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Abstract

Biologists pioneering the new field of comparative functional genomics attempt to infer the mechanisms of gene
regulation by looking for similarities and differences of gene activity over time across multiple species. They use
three kinds of data: functional data such as gene activity measurements, pathway data that represent a series of
reactions within a cellular process, and phylogenetic relationship data that describe the relatedness of species.
No existing visualization tool can visually encode the biologically interesting relationships between multiple path-
ways, multiple genes, and multiple species. We tackle the challenge of visualizing all aspects of this comparative
Sfunctional genomics dataset with a new interactive tool called Pathline. In addition to the overall characterization
of the problem and design of Pathline, our contributions include two new visual encoding techniques. One is a
new method for linearizing metabolic pathways that provides appropriate topological information and supports
the comparison of quantitative data along the pathway. The second is the curvemap view, a depiction of time series
data for comparison of gene activity and metabolite levels across multiple species. Pathline was developed in close
collaboration with a team of genomic scientists. We validate our approach with case studies of the biologists’ use
of Pathline and report on how they use the tool to confirm existing findings and to discover new scientific insights.

Categories and Subject Descriptors (according to ACM CCS):

Generation—Line and curve generation

1.3.3 [Computer Graphics]: Picture/Image

1. Introduction

Biologists conduct comparative functional genomics stud-
ies in order to infer the evolution of gene regulation, and
to understand how this evolution is linked to changes in
gene activity. These studies focus on the functional outputs
of genomes, looking at similarities and differences in gene
activity over time and across species. Subsets of the genes
work together in pathways, which represent specific chain
reactions that occur in the cell. For example, many function-
ally related genes are involved in a cell signaling pathway
that carries stimulus from the outside of the cell to the in-
side. Researchers use these pathways to focus the scope of
their scientific inquiry and to gain a greater understanding of
biology.

We work with a team of researchers who study a collec-
tion of pathways that make up metabolism in yeast. These
pathways consist of specialized gene products that process
chemical compounds called metabolites. The researchers
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need to analyze the levels of gene activity and metabo-
lites belonging to multiple pathways over time and across
multiple species. Their visualization needs were not met
by currently available tools. Many tools focus on show-
ing the topological structure of pathways, and can show
only one experimental data point for each gene and metabo-
lite [SMO*03, AHP*05,LYKBO08]. Recently developed tools
can show an entire set of values, for example a full time
series, for each gene and metabolite [BMGKO0S, KPR02,
JKS06, MSH*05, BW09]. Our collaborators, however, need
to look at multiple sets of values simultaneously — across
time, species, genes and metabolites — in order to compare
trends between species.

In contrast, many visualization tools allow the compari-
son of multiple sets of functional experimental data points
but do not attempt to show pathways. The heatmap vi-
sual encoding is popular with biologists, showing a matrix
where a single gene activity value is encoded by color in



M. Meyer et al. / Pathline

each cell, usually with rows representing different genes and
columns representing species, time points, or treatment con-
ditions [ESBB9S, Sal04, SS02]. The ordering of rows and
columns is often determined by, and shown with, a hierar-
chical structure such as a phylogenetic tree or a hierarchical
clustering of the data. These tools, however, show only a sin-
gle value for each cell rather than an entire time series. More-
over, the lack of a pathway representation limits the ability
of researchers to extract meaningful insight about systemic
biological questions from gene activity data [SNDOS5].

To fill this gap, we present Pathline, an interactive visual-
ization tool that shows time series data for both gene activity
and metabolite levels over multiple pathways and multiple
species. We present a characterization of the data our biology
collaborators are studying, as well as a translation of their bi-
ology questions into data-centric tasks. In supporting these
tasks, we make two novel visual encoding contributions. The
first is a method for linearizing metabolic pathways for a vi-
sually concise overview that provides appropriate topolog-
ical information and supports the comparison of quantita-
tive data along pathways. The second is the curvemap detail
view, depicting time series data with small multiples of filled
line charts and overlaid curves that support comparison of
gene activity and metabolite levels across multiple species.
We validate our approach with case studies from our biol-
ogy collaborators who used Pathline to both confirm existing
knowledge and discover new scientific insights.

