
Quiz

• What type is inferred for ? in the following expression?

{with {f : (? -> ?) {fun {x : ?} x}}
 {f 10}}

• Answer: num

1-2

Quiz

• What type is inferred for ? in the following expression?

{with {f : (? -> ?) {fun {x : ?} x}}
 {f {fun {x : num} x}}}

• Answer: (num → num)

3-4

Quiz

• What type is inferred for ? in the following expression?

{with {f : (? -> ?) {fun {x : ?} x}}
 {if0 ...

{f 10}
 {{f {fun {x : num} x}} 8}}}

• Answer: None; no single τ works — but it's a perfectly good
program for any ...

5-6

Polymorphism

• We'd like a way to write a type that the caller choose:

{with {f : ?
[tyfun [alpha]

{fun {x : alpha} x}]}
 {if0 ...

{[@ f num] 10}
 {{[@ f (num -> num)] {fun {x : num} x}} 8}}}

This f is polymorphic

• The tyfun form parameterizes over a type

• The @ form picks a type

7-8

Polymorphic Types

What is the type of this expression?

[tyfun [alpha]
{fun {x : alpha} x}]

It should be something like (alpha → alpha), but it needs a specific
type before it can be used as a function

9-10

Polymorphic Types

What is the type of this expression?

[tyfun [alpha]
[tyfun [beta]

{fun {x : alpha} x}]]

It should be something like (alpha → alpha), but picking alpha
gives something that still needs another type

New type form: ∀ <tyid>.<tyexp>

∀ alpha.(alpha → alpha)

∀ alpha.∀ beta.(alpha → alpha)

11-13

TPFAE Grammar

<TPFAE> ::= <num>

| {+ <TPFAE> <TPFAE>}

| {- <TPFAE> <TPFAE>}

| <id>

| {fun {<id> : <tyexp>} <TPFAE>}

| {<TPFAE> <TPFAE>}

| {if0 <TPFAE> <TPFAE> <TPFAE>}

| [tyfun [<tyid>] <TPFAE>] NEW

| [@ <TPFAE> <tyexp>] NEW

<tyexp> ::= num

| (<tyexp> -> <tyexp>)

| (forall <tyid> <tyexp>) NEW

| <tyid> NEW

14

TPFAE Type Checking

Γ [<tyid>] e : τ
Γ [tyfun [<tyid>] e] : ∀ <tyid>.τ

Γ τ0 Γ e : ∀ <tyid>.τ1

Γ [@ e τ0] : τ1[<tyid>←τ0]

[...<tyid>...] <tyid>

Γ [<tyid>] τ
Γ ∀ <tyid>.τ

15

Polymorphism and Type Definitions

If we mix tyfun with withtype, then we can write

{with {f : (forall alpha (alpha -> num))
[tyfun [alpha]

{fun {v : alpha}
{withtype {list {empty num}

{cons (alpha * list)}}
 {rec {len : (list -> num)

{fun {l : list}
{cases list l
 {empty {n} 0}
 {cons {fxr}

{+ 1 {len {snd fxr}}}}}}}
 {len {cons {pair v

{cons {pair v
{empty 0}}}}}}}}}]}

 {+ {[@ f num] 10}
{[@ f (num -> num)] {fun {x : num} x}}}}

This is a kind of polymorphic list definition

Problem: everything must be under a tyfun

16

Polymorphism and Type Definitions

Solution: build tyfun-like abstraction into withtype

{withtype {{alpha list} {empty num}
{cons (alpha * {alpha list})}}

 {rec {len : (forall alpha ({alpha list} -> num))
[tyfun [alpha]

{fun {l : {alpha list}}
{cases {alpha list} l
 {empty {n} 0}
 {cons {fxr}

{+ 1 {len {snd fxr}}}}}}]}
 {+ {[@ len num] {[@ cons num] {pair 1 {[@ empty num] 0}}}}

