
Domain Theory

CS 6520, Spring 2003

1 Function Denotations

From the previous lecture, we know that the denotation of

λx.(x+ d1e)

might be derived as
λeλv.(v + 1)

using a semantics with environments, but without continuations. The line beneath the lambda reminds us
that it is a mathematical lambda, rather than a source-expression lambda. Since the lambdas are simply
shorthand for set descriptions, we might describe the above set more directly as

{〈e, {〈v, v + 1〉 | ∀v ∈ Num}〉 | ∀e ∈ Env}

or we could use a mixture of notations:

λe.{〈v, v + 1〉 | ∀v ∈ Num}

Now, consider the denotation of
λf.f(d1e)

It should be a function that takes a function as its argument:

λe.{〈f, f(1)〉 | ∀f ∈ Num→ Num}

The parentheses are underlined to emphasize that they represent application in the mathematical world.
Just as each v in the previous denotation stood for a mathematical number, each f in the above denotation
stands for a function from numbers to numbers.

Note: Every object in the mathematical world belongs to a specific set, and this set is mentioned explicitly

in quantifications. In the previous lecture, we omitted most set declarations for simplicity, but this time

they are central to the questions at hand.

Once again, we can unwind the function notation to clarify that each f is really a set of number pairs:

λe.{〈f, v〉 | ∀f ∈ Num→ Num, v ∈ Num s.t. f(1) = v}

2 Recursive Functions

What is the denotation of the following expression?

λf.f(f)

It would have to be something like

λe.{〈f, f(f)〉 | ∀f ∈ ?→ Num}

1

but we see right away a problem defining the set containing f . It would have to be a set of functions whose
domain is the set itself — but set theory disallows sets that contain themselves!

Although the expression λf.f(f) may not be directly useful in practice, we know it is a step towards
expressing recursive functions with the Y combinator. Indeed, the problem we see above looks similar to the
problems that we encountered when trying to define Y in a simply-typed lambda calculus. Although our
“types” in the mathematical world are fundamentally different from the “types” we studied in the syntactic
world, the path to recursion in denotational semantics is again to introduce explicit syntax for recursion that
is handled in a special way.

We will introduce a fix form into our language. It takes a function and produces a new function that
is its fixpoint. For the purpose of trying out fix, we will also throw in if constructs, comparisons, etc. For
example, the expression

fix(λfλn . if n = d0e then d1e else n ∗ f(n− d1e))

denotes the (mathematical) factorial function, which is

λe.{〈0, 1〉, 〈1, 1〉, 〈2, 2〉, 〈3, 6〉, 〈4, 24〉, . . .}

But how do we define the semantics of fix expressions, mathematically, to achieve this result?
In order to define the mathematical meaning of fix, we need new mathematical machinery. Dana Scott

developed the theory in the early 70s, and he called it domain theory.

3 Domain Theory

In domain theory, instead of belonging to a particular set, every object belongs to a particular domain. A
domain is roughly like a set, but it has additional structure. Specifically, a domain is a partially-ordered
set, which is defined by the elements of the set, plus an order relation, v. Also, every chain of elements in
a domain must have a least upper bound, where a chain is an ordered set of elements x1, x2, . . . xn, where
x1 v x2 v . . . xn.

For the purposes of assigning denotations to expressions, we want to think of the order relation x v y as
“x provides no more information than y”. To understand this definition of domains, consider the domain of
boolean values:

• Clearly, this domain should contain at least true and false. The information true is exclusive to the
information false, so these two elements are not related by v. In contrast, true provides the same
amount of information as true, so true v true, and the least upper bound of the chain {true} is
obviously true. The same holds for false.

• The empty chain { } also needs a least upper bound. Although true and false are both upper bounds,
neither is less than the other. Hence, our domain needs one more element, written ⊥ and pronounced
“bottom”. The new element ⊥ means “no information.” It is defined so that ⊥ v true and ⊥ v false.
Thus, ⊥ is the least upper bound of { }.

To summarize: the domain of booleans, Bool, is the set {⊥, true, false} combined with an order relation
v defined as the transitive-reflexive closure of {〈⊥, true〉, 〈⊥, false〉}. This domain is often illustrated with
the following diagram:

false true
\ /
⊥

The diagram shows both the elements of the set and the ordering relation (implicit in the vertical layout of
the elements).

The domain of natural numbers, Nat, can be similarly illustrated:

2

1 2 3 . . .

@ \ | . . .
⊥

Both the domain of booleans and the domain of natural numbers are flat (and somewhat boring); every
chain contains at most one boolean number or number. But the domain representation of functions is not
flat.