2. Biological Background and Data

Researchers at the Broad Institute study 14 species of yeast
that span over 300 million years of evolution. They study
genes involved with metabolism. Metabolism is a complex
network of chemical reactions essential in all living organ-
isms that allows the organism to grow and reproduce, main-
tain cellular structures, and respond to environmental condi-
tions. The metabolic network is remarkably similar across
species in terms of the reactions that it comprises. How-
ever each organism uses, and controls the use of, the reac-
tions slightly differently. For example, the same gene may be
turned on earlier in one species, versus later in another. Or,
some species may have developed a different control mecha-
nism for a particular gene, or have evolved a novel gene alto-
gether to accomplish a certain metabolic task. These changes
are hallmarks of the evolutionary process.

In metabolism, chemical compounds called metabolites
are catalyzed from one form to another by the actions of en-
zymes, which are a type of gene product. Enzymes involved
in metabolism can work in one of three directions: forward,
moving a metabolite ahead a step; reverse, moving a metabo-
lite back a step; or bidirectional, capable of catalyzing both
forward and reverse reactions. The metabolic network is sub-
divided into pathways, which are a small set of related reac-
tions that may contain cycles and branches. The products of
one pathway may be the starting material of another.

The specific comparative functional genomics study of

our biology collaborators depends on the following four
main categories of data.

Gene activity and metabolite levels are measured for ap-
proximately 6,000 genes and 140 metabolites for each of the
14 species of yeast. Each gene and metabolite is measured
at six physiologically relevant time points. While the num-
ber of species to study may grow in the future, the num-
ber of genes, metabolites, and time points is fixed due to the
nature of the biological processes being studied. Each mea-
surement of gene activity or metabolite level has three asso-
ciated attributes: the time point, the name of the species, and
the name of the gene or metabolite.

Metabolic pathway information in the form of a di-
rected graph is taken from the publicly available BioCyc
database [CFF*08]. Graph nodes are metabolites, and the
edges represent small sets of genes, the products of which
catalyze the reactions. The number of reactions in any
given pathway studied by our collaborators is small, usually
around a dozen. Researchers typically choose only a hand-
ful of pathways to look at simultaneously, filtering the full
gene and metabolite dataset down from several thousand to
several dozen.

Similarity scores, which are high-level aggregate scores of
time series similarity, are computed for each gene or metabo-
lite across a set of multiple time series. The set can either
be all species, or any subset of species that interests the re-
searcher. Currently our collaborators use the standard Pear-
son and Spearman correlation functions as direct similarity
metrics and compute an aggregate metric of average pair-
wise similarity within a set.

Phylogenetic relationships showing the ancestral relation-
ships between yeast species are also important data used in
the analysis process. These relationships are represented by
a tree where the leaf nodes are the living species and the in-
ternal nodes indicate speciation events, meaning a common
ancestor that eventually gave rise to two distinct species.

3. Tasks

The level of gene activity, analogous to enzyme levels, and
the level of the metabolites, change over time. Finding dif-
ferences between species in the patterns of the these changes
is an important part of comparative functional genomics. At
the high level, understanding these differences will allow bi-
ologists to extrapolate the functioning of extant species (i.e.,
those species that exist today) to that of their ancestors. They
can then infer the evolution of specific cellular processes and
of regulatory mechanisms in the genome.

More specifically, our collaborators would like to identify
when different yeast species regulate metabolic processes
the same way, either across all 14 species or by finding sub-
sets of species that behave similarly. They look for trends
and try to determine similarity between time series across a
set of species at specific genes or metabolites along one or
several pathways. The biologists need to carry out tasks at
three levels:
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e Detailed comparison of a limited number of time series.

e Aggregate comparison of the similarity score of genes and
metabolites across a pathway.

e Multiple similarity score comparison.

At the detailed task level, the analysis involves inspect-
ing the full time series of a small subset of carefully chosen
genes and metabolites. The specific tasks at this level are:

e Look for trends in a set of time series for a gene or
metabolite across species.

e Look for trends in a set of time series within a species for
several genes and metabolites.

e Compare time series to find:

— valleys that exist in some but not others.