{[@ len (num -> num)] {[@ empty (num -> num)] 0}}}}}

17

Polymorphism and Inference

{with {f : (forall alpha (alpha -> alpha))
[tyfun [alpha]

{fun {x : alpha}
x}]}

 {[@ f (num -> num)] {fun {y : num} y}}}

The type application [@ f (num -> num)] is obvious, since we
can get the type of {fun {y : num} y}

With polymorphism, type inference is usually combined with
type-application inference:

{with {f : (forall alpha (alpha -> alpha))
[tyfun [alpha]

{fun {x : alpha}
x}]}

 {f {fun {y : num} y}}}

18-19

Polymorphism and Inference

{with {f : ?
{fun {x : ?}

x}}
 {f {fun {y : num} {f 10}}}}

How about inferring a tyfun around the value of f?

Yes, with some caveats...

20-21

Polymorphism and Inference

Does the following expression have a type?

{fun {x : ?} {x x}}

Yes, if we infer forall types and type applications:

{fun {x : (forall alpha (alpha -> alpha))}
{[@ x (num -> num)] [@ x num]}}

Inferring types like this is arbitrarily difficult (i.e., undecidable), so type
systems generally don't

22-24

Let-Based Polymorphism

Inference constraint: only infer a polymorphic type (and insert tyfun)
for ther right-hand side of a with or rec binding

• This works:

{with {f : ?
{fun {x : ?}

x}}
 {f {fun {y : num} {f 10}}}}

• This doesn't:

{fun {x : ?} {x x}}

Note: makes with a core form

Implementation: check right-hand side, add a forall and tyfun
for each unconstrained new type variable

25-26

Polymorphism and Inference and Type Definitions

All three together make a practical programming system:

{withtype {{alpha list} {empty num}
{cons (alpha * {alpha list})}}

 {rec {len : ?
{fun {l : {alpha list}}

{cases {alpha list} l
 {empty {n} 0}
 {cons {fxr}

{+ 1 {len {snd fxr}}}}}}}
 {+ {len {cons {pair 1 {empty 0}}}}

{len {cons {pair {fun {x : num} x} {empty 0}}}}}}}

Caml example:

type 'a tree = Leaf of 'a
 | Fork of 'a tree * 'a tree

27-28

Polymorphism and Values

A polymorphic function is not quite a function:

• A function is applied to a value to get a new value

• A polymorphic function is applied to a type to get a function

What happens if you write the following?

{with {f : ? {fun {v : ?}
{fun {g : ?}

{g v}}}}
 {with {g : ? {fun {x : ?} x}}
 {{f g} 10}}}

A type application must be used at the function call, not in f:

{{[@ [@ f num] num] 10} [@ g num]}

29-31

Polymorphism and Values

A polymorphic function is not quite a function:

• A function is applied to a value to get a new value

• A polymorphic function is applied to a type to get a function

What happens if you write the following?

{with {f : ? {fun {v : ?}
{fun {g : (forall alpha (alpha -> alpha))}

{g v}}}}
 {with {g : ? {fun {x : ?} x}}
 {{f 10} g}}}

One type application must be used inside f:

[tyfun {beta} {fun {v : beta}
{fun {g : (forall alpha (alpha -> alpha))}

{[@ g beta] v}}}]

32-33

Polymorphism and Values

An argument that is a polymorphic value can be used in multiple
ways:

{fun {g : (forall alpha (alpha -> alpha))}
{if {g false}

{g 0}
 {g 1}}}

but due to inference constraints,

{fun {g : ?}
{if {g false}

{g 0}
 {g 1}}}

would be rejected!

34-35

Polymorphism and Values

ML prohibits polymorphic values, so that

{fun {g : (forall alpha (alpha -> alpha))}
{if {g false}

{g 0}
 {g 1}}}

is not allowed

• Consistent with inference

• Every forall appears at the beginning of a type, so

(forall alpha (forall beta (alpha -> beta)))

can be abbreviated

(alpha -> beta)

without loss of information
36-37

