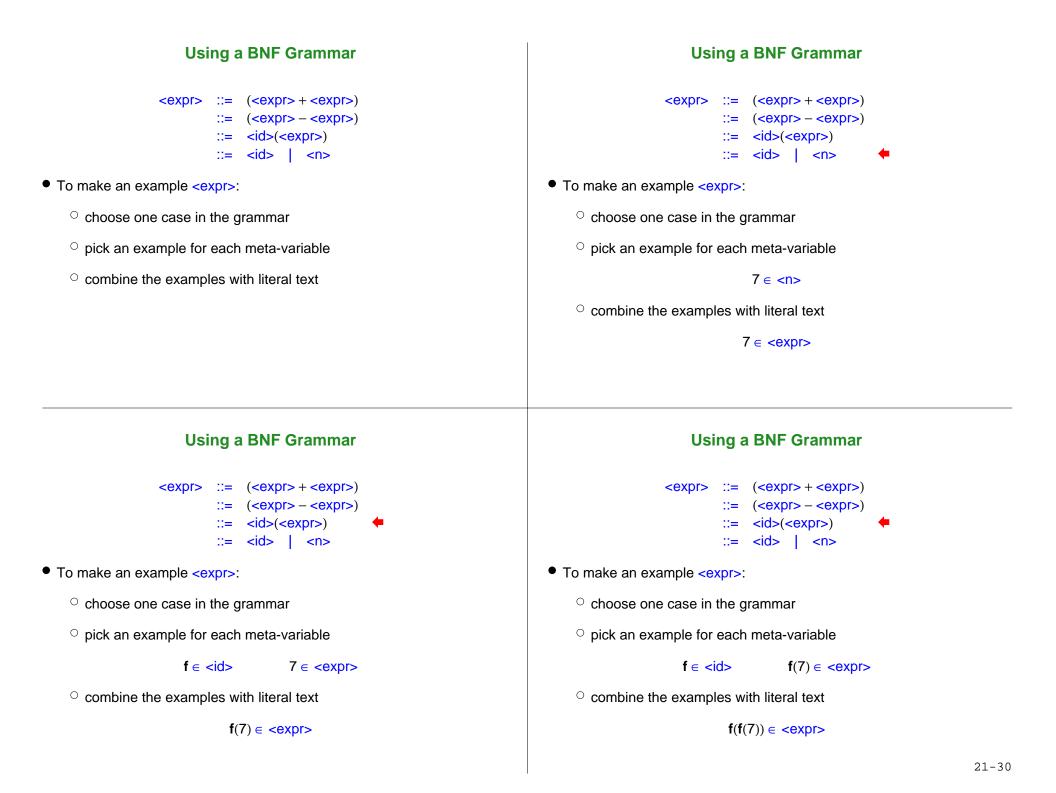
CS3520 Programming Languages Concepts Instructor: Matthew Flatt	 This course teaches concepts in two ways: By implementing interpreters new concept => extend interpreter By using Scheme we assume that you <i>don't</i> already know Scheme
Course Details	Bootstrapping Problem
http://www.cs.utah.edu/classes/cs3520/	 We'll learn about languages by writing interpreters in Scheme We'll learn about Scheme by writing an interpreter in Scheme set theory More specifically, we'll define Scheme as an extension of algebra <i>Algebra is a programming language?</i>

Programming Languages Concepts

Algebra as a Programming Language	A Grammar for Algebra Programs The grammar in BNF (Backus-Naur Form; <i>EoPL</i> sec 1.1.2):	
 Algebra has a grammar: 		
$^{\circ}$ (1 + 2) is a legal expression	<prog> ::= <defn>* <expr></expr></defn></prog>	
$^{\circ}$ (1 + +) is not a legal expression	<defn> ::= <id>(<id>) = <expr> <expr> ::= (<expr> + <expr>) ::= (<expr> - <expr>)</expr></expr></expr></expr></expr></expr></id></id></defn>	
 Algebra has rules for evaluation: 	::= <id>(<expr>) ::= <id> <n></n></id></expr></id>	
[○] (1 + 2) = 3	<id> ::= a variable name: f, x, y, z,</id>	
○ $f(17) = (17 + 3) = 20$ if $f(x) = (x + 3)$	<n> ::= a number: 1, 42, 17,</n>	
	Each <i>meta-variable</i> , such as <prog>, defines a set</prog>	
Using a BNF Grammar	Using a BNF Grammar	
<id> ::= a variable name: f, x, y, z, <n> ::= a number: 1, 42, 17,</n></id>	<expr> ::= (<expr> + <expr>) ::= (<expr> - <expr>)</expr></expr></expr></expr></expr>	
• The set <id> is the set of all variable names</id>	::= <id>(<expr>) ::= <id>(<expr>) ::= <id> <n></n></id></expr></id></expr></id>	
The set <n> is the set of all numbers</n>	 The set <expr> is defined in terms of other sets</expr> 	
 To make an example member of <n>, simply pick an element from the set</n> 		
1 ∈ <n></n>		
198 ∈ <i><</i> n>		