— time series that are a time shift of another, such as early

peaks versus late peaks.

— the most similarly shaped time series to one of interest.

— which time series in a group are the same.

— how many classes of time series exist in a set.

For the aggregate task level, researchers look at a single
number for each gene and metabolite that represents their
similarity across all of the species, or a subset of the species.
This similarity score is an aggregation of the underlying set
of time series for each gene and metabolite.

Researchers compare multiple possible aggregations at
the third task level, looking for the differences between bio-
logically interesting subsets of species and the combination
of all of them. For example, they often look at three num-
bers for each gene and metabolite: an aggregation across all
species, across one subset, and across another subset. They
are interested in discovering when the members of the two
subsets are similar themselves, but the entire set is not. They
are also interested in discovering when only members of
one subset are similar. At this level they also want to com-
pare the results of different similarity metrics. They suspect
that purely statistical methods such as the Spearman or Pear-
son correlations currently used to compute similarity scores,
which take a shape-to-shape matching approach, may not ex-
pose meaningful biological relationships between time se-
ries. They would like to compare them with other more bio-
logically inspired metrics in the near future.

Validating and understanding the results at the aggregate
and similarity score levels requires frequent cross-checking
with a detailed visual comparison at selected points.

4. Pathline

Pathline, shown in Figure 1, is an interactive prototype tool
that supports the visual analysis of all four kinds of data
and all three kinds of task levels discussed above. The tool
was designed in a user-centered process with iterative refine-
ment. Our design decisions were motivated by the specific
needs of our genomics collaborators.

Using Pathline begins with loading a set of pathways and
their associated gene and metabolite data. This choice im-
plicitly filters the full gene and metabolite data set of 84,000
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possibilities (from 6000 genes across 14 species) down to a
much smaller set of a few hundred, as is the case with all
viewers where a set of pathways is chosen by the user. The
interface has two linked components:

Curvemap: This detail view shows a small-multiple matrix
of filled line charts of time series data. Overlay columns on
the right and the bottom show an overlay of all the curves
for each row and column, respectively. The rows show the
14 species of yeast, ordered according to the phylogenetic
tree shown to the left of the curvemap. The columns show
the genes and metabolites chosen by the user in the order
that they were selected.

Linearized pathways: This overview is a vertical strip
showing the chosen pathways as grey segments, placed end
to end. Each pathway segment contains the aggregate sim-
ilarity scores for the genes and metabolites in the pathway,
encoded with horizontal spatial position. The metabolites are
encoded as lines, and the genes are encoded as points that
are colored according to directionality. Up to three similar-
ity scores can be viewed simultaneously. The pathways have
been linearized to create an ordered list of genes and metabo-
lites. Selecting a gene or metabolite adds a column showing
all of its underlying data in the curvemap detail view.

We now describe each of these novel visual encodings in
more detail, including justifications for our design decisions.

5. Curvemap Detail View

Each column in the curvemap detail view correspond to
a single aggregate similarity score shown in the pathways
overview. More specifically, each column corresponds to a
selected gene or metabolite and shows the measured values
as time series curves for all six time points. Each row shows
the data for each of the species. The number of genes and
metabolites that can be shown is limited by the screen reso-
lution, and is typically between 4 and 15 columns.

The name curvemap alludes to its semblance to heatmap.
Both have a matrix representing species and genes using
rows and columns. A heatmap encodes a single value with
color in each matrix cell. A curvemap shows a full time
series curve in each matrix cell, encoding multiple values
with spatial position. The phylogenetic tree to the left of
the curvemap is analogous to the widely-used combination
of trees with heatmaps: it shows the hierarchical structure
of ancestral relationships that leads to the ordering of the
species rows.

