
CS 5460: Operating Systems — Fall 2009 — Homework 2 1

Homework 2: Writing your own shell

Assigned: September 8, 2009
Due: September 15, 2009 (by class time)

1 Assignment

Your boss requires a lean-and-mean UNIX shell, and none of the existing shells (sh, bash, ksh,
csh, tcsh, zsh, ash, or even the infamous “adventure shell”) seem to meet her requirements. So,
you are stuck writing a shell almost from scratch! It does not need to support job management,
environment variables, or most other standard shell features. However, it must be able to run
programs and support file redirection and pipes.

Fortunately, your co-worker has already written a parser. See ∼cs5460/hw2/hw2 start.c on
the CADE filesystem.

2 Shell Specification

This section outlines your boss’s requirements for the shell that you are writing. It is fine to discuss
the specification and its interpretation with other students, but do not hare code. You should ask
for clarification if you think you have found an error or ambiguity in the spec. Don’t be put off by
the length of the specification: it is simply formalizing a simple version of the UNIX shell syntax
that you have always used.

2.1 The Shell Language

Lexical structure (handled by your co-worker’s code):

• The input to the shell is a sequence of lines. The shell must correctly handle lines of up
to 100 characters. If a line containing more than 100 characters is submitted to the shell, it
should print some kind of error message and then continue processing input at the start of
the next line.

• Each line consists of tokens. Tokens are separated by one or more spaces. A line may contain
as many tokens as can fit into 100 characters.

• There are two kinds of tokens: operators and words. The only operators are <, >, and |
(pipe).

• Words consist of the characters A–Z, a–z, 0–9, dash, dot, forward slash, and underscore. If a
word in a line of input to the shell contains any character not in this set, then the shell should
print an error message and then continue processing input at the start of the next line.

• The only legal input to the shell, other than lines consisting of valid tokens, is the end-of-file.

Parsing the shell language:

CS 5460: Operating Systems — Fall 2009 — Homework 2 2

• Lines of input are divided into token groups. Each token group will result in the shell
forking a new process and then execing a program.

• Every token group must begin with a word that is called the command. The words im-
mediately following a command are called arguments and each argument belongs to the
command it most closely follows. The order of arguments matters, and they are numbered
from left to right, starting at one.

• It is permissible for the arguments in a token group to be followed by one or more file
redirections. A file redirection consists of one of the operators < or > followed by a single
word called the filespec. A file redirection containing the < operator is an input file
redirection and a file redirection containing the > operator is an output file redirection.

• Token groups are separated by pipe operators. In other words, each valid line of shell input
must begin and end with a valid token group, and the only place pipe operators are allowed
is in between token groups.

• Valid token groups may be preceded by a pipe operator or they may contain an input file
redirection, or neither, but not both. Similarly, valid token groups may be followed by a pipe
operator or contain an output file redirection, or neither, but not both.

• Lines of shell input that violate any of the parsing rules should cause the shell to print an
error message and then move on to the next line of input.

Here are a few examples of shell language:

• /usr/bin/emacs

is a legal line of input. It contains a single token group containing a single token, which is a
command.

• /usr/bin/emacs|

is not a legal line of input because the pipe character is not valid as part of a word (remember
that tokens are always separated by one or more spaces).

• /usr/bin/emacs |

is not a legal line of input because the pipe operator has to separate valid token groups. It is
not legal for a pipe operator to be at the end of a line of input.

• ls -l > foo

is a legal line of input containing a single token group. In order, the tokens are command,
argument, operator, filespec.

• ls -l > | foo2

is not a legal line of input because the output redirection operator is not followed by a word.

CS 5460: Operating Systems — Fall 2009 — Homework 2 3

• ls -l > foo1 | foo2

is not a legal line of input because the token group is both followed by a pipe and contains
an output redirection.

• > foo

is not a legal line of input because it does not begin with a word.

• ls > foo%

is not a legal line of input because it contains an illegal character.

• ls | grep -i cs5460 | sort | uniq | cut -c 5

is a legal line of input. It contains 5 token groups. In order, the tokens in this line are: com-
mand, operator, command, argument, argument, operator, command, operator, command,
operator, command, argument, argument.

The starter file ∼cs5460/hw2/hw2 start.c on the CADE filesystem parses input lines into a
set of records and then prints them back out, so you can try out examples to see how they parse.
You should start with that code for your shell.

2.2 Interpreting the Shell Language

Only legal lines of input (as defined in the previous section) should be interpreted — when the shell
encounters an illegal line it prints an error message and then continues to the next line of input.
(Again, your co-worker’s parser handles the error messages.)

• Every command except the special command exit is to be interpreted as a UNIX executable
to be exec’d.

• When the shell encounters either the command exit or the end-of-file, it terminates with a
return code of zero.

• When a command begins with the character ’/’ it is an absolute pathname and should be
exec’d as-is. All other commands are relative and should be assumed to be in the current
working directory (CWD), and therefore the shell must prepend the name of the CWD to
the command before execing it.

• The arguments to a command should be passed to the exec call in argv; argv[0] should
always be the same as the string that is being exec’d, with actual arguments passed in slots
one and higher.

• The > operator indicates that STDOUT of the associated command should be redirected to
the UNIX file named by the filespec belonging to the operator. This file should be created if
it does not exist, and the shell should report an error if the file cannot be created. Similarly,
the < operator indicates that STDIN of the associated command should be redirected from
the UNIX file named by the filespec. The shell should report an error if this file cannot be
opened for reading.

