
CS3520
Programming Languages Concepts

Instructor: Matthew Flatt

Programming Languages Concepts

This course teaches concepts in two ways:

By implementing interpreters

new concept => extend interpreter

By using Scheme

we assume that you don’t already know Scheme

Course Details

http://www.cs.utah.edu/classes/cs3520/

Bootstrapping Problem

We’ll learn about languages by writing interpreters in Scheme

We’ll learn about Scheme...

 by writing an interpreter...

 in Scheme set theory

More specifically, we’ll define Scheme as an extension of algebra

Algebra is a programming language?
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Algebra as a Programming Language

Algebra has a grammar:

(1 + 2) is a legal expression

(1 + +) is not a legal expression

Algebra has rules for evaluation:

(1 + 2) = 3

f(17) = (17 + 3) = 20   if    f(x) = (x + 3)

A Grammar for Algebra Programs

The grammar in BNF (Backus-Naur Form; EoPL sec 1.1.2):

<prog> ::= <defn>* <expr>
<defn> ::= <id>(<id>) = <expr>
<expr> ::= (<expr> + <expr>)

::= (<expr> − <expr>)
::= <id>(<expr>)
::= <id>  |  <n>

<id> ::= a variable name: f, x, y, z, ...
<n> ::= a number: 1, 42, 17, ...

Each meta-variable, such as <prog>, defines a set

Using a BNF Grammar

<id> ::= a variable name: f, x, y, z, ...
<n> ::= a number: 1, 42, 17, ...

The set <id> is the set of all variable names

The set <n> is the set of all numbers

To make an example member of <n>, simply pick an element from the
set

1 ∈ <n>

198 ∈ <n>

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
::= (<expr> − <expr>)
::= <id>(<expr>)
::= <id>  |  <n>

The set <expr> is defined in terms of other sets
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Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
::= (<expr> − <expr>)
::= <id>(<expr>)
::= <id>  |  <n>

To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

combine the examples with literal text

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
::= (<expr> − <expr>)
::= <id>(<expr>)
::= <id>  |  <n>

To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

7 ∈ <n>

combine the examples with literal text

7 ∈ <expr>

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
::= (<expr> − <expr>)
::= <id>(<expr>)
::= <id>  |  <n>

To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

f ∈ <id> 7 ∈ <expr>

combine the examples with literal text

f(7) ∈ <expr>

Using a BNF Grammar

<expr> ::= (<expr> + <expr>)
::= (<expr> − <expr>)
::= <id>(<expr>)
::= <id>  |  <n>

To make an example <expr>:

choose one case in the grammar

pick an example for each meta-variable

f ∈ <id> f(7) ∈ <expr>

combine the examples with literal text

f(f(7)) ∈ <expr>
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Using a BNF Grammar

<prog> ::= <defn>* <expr>
<defn> ::= <id>(<id>) = <expr>

f(x) = (x + 1) ∈ <defn>

To make a <prog> pick some number of <defn>s

(x + y) ∈ <prog>

f(x) = (x + 1)
g(y) = f((y − 2))
g(7)

   ∈ <prog>

Demonstrating Set Membership

We can run the element-generation process in reverse to prove that
some item is a member of a set

Such proofs have a standard tree format:

sub-claim to prove ... sub-claim to prove
claim to prove

Immediate membership claims serve as leaves on the tree:

7 ∈ <n>

Demonstrating Set Membership

We can run the element-generation process in reverse to prove that
some item is a member of a set

Such proofs have a standard tree format:

sub-claim to prove ... sub-claim to prove
claim to prove

Immediate membership claims serve as leaves on the tree:

f ∈ <id>

Demonstrating Set Membership

We can run the element-generation process in reverse to prove that
some item is a member of a set

Such proofs have a standard tree format:

sub-claim to prove ... sub-claim to prove
claim to prove

Other membership claims generate branches in the tree:

7 ∈ <n>
7 ∈ <expr>
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Demonstrating Set Membership

We can run the element-generation process in reverse to prove that
some item is a member of a set

Such proofs have a standard tree format:

sub-claim to prove ... sub-claim to prove
claim to prove

Other membership claims generate branches in the tree:

f ∈ <id>
7 ∈ <n>

7 ∈ <expr>
f(7) ∈ <expr>

The proof tree’s shape is driven entirely by the grammar

Demonstrating Set Membership: Example

f(7) ∈ <expr>

<expr> ::= (<expr> + <expr>)
::= (<expr> − <expr>)
::= <id>(<expr>)
::= <id>  |  <n>

Two meta-variables on the left means two sub-trees:

One for f ∈ <id>

One for 7 ∈ <expr>

Demonstrating Set Membership: Example

f ∈ <id> 7 ∈ <expr>
f(7) ∈ <expr>

<id> ::= a variable name: f, x, y, z, ...