There are two obvious ways to extend a matrix view from
showing one value per cell to showing multiple data points in
each cell. In the language of Keim and Kriegel [KK94], who
cast the problem as high-dimensional data visualization, the
choice is to use multiple simple matrices side by side, with
each matrix showing all the information about a single di-
mension; or use a single matrix with a more complex glyph
in each cell, showing the values for the additional dimen-
sions contiguously at each point. They call this latter ap-
proach grouping. In the cartographically-inspired language
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Figure 1: Pathline, an interactive tool for the visualization of comparative functional genomics data. The left side shows the
linearized pathways, whereas the right side shows the curvemap. Here, four different pathways are shown. This image, as well
as all other images in this paper, can be found online at http://www.pathline.org/.

of Slingsby et al. [SDW09], the question is which attribute
to condition on at the deepest level of the multivariate at-
tribute hierarchy: time point, species, or gene/metabolite.

The curvemap design is an example of grouping: time
point conditions the deepest level of the hierarchy because
the basic biological unit for comparison used by our collab-
orators is the time series of gene activity and metabolite lev-
els. Before using Pathline, the biologists tried a heatmap-
oriented version of grouping using TreeView [ESBB9S,
Sal04], which supports a nested mini-heatmap within each
cell of the larger enclosing heatmap. Many of their tasks,
however, were difficult to carry out using this representation.

The nature of the tasks carried out in the detailed anal-
ysis by the comparative functional genomics researchers
drove the design decision to use curves rather than col-
ored blocks. As discussed above, people can make more ac-
curate absolute perceptual judgements for spatial position
than color [CM84]. Moreover, people can make judgements
about curve shapes that are far more subtle than those about
color changes [LMKO7]. The very language used by our col-
laborators to describe their detailed analysis tasks in terms of
peaks and valleys reflects this sort of spatial thinking.

The curvemap uses filled line charts, also known as area
plots, for the time series curves in the main matrix. We shade
the area under the curve in dark grey against a background

of lighter grey in order to make the shape of the curve more
perceptually salient than with a line alone. (We note that the
area under the curve is not directly meaningful with respect
to the data.) We also surround the plots with a bounding box
to create the clear perception of positive and negative space.
Each time series curve is individually normalized such that
the minimum value meets the bottom of the plot and the
maximum value reaches the top. This normalization supports
the comparison of the shape of the curves and the trends in
the time series.

In addition to the main matrix, the curvemap view in-
cludes overlay multiples where all the curves for each col-
umn and row are superimposed in a single shared frame.
These plots support the detection of trends in each column
and row of curves. We normalize them on a per-column and
per-row basis to provide an absolute scale that is important to
understanding the differences across genes, metabolites, or
species. The gene and metabolite measurements are unitless
fold-change values that show whether the levels at one time
point went up or down as compared to a baseline measure-
ment. The biologists chose the second time point for their
baseline because the yeast gene activity data are most ro-
bust to experimental error at this point. All of the curves thus
cross at the second time point in these overlay multiples.
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6. Linearized Pathways Overview

The linearized pathways overview is a high information den-
sity display showing multiple quantitative similarity scores
for each gene and metabolite over multiple pathways. The
design of this view focuses on supporting comparison of
quantitative values along the pathways, a notable difference
from previous systems that focus on the task of understand-
ing pathway topology.

6.1. Linearization

Through discussions with our biology collaborators, we
came to understand that their analysis calls for a schematic
view that emphasizes a linear ordering of pathway elements,
with topological information available at a secondary, rather
than a primary, level. As discussed in Section 3, at the ag-
gregate analysis levels the researchers want to understand
when gene activity along specific pathways are similar be-
tween species. This type of inquiry requires only a coarse
understanding of the pathway topology.

Many previous systems, however, include a detailed
visual representation of a pathway’s topological struc-
ture as a node-link graph, requiring a significant amount
of screen real estate. Thus many systems, such as
GeneShelf [KLK*09], show only a single pathway at a time,
making comparison between multiple pathways and multi-
ple metrics difficult. This restriction requires the user to nav-
igate between multiple screens, each showing a single path-
way, and to rely on memory to perform comparative tasks. In
contrast, we designed the pathway overview to be a visually
concise display supporting inline comparisons, which has
been shown to be more perceptually effective than relying
on the user’s memory of what has been seen before [PW06].