The domain of Bool → Bool roughly consists of mappings from Bool to Bool. The complete set of
mappings includes the following:

{〈⊥,⊥〉, 〈false,⊥〉, 〈true,⊥〉}

{〈⊥, false〉, 〈false, false〉, 〈true, false〉}

{〈⊥, true〉, 〈false, true〉, 〈true, true〉}

{〈⊥,⊥〉, 〈false, false〉, 〈true, false〉}

{〈⊥,⊥〉, 〈false, true〉, 〈true, true〉}

{〈⊥,⊥〉, 〈false,⊥〉, 〈true, false〉}

{〈⊥,⊥〉, 〈false,⊥〉, 〈true, true〉}

plus twenty other elements. But not all of these mappings will be included in the domain, as we will see
further below.

We can order the mappings by thinking of them as descriptions of how much we know about a function.
For example,

F0 = {〈⊥,⊥〉, 〈false,⊥〉, 〈true,⊥〉}

describes a function where we do not know the result for any input. In contrast,

F2 = {〈⊥, true〉, 〈false, true〉, 〈true, true〉}

describes a function that we know always returns true. Since F2 provides strictly more information than
F0, we order F0 v F2. In fact, since F0 provides no information, F0 v F for any F in the domain. In other
words, F0 is the “bottom” for the domain Bool → Bool, and we sometimes use the symbol ⊥ to mean F0

when it is clear that we mean the least element of Bool→ Bool.
There are several elements in the domain between F0 and F2. For example,

F1 = {〈⊥,⊥〉, 〈false,⊥〉, 〈true, true〉}

and
F ′1 = {〈⊥,⊥〉, 〈false, true〉, 〈true,⊥〉}

both provide more information than F0, but less than F2. Thus, F0 v F1 v F2 and F0 v F ′1 v F2. Note,
however, that F1 and F ′1 are incomparable; neither provides all of the information of the other. The domain
of Bool→ Bool is clearly not flat:

. . . F2 . . .
. . . / \ . . .

. . . F ′1 F ′1 . . .
. . . \ / . . .

F0

Now consider the mapping

Fweird = {〈⊥, true〉, 〈false,⊥〉, 〈true, true〉}

This mapping says that the function returns true, even when we don’t know what the argument is (i.e., it
is ⊥). But it also says that we don’t know what the function returns for a false input. This does not make

3

sense for functions as programs. Intuitively, if a program returns true for an unknown input, it must return
true for any input, including false!

Nonsensical elements such as Fweird are not part of the domain Bool → Bool. They do not “respect
the structure” of the input and output domains. More technically, they are not monotonic. A monotonic
function is one where f(a) v f(b) when a v b. In Fweird, we see that Fweird(⊥) 6v Fweird(false), even
though ⊥ v false. In contrast, F0, F2, F1, and F ′1 are all monotonic.

The domain Nat → Nat can be derived in the same way as Bool → Bool, since the monotonicity
requirement is abstract with respect to the set and its v relation. Furthermore, we can use the same
techniques to define domains like Bool→ Bool→ Nat, and so on.

4 Fixpoints

The key to assigning denotations to fix expressions is to map expressions to elements of domains, and then
exploit a process that is guaranteed to find a fixpoints of functions.

First, let’s look at the denotation of a few expressions in the domain Bool→ Bool:1

[[λb.true]] = {〈⊥, true〉, 〈false, true〉, 〈true, true〉}
[[λb.⊥]] = {〈⊥,⊥〉, 〈false,⊥〉, 〈true,⊥〉}
[[λb.b]] = {〈⊥,⊥〉, 〈false, false〉, 〈true, true〉}

[[λb.if b then true else ⊥]] = {〈⊥,⊥〉, 〈false,⊥〉, 〈true, true〉}
[[λb.if b then false else true]] = {〈⊥,⊥〉, 〈false, true〉, 〈true, false〉}

In the last example, ⊥ maps to ⊥ because the function will not know what to do with an unknown argument.
In the first example, though, every argument is mapped to true, so the function could even return a value
for an unknown argument. Note that all of the mappings above are monotonic. (Don’t fall into the trap of
thinking that false v true or 1 v 2. The objects false, true, 1, and 2 are all incomparable with v.)

Now consider the expression
fix(λn.d5e)

How do we assign a denotation to the expression? It is the fixpoint of the denotation of (λn.d5e). In this
case, the denotation of fix’s argument is obvious, but suppose it was not. We know that it could be an
element in the domain Nat→ Nat, but which one? A first guess might be

{〈⊥,⊥〉, 〈0,⊥〉, 〈1,⊥〉, 〈2,⊥〉, . . .}

This is clearly an approximation of the right answer, because it says “we don’t know what the function will
return for any input”. We might refine this guess by testing (λn.d5e) on an input — assuming the least
information input. So we provide ⊥ to the function, and discover that it returns 5. Thus, we have an
improvement in our approximation for the denotation of (λn.d5e):

{〈⊥, 5〉, 〈0,⊥〉, 〈1,⊥〉, 〈2,⊥〉, . . .}

But this mapping is not in the domain, since it isn’t monotonic. We know that the function must return at
least as much information as 5 (and 5 is maximal information) if we give it more information than ⊥ (i.e.,
an number). Thus, the correct denotation must be

{〈⊥, 5〉, 〈0, 5〉, 〈1, 5〉, 〈2, 5〉, . . .}

If we then consider applying this denotation of (λn.d5e) to 5, which was the result we obtained by trying ⊥
on the original approximation, we get 5 back. So 5 is a fixpoint of the denotation of (λn.d5e), and therefore
5 is the denotation of fix(λn.d5e).