Using a BNF Grammar Demonstrating Set Membership • We can run the element-generation process in reverse to prove that ::= <defn>* <expr> <prog> $::= \langle id \rangle \langle \langle id \rangle \rangle = \langle expr \rangle$ some item is a member of a set <defn> $\mathbf{f}(\mathbf{x}) = (\mathbf{x} + 1) \in \langle \text{defn} \rangle$ • Such proofs have a standard tree format: sub-claim to prove sub-claim to prove • To make a <prog> pick some number of <defn>s claim to prove $(\mathbf{x} + \mathbf{y}) \in \langle \mathsf{prog} \rangle$ • Immediate membership claims serve as leaves on the tree: 7 ∈ <n> f(x) = (x + 1) $\mathbf{g}(\mathbf{y}) = \mathbf{f}((\mathbf{y} - 2)) \in \langle \mathsf{prog} \rangle$ **g**(7) **Demonstrating Set Membership Demonstrating Set Membership** • We can run the element-generation process in reverse to *prove* that • We can run the element-generation process in reverse to prove that some item is a member of a set some item is a member of a set • Such proofs have a standard tree format: • Such proofs have a standard tree format: sub-claim to prove sub-claim to prove sub-claim to prove sub-claim to prove claim to prove claim to prove • Immediate membership claims serve as leaves on the tree: • Other membership claims generate branches in the tree: $\mathbf{f} \in \langle \mathbf{id} \rangle$ 7 ∈ <n> $7 \in \langle expr \rangle$

Demonstrating Set Membership

- We can run the element-generation process in reverse to *prove* that some item is a member of a set
- Such proofs have a standard tree format:

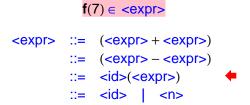
sub-claim to prove ... sub-claim to prove claim to prove

• Other membership claims generate branches in the tree:

 $f \in \langle id \rangle \qquad \begin{array}{c} 7 \in \langle n \rangle \\ \hline 7 \in \langle expr \rangle \\ \hline f(7) \in \langle expr \rangle \end{array}$

The proof tree's shape is driven entirely by the grammar

Demonstrating Set Membership: Example



• Two meta-variables on the left means two sub-trees:

- One for $f \in \langle id \rangle$
- $^{\circ}$ One for 7 \in <expr>

Demonstrating Set Membership: Example

 $f \in \langle id \rangle \qquad 7 \in \langle expr \rangle$ $f(7) \in \langle expr \rangle$ $\langle id \rangle \qquad ::= a \text{ variable name: } \mathbf{f}, \mathbf{x}, \mathbf{y}, \mathbf{z}, ...$ $\langle expr \rangle \qquad ::= (\langle expr \rangle + \langle expr \rangle)$ $i:= (\langle expr \rangle - \langle expr \rangle)$ $i:= \langle id \rangle (\langle expr \rangle)$ $i:= \langle id \rangle \mid \langle en \rangle$

• $f \in \langle id \rangle$ is immediate

• $7 \in \langle expr \rangle$ has one meta-variable, so one subtree

Demonstrating Set Membership: Example

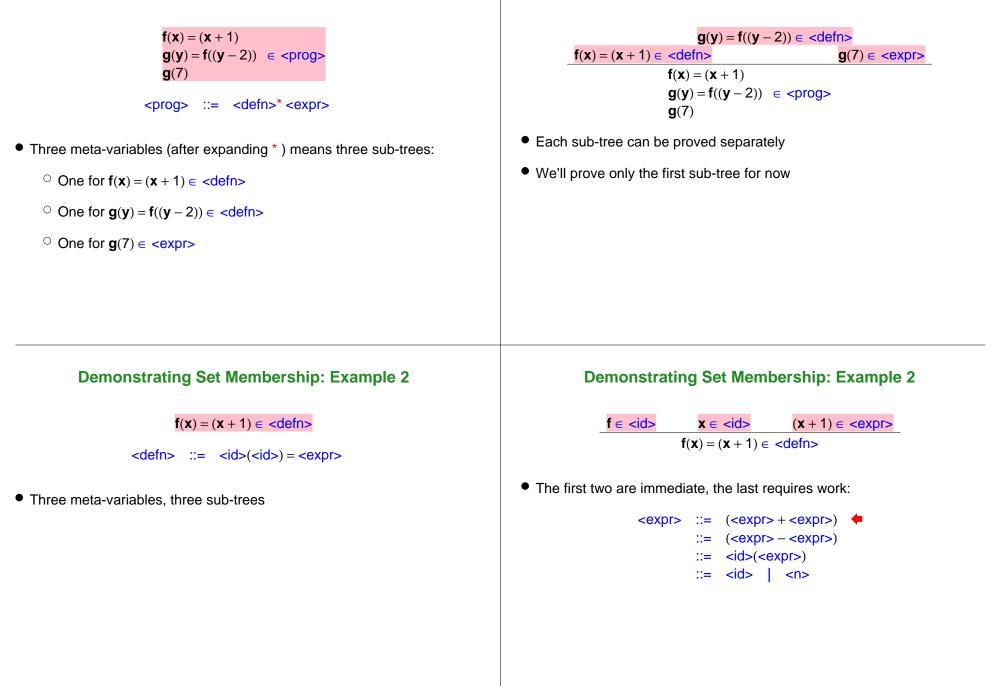
$$f \in \langle id \rangle \qquad \begin{array}{c} 7 \in \langle n \rangle \\ \hline 7 \in \langle expr \rangle \\ \hline f(7) \in \langle expr \rangle \end{array}$$

<n> ::= a number: 1, 42, 17, ...

