
of the same numbers

Outline

Sorting a List
» Multiple Complex Inputs

Natural Numbers

Multiple Complex Arguments

¢ Implement append- | i st s, which takes two lists of numbers and returns a
list with all of the numbers from the first list followed by al of the numbers
from the second list

¢ Implement par al | el - sum which takes two lists of numbers (of the same
length) and returns alist of sums

® I[mplement ner ge- | i st s, which takestwo sorted lists of numbers and
returns a sorted list with all of the numbers

; append-lists : list-of-numlist-of-num-> |ist-of-num

(append-lists enpty enpty) "should be" enpty

(append-lists (list 1 3 5) (list 0 4 6))
"should be" (list 1 350 4 6)

Multiple Complex Arguments

® Implement append- | i st s, which takestwo lists of numbers and returns a
list with all of the numbers from the first list followed by al of the numbers
from the second list

® I[mplement par al | el - sum which takes two lists of numbers (of the same
length) and returns alist of sums

® Implement ner ge- | i st s, which takes two sorted lists of numbers and
returns a sorted list with all of the numbers

; parallel-sum: list-of-numlist-of-num-> |ist-of-num

(parallel-sumenpty enpty) "shoul d be" enmpty

(parallel-sum (list 1 3 5) (list 0 4 6))
“shoul d be" (list 1 7 11)

Multiple Complex Arguments

® Implement append- | i st s, which takes two lists of numbers and returns a
list with all of the numbers from the first list followed by al of the numbers
from the second list

® I[mplement par al | el - sum which takes two lists of numbers (of the same
length) and returns alist of sums

® Implement mer ge- | i st s, which takestwo sorted lists of numbers and
returns a sorted list with all of the numbers

; merge-lists : list-of-numlist-of-num-> |ist-of-num

(merge-lists enpty enpty) "should be" enpty

(merge-lists (list 1 35) (list 04 6))
"should be" (list 01 3 4 5 6)

Multiple Complex Arguments

® Implement append- | i st s, which takes two lists of numbers and returns a

list with all of the numbers from the first list followed by all of the numbers
from the second list

® Implement par al | el - sum which takes two lists of numbers (of the same
length) and returns alist of sums

® Implement mer ge- | i st s, which takestwo sorted lists of numbers and
returns a sorted list with all of the numbers

; func : list-of-numlist-of-num-> |ist-of-num

What template do we use for a function for two lists?

Multiple Complex Arguments

® Sometimes a complex argument is "along for the ride", so use the
template for the other argument

(append-lists (list 1 3 5) (list 0 4 6))
"shoul d be" (list 1 350 4 6)

(define (append-lists al bl)
(cond
[(empty? al) ...]
[(cons? al)
(first al)
(append-lists (rest al) bl) ...]))

Multiple Complex Arguments

® Sometimes the arguments are exactly the same shape, so use
essentially the one-argument template

(parallel-sum (list 1 3 5) (list 0 4 6))
"shoul d be" (list 1 7 11)

(define (parallel-sumal bl)
(cond
[(enpty? al) ...]
[(cons? al)
. (first al) ... (first bl)
. (parallel-sum(rest al) (rest bl)) ...]))

Multiple Complex Arguments

® Sometimes you have to consider all possible combinations, so use a
template that considers all combinations

(rmerge-lists (list 1 35) (list 0 4 6))
"should be" (list 01 3 45 6)

(define (merge-lists al bl)
(cond
[(and (enmpty? al) (enpty? bl)) ...]
[(and (enpty? al) (cons? bl))

. (first bl) ... (nerge-lists al (rest bl)) ...]
[(and (cons? al) (enpty? bl))

. (first al) ... (nerge-lists (rest al) bl) ...]
[(and (cons? al) (cons? bl))

. (first al) ... (first bl)

. (merge-lists (rest al) bl)
. (merge-lists al (rest bl))
. (merge-lists (rest al) (rest bl)) ...]))

Outline

Sorting a List
Multiple Complex Inputs

» Natural Numbers

Numbers to Generate Lists

® Implement cr eat e- | i st , which takes anon-negative integer n and
produces alist of numbers from nto O, inclusive

; create-list : num-> list-of-num
(create-list 3) "should be" (list 3 2 1 0)

(create-list 0) "should be" (list 0)

The template for numisn’t much help:

(define (func-for-numn)

»)

But creat e- | i st actually takes a natural number

Natural Numbers

: A nat is either
;-0
;- (addl nat)

Examples:

0
(addl 0)
(addl (addl (addl 0)))

These examples have shortcuts
0,1,and3

but the long forms correspond to the template

Template for Natural Numbers
: A nat is either
-0
;- (addl nat)

(define (func-for-nat n)

(cond
[(zero? n) ...]
[else ... (func-for-nat (subl n)) ...]))

(define (create-list n)
(cond
[(zero? n) (list 0)]
[else (cons n (create-list (subl n)))]))

13-20

Generating the List the Other Way

® Implement cr eat e- up- 1 i st , which takes a non-negative integer n and
produces alist of numbers from 0 to ninclusive

; Ccreate-up-list num -> |ist-of-num

(create-list 3) "should be" (list 01 2 3)

(create-list 0) "should be" (list 0)

(define (create-up-list n)

(cond
[(zero? n) (list 0)]
[el se
n
(create-up-list (subl n)) ...]))
: uh oh... can’t cons onto recur result

Using Subtraction to Count Up

(define (create-up-list n)
(create-up-to-n-list n n))

: Creates a list with d elenents before n
(define (create-up-to-n-list d n)
(cond
[(zero? d) (list n)]
[el se
(cons (- n d)
(create-up-to-mlist (subl d) n))]))

...orreplacedwithm = (+ d n)

As d goes down, mgoes up...

Counting Up Directly

(define (create-up-list n)
(create-mto-n-list 0 n))

; Creates a list frommto n
(define (create-mto-n-list mn)
(cond
[(=mn) (list n)]
[el se
(cons m
(create-mto-n-list (addl m n))]))

Use the stepper to see how it works

Similar ideas work for counting by fives, counting down to 20, etc.

21-28