<expr> ::= (<expr> + <expr>)
::= (<expr> − <expr>)
::= <id>(<expr>)
::= <id>  |  <n>

f ∈ <id> is immediate

7 ∈ <expr> has one meta-variable, so one subtree

Demonstrating Set Membership: Example

f ∈ <id>
7 ∈ <n>

7 ∈ <expr>
f(7) ∈ <expr>

<n> ::= a number: 1, 42, 17, ...

7 ∈ <n> is immediate, so the proof is complete
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Demonstrating Set Membership: Another Example

f(x) = (x + 1)
g(y) = f((y − 2))
g(7)

   ∈ <prog>

<prog> ::= <defn>* <expr>

Three meta-variables (after expanding * ) means three sub-trees:

One for f(x) = (x + 1) ∈ <defn>

One for g(y) = f((y − 2)) ∈ <defn>

One for g(7) ∈ <expr>

Demonstrating Set Membership: Example 2

g(y) = f((y − 2)) ∈ <defn>
f(x) = (x + 1) ∈ <defn> g(7) ∈ <expr>

f(x) = (x + 1)
g(y) = f((y − 2))
g(7)

   ∈ <prog>

Each sub-tree can be proved separately

We’ll prove only the first sub-tree for now

Demonstrating Set Membership: Example 2

f(x) = (x + 1) ∈ <defn>

<defn> ::= <id>(<id>) = <expr>

Three meta-variables, three sub-trees

Demonstrating Set Membership: Example 2

f ∈ <id> x ∈ <id> (x + 1) ∈ <expr>
f(x) = (x + 1) ∈ <defn>

The first two are immediate, the last requires work:

<expr> ::= (<expr> + <expr>)
::= (<expr> − <expr>)
::= <id>(<expr>)
::= <id>  |  <n>
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Demonstrating Set Membership: Example 2

Final tree:

f ∈ <id> x ∈ <id>

x ∈ <id>
x ∈ <expr>

1 ∈ <n>
1 ∈ <expr>

(x + 1) ∈ <expr>
f(x) = (x + 1) ∈ <defn>

This was just one of three sub-trees for the original ∈ <prog> proof...

Algebra as a Programming Language

Algebra has a grammar:

(1 + 2) is a legal expression

(1 + +) is not a legal expression

Algebra has rules for evaluation:

(1 + 2) = 3

f(17) = (17 + 3) = 20   if    f(x) = (x + 3)

Evaluation Function

An evaluation function, →, takes a single evaluation step

It maps programs to programs:

(2 + (7 − 4))  → (2 + 3)

Evaluation Function

An evaluation function, →, takes a single evaluation step

It maps programs to programs:

f(x) = (x + 1)
(2 + (7 − 4))  → f(x) = (x + 1)

(2 + 3)
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Evaluation Function

An evaluation function, →, takes a single evaluation step

It maps programs to programs:

f(x) = (x + 1)
g(y) = (y − 1)
h(z) = f(z)
(2 + f(13))

 → 

f(x) = (x + 1)
g(y) = (y − 1)
h(z) = f(z)
(2 + (13 + 1))

Evaluation Function

Apply → repeatedly to obtain a result:

f(x) = (x + 1)
(2 + (7 − 4))  → f(x) = (x + 1)

(2 + 3)

f(x) = (x + 1)
(2 + 3)  → f(x) = (x + 1)

5

Evaluation Function

The → function is defined by a set of pattern-matching rules:

f(x) = (x + 1)
(2 + (7 − 4))  → f(x) = (x + 1)

(2 + 3)

due to the pattern rule

... (7 − 4) ...  →  ... 3 ...

Evaluation Function

The → function is defined by a set of pattern-matching rules:

f(x) = (x + 1)
(2 + f(13))  → f(x) = (x + 1)

(2 + (13 + 1))

due to the pattern rule

... <id>1(<id>2) = <expr>1 ...

... <id>1(<expr>2) ...
 → ... <id>1(<id>2) = <expr>1 ...

... <expr>3 ...

where <expr>3 is <expr>1 with <id>2 replaced by <expr>2
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Pattern-Matching Rules for Evaluation

Rule 1

... <id>1(<id>2) = <expr>1 ...

... <id>1(<expr>2) ...
 → ... <id>1(<id>2) = <expr>1 ...

... <expr>3 ...

where <expr>3 is <expr>1 with <id>2 replaced by <expr>2

Rules 2 - ∞

... (0 + 0) ...  →  ... 0 ... ... (0 − 0) ...  →  ... 0 ...

... (1 + 0) ...  →  ... 1 ... ... (1 − 0) ...  →  ... 1 ...

... (0 + 1) ...  →  ... 1 ... ... (0 − 1) ...  →  ... −1 ...

... (2 + 0) ...  →  ... 2 ... ... (2 − 0) ...  →  ... 2 ...
etc. etc.

Homework

Some evaluations

Some membership proofs

See the web page for details

Due next Tuesday, August 28, 11:59 PM

Where is This Going?

Next time:

Shift syntax slightly to match that of Scheme

Add new clauses to the expression grammar

Add new evaluation rules

Current goal is to learn Scheme, but we’ll use algebraic techniques all
semester
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