• $7 \in \langle n \rangle$ is immediate, so the proof is complete

Demonstrating Set Membership: Another Example

Demonstrating Set Membership: Example 2



Final tree:

		x ∈ <id></id>	1 ∈ <n></n>
		x ∈ <expr></expr>	1 ∈ <expr></expr>
f ∈ <id></id>	x ∈ <id></id>	(x + 1) ∈ <expr></expr>	
	f (x) =	(x + 1) ∈ <defn></defn>	

● This was just one of three sub-trees for the original ∈ <prog> proof...

Algebra as a Programming Language

• Algebra has a grammar:

 $^{\circ}$ (1 + 2) is a legal expression

- $^{\circ}$ (1 + +) is not a legal expression
- Algebra has rules for evaluation:

○ (1+2) = 3○ f(17) = (17+3) = 20 if f(x) = (x+3)

Evaluation Function

- An *evaluation function*, \rightarrow , takes a single evaluation step
- It maps programs to programs:

$$(2+(7-4)) \quad \rightarrow \quad (2+3)$$

Evaluation Function

- An *evaluation function*, \rightarrow , takes a single evaluation step
- It maps programs to programs:

$$\begin{array}{ll} \textbf{f}(\textbf{x})=(\textbf{x}+1) & \qquad & \textbf{f}(\textbf{x})=(\textbf{x}+1) \\ (2+(7-4)) & \rightarrow & (2+3) \end{array}$$

Evaluation Function

- An *evaluation function*, \rightarrow , takes a single evaluation step
- It maps programs to programs:

$$\begin{array}{ll} f(\mathbf{x}) = (\mathbf{x} + 1) & f(\mathbf{x}) = (\mathbf{x} + 1) \\ g(\mathbf{y}) = (\mathbf{y} - 1) \\ h(\mathbf{z}) = f(\mathbf{z}) & \rightarrow \end{array} \xrightarrow[h(\mathbf{z})]{} g(\mathbf{y}) = (\mathbf{y} - 1) \\ h(\mathbf{z}) = f(\mathbf{z}) \\ (2 + f(13)) & (2 + (13 + 1)) \end{array}$$

• Apply \rightarrow repeatedly to obtain a result:

$$\begin{array}{ccc} f({\bf x}) = ({\bf x}+1) \\ (2+(7-4)) \end{array} & \to & \begin{array}{c} f({\bf x}) = ({\bf x}+1) \\ (2+3) \end{array} \\ \end{array} \\ \begin{array}{c} f({\bf x}) = ({\bf x}+1) \\ (2+3) \end{array} & \to & \begin{array}{c} f({\bf x}) = ({\bf x}+1) \\ 5 \end{array} \\ \end{array}$$

Evaluation Function

• The \rightarrow function is defined by a set of pattern-matching rules:

$$\begin{array}{ll} \textbf{f}(\textbf{x})=(\textbf{x}+1) & \qquad \textbf{f}(\textbf{x})=(\textbf{x}+1) \\ (2+(7-4)) & \rightarrow & (2+3) \end{array}$$

due to the pattern rule

$$\dots (7-4) \dots \rightarrow \dots 3 \dots$$

Evaluation Function

• The \rightarrow function is defined by a set of pattern-matching rules:

$$\begin{array}{ccc} {\bf f}({\bf x}) = ({\bf x}+1) & & \\ (2+{\bf f}(13)) & \rightarrow & (2+(13+1)) \end{array}$$

due to the pattern rule

where $\langle expr \rangle_3$ is $\langle expr \rangle_1$ with $\langle id \rangle_2$ replaced by $\langle expr \rangle_2$

Pattern-Matching Rules for Evaluation

Homework

• Rule 1

$$\begin{array}{cccc} \dots & < \mathrm{id}_1 (< \mathrm{id}_2) = < \mathrm{expr}_1 \dots & & \dots & < \mathrm{id}_1 (< \mathrm{id}_2) = < \mathrm{expr}_1 \dots & \\ \dots & < \mathrm{id}_1 (< \mathrm{expr}_2) \dots & & \dots & < \mathrm{expr}_3 \dots \end{array}$$

where $\langle expr \rangle_3$ is $\langle expr \rangle_1$ with $\langle id \rangle_2$ replaced by $\langle expr \rangle_2$

• Rules 2 - ∞

- Some evaluations
- Some membership proofs
- See the web page for details
- Due next Tuesday, August 28, 11:59 PM

Where is This Going?

Next time:

- Shift syntax slightly to match that of Scheme
- Add new clauses to the expression grammar
- Add new evaluation rules

Current goal is to learn Scheme, but we'll use algebraic techniques all semester