CS 5460: Operating Systems — Fall 2009 — Homework 2 4

• The pipe (|) operator indicates that STDOUT of the preceding command should be redirected
to STDIN of the following command.

• After interpreting a command, the shell should wait for all forked subprocesses to terminate
before parsing the next line of input. Also, after all forked subprocesses have terminated, the
shell should report their return values (e.g., one per line in the order that the commands were
specified in the line of input).

Here is the interpretation of the legal example commands from the previous section. Assume
that the CWD is /home/regehr.

• /usr/bin/emacs

The shell forks a new process and in it execs /usr/bin/emacs; the main shell process waits
for emacs to exit before reading another line of input.

• ls -l > foo

The shell opens the file foo for writing, forks a new process, redirects STDOUT of the new
process to foo, and then execs /home/regehr/ls with -l as argument one.

• ls | grep -i cs5460 | sort | uniq | cut -c 5

The shell sets up the pipes, forks 5 subprocesses, and then each subprocess execs the command
for one of the 5 token groups.

3 Getting Started

Be sure you understand this assignment before starting to write code. Here is a rough outline of
steps you might take in solving it.

3.1 Command-Line Parsing

Start with ∼cs5460/hw2/hw2 start.c on the CADE filesystem.

3.2 Interpreting Shell Commands

Modify the shell command loop to properly interpret lines of input. You will need to use the fork()
and execve() functions to do this. The shell process should wait for its children to complete by
calling waitpid(). The shell should also check and report the exit code returned by the program.
Note: the exit code is placed into the lower 8-bits of the status code set by waitpid(). The full
version of your code will look roughly like this:

while (1) {
read a line of input
parse the line
for each command in the line {

pid = fork();

CS 5460: Operating Systems — Fall 2009 — Homework 2 5

if (pid == 0) {
do redirection stuff
execve (command, args , ...);
oops, why did exec fail?

} else {
store pid somewhere

}
}
for each command in the line {

waitpid (stored pid, &status);
check return code placed in status;

}
}

But remember to practice incremental development: get something working, add a small
feature, test your code, and then move on to the next feature. For example, you should start out
supporting shell input that contains a single command and no redirection. Then, add one of these
features and then the other.

Your shell should return results similar to those returned by well-known shells like tcsh and
bash.

To support relative pathnames, use the getcwd() system call to find the name of the directory
in which your shell is running. You can make this call once at startup time since your shell does
not need to support changing directories.

To support I/O redirection, modify the child process created by fork() by adding some code
to open the input and output files specified on the command line. This should be done using the
open() system call. Next, use the dup2() system call to replace the standard input or standard
output streams with the appropriate file that was just opened. Finally, call exec() to run the
program.

Pipes are a little tricker: you should use the pipe() system call to create a pair of pipe file
descriptors before calling fork(). After the fork both processes will have access to both sides of
the pipe. The reading process should close the write file descriptor, and the writing process should
close the read file descriptor. At this point each process uses dup2() to copy the remaining pipe
descriptor over STDIN or STDOUT as appropriate.

When you are done, bask in the glory of a working shell! You should now have a good operational
understanding of the user-mode side of some of the most important UNIX system calls.

4 Other Odds and Ends

Finding Commands: Since your shell is not implementing search paths, typing absolute paths to
programs may become tiresome. One easy way around this is to create some symbolic links from
your working directory to commonly used programs. For example:

ln -s /bin/ls ./ls

CS 5460: Operating Systems — Fall 2009 — Homework 2 6

Code Size: My finished shell is under 400 lines of C code, including plenty of debugging code,
blank lines, and comments. Your shell should not be a lot larger than this (in other words, if it
gets a lot larger then you’re probably doing something wrong).
Getting Help: Since this is an upper division computer science course, you are expected to do your
own research regarding the usage of various system calls, header files, and libraries. Information is
readily available in the man pages, UNIX reference books, and on the web. For example, on any
UNIX machine man pipe will give you information about the pipe() system call. Otherwise, do
not hesitate to ask a question if you are unclear about how some part of the assignment is supposed
to work.

5 Logistics and Grading

Remember, this assignment is not a group assignment — every individual in the class should do
it themselves (and hand it in themselves)! Also, remember to start early, it’s easy to get hung up
on problems that would seem easy if you had more time to read documentation and think about
them.

Although you may do your work on any UNIX machine, your shell will be graded on a CADE
lab Linux machine, so you must make sure that it compiles and runs properly there. If you are
uncomfortable with the idea of getting your shell running on two versions of UNIX (this should not
be a problem at all) then it might be a good idea to just do all your work on a CADE lab Linux
box. Also, please do not write code like this:

#ifdef LINUX
... Linux specific code ...

#endif
#ifdef SOLARIS

... Sun specific code ...
#endif

Since again, it should not be a problem for you to write portable code.
Be sure to handin the source code files, your makefile, and the executables. Be sure to handin

every file that we will need in order to recreate your executable, including all header files, .c files,
and makefile’s. Your executable should be called mysh. Also be sure to handin any external
documentation that you’ve written (e.g., a README file) and comment your code thoroughly and
clearly.

If you have never used the handin program, please read the online manual pages for instructions
on its use. The class account is cs5460 and the project name is hw2.