Here is another example:

let G = (λfλn . if n = d0e then d1e else n ∗ f(n− d1e)) in fixG
1For now, we ignore the leading λe.

4

This example is more complex. The denotation of G resides in the domain (Nat→ Nat)→ (Nat→ Nat),
and the denotation of fixG resides in Nat→ Nat. But we can use the same strategy as before; initially, we
guess an approximation of G that has no information:

{〈⊥,⊥〉, 〈f1,⊥〉, 〈f2,⊥〉, . . .}

where f1, f2, . . . are elements of the domain Nat → Nat. If we supply ⊥ to G, we get a function that is at
least defined to return 1 for n = 0. Thus, we have

{〈⊥, F0〉, 〈f1, F0〉, 〈f2, F0〉, . . .}

as an approximation of G, where

F0 = {〈⊥,⊥〉, 〈0, 1〉, 〈1,⊥〉, 〈2,⊥〉, . . .

Remember that we are trying to find a fixpoint of G, which is a function F such that the denotation of
(λn . if n = d0e then d1e else n ∗ F (n − d1e)) is the same as F . Whatever this F is, we know it must be
approximated by F0, because that’s what we got without knowing anything about the argument to G.

So, if we know at least F0, what if we supply F0 to G? Of course, we get a function that is still defined
on 0, but it’s also defined on 1, since it calls F0 on n− 1. Now, G is approximated slightly better:

{〈⊥, F0〉, 〈f1, F0〉, 〈f2, F0〉, . . . , 〈F0, F1〉, 〈f3, F1〉, 〈f4, F1〉, . . . , . . .}

assuming F0 6v f1, f2, . . . and F0 v f3, f4, . . ., and

F1 = {〈⊥,⊥〉, 〈0, 1〉, 〈1, 1〉, 〈2,⊥〉, . . .

This F1 is an improved approximation of a fixpoint of G. We can keep going, and we get a sequence of F s:

F2 = {〈⊥,⊥〉, 〈0, 1〉, 〈1, 1〉, 〈2, 2〉, 〈3,⊥〉, 〈4,⊥〉, . . .}

F3 = {〈⊥,⊥〉, 〈0, 1〉, 〈1, 1〉, 〈2, 2〉, 〈3, 6〉, 〈4,⊥〉, . . .}
F4 = {〈⊥,⊥〉, 〈0, 1〉, 〈1, 1〉, 〈2, 2〉, 〈3, 6〉, 〈4, 24〉, . . .}

Each Fn provides more information than it’s predecessors. We could keep going to get as much information
as we want. The denotation of fixG, then, is the the limit of the sequence of Fns.

5 Least Fixpoints

Now try
fixλfλn.f(n)

What is it’s denotation? We can start with an approximation for the denotation of the function

[[λfλn.f(n)]] = {〈⊥,⊥〉, 〈f1,⊥〉, 〈f2,⊥〉, . . .}

but this time, supplying ⊥ as f produces ⊥— so we’ve found a fixpoint immediately! [[fixλfλn.f(n)]] = ⊥.
To connect intuition with the theory, we see that ⊥ corresponds to an infinite loop; this makes sense, because
we never know what an infinite loop will return.

But wait, the identity function — {〈⊥,⊥〉, 〈1, 1〉, 〈2, 2〉, . . .} — is also a fixpoint of λfλn.f(n). In fact,
any function in Nat→ Nat is a fixpoint. So why should [[fixλfλn.f(n)]] be ⊥ instead of any other function?

The answer is that ⊥ is the least fixpoint. It satisfies the constraints of fixλfλn.f(n) in a minimal way,
without inventing new information. Intuitively, this is the meaning we want, because it’s the meaning we
can implement in a programming languages.

Fortunately, as shown by Tarski and Knaster, the algorithm we sketched for finding a fixpoint always
produces the least fixpoint, and a fixpoint always exists, provably. Therefore, we can define the semantics
of a fix expression by

[[fix a]] = λe.LeastFixpoint([[a]]e)

5

6 Exercises

6.1

Draw a diagram for the domain of boolean pairs:

• The elements include every possible pair of elements from the Bool domain.

• The order relation is defined as (b1, b2) v (b′1, b
′
2) when b1 v b′1 and b2 v b′2.

6.2

Show how to compute the least fixpoint of

λf.λn.if n = d0e then n else n+ f(n− d1e)

6.3

Show how to compute the least fixpoint of

λf.λn.if n = d0e then d7e else f(n)

6