As such, a fundamental design decision for the pathways
overview is the transformation of each pathway from a di-
rected graph to an ordered list of genes and metabolites. This
linearization allows for a shared axis along which quantita-
tive information is visually encoded using spatial position,
a more perceptually accurate encoding than color [Mac86,
CM84,LMKO07].

Figure 2 shows the the logic behind the linearization pro-
cess for a pathway that contains both a branch and a cycle.
As we discuss in Section 2, the nodes are metabolites and
the edges represent small sets of genes. Figure 2(a) shows a
node-link representation of the pathway. In Figure 2(b) the
cycle is unrolled and the branch is disconnected. The branch
is then reinserted just above its reconnection point in Figure
2(c). This process is carried out recursively as branches can
be nested.

Pathline requires a manually created ordered list of genes
and metabolites as depicted in 2(c) as input, and produces
the visual representation shown in 2(d). Our collaborators
created linear pathways based on graphs from the BioCyc
database using the set of rules described above. It is up to
the users how to handle situations such as multiple metabo-
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Figure 2: Linearizing a pathway. (a) The node-link repre-
sentation of the directed graph includes both a branch and
cycle. (b) Loops are unrolled and branches are disconnected.
(c) Branches are reinserted just above their reconnection
points. (d) The pathway is represented as a grey segment,
with genes encoded spatially with points and metabolites as
lines. Short breaks in the pathway segment indicate branch
points, along with stylized marks to the left of the blocks. Cy-
cle start points are also shown to the left with another mark.

lites at the starting point, or overlapping cycles, so that the
ordered list best reflects their mental models of the data.

In Figure 2(d), the entire pathway is rendered as a grey
segment, with the individual genes and metabolites shown
using different types of marks: points for genes and lines
for metabolites. The directionality of the enzyme encoded
by each gene is shown using color: blue for reverse, green
for forward, and orange for bidirectional. The short breaks
in the grey segment indicate branch points with additional
marks to the left of the grey blocks indicating the topological
structure of the branch. At a branch point, the two possible
paths are shown with stylized branch marks and letter labels,
along with vertical bars marking the extent of each branch
alternative. A circular icon is shown to the left of the gene
or metabolite at a cycle start point and a similar vertical bar
shows the extent of the cycle.

In the linearized pathway overview in Figure 1, the extent
of an entire pathway is indicated with a vertical line on the
far left labelled with the pathway name. Some pathway seg-
ments, such as major branches, also have names, which are
shown in the same way. The names of the genes and metabo-
lites at the start of segments, at branch points, and at the start
and stop points of a cycle are shown on the left. These names
create visual landmarks that reflect the way the biologists
typically refer to segments that do not have canonical names.
Pathways that are not connected by a direct reaction are vi-
sually separated with longer white breaks between them.

The example in Figure 1 has four pathways labelled ver-
tically on the left: P1, P2, P3, and P4. The P1 pathway
branches at metabolite m2 into the segment marked a, and
an alternative branch marked b that is also labelled with its
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name, B1. This branch contains another nested branch start-
ing from metabolite m7, where the alternatives are labelled
c and d. The P1 pathway runs directly into the P2 path-
way, which includes a cycle. The cycle in P2 starts at g30
and ends at m28. The P3 and P4 pathways have no direct
linkages to their preceding pathways.

6.2. Similarity Score Display

The horizontal extents of the grey pathway segments encode
the quantitative data of the aggregate similarity score for
each gene and metabolite, as shown in Figures 1 and 2(d).
Up to three metrics can be displayed at once, visually en-
coded as an ordered bar-chart for metabolites, and as differ-
ent shapes for genes. The three shapes used for the genes are
a hollow circle, a plus sign, and a smaller filled-in rectangle.
We hand-tuned the colors and shapes to have roughly equal
visual salience.

Figure 5(a) shows the encoding of three different met-
rics. The PearsonALL aggregates over the entire set of
species, whereas PearsonSubgroupl and Pearson-
Subgroup?2 are metrics computed for two biologically in-
teresting subsets of species. When more than one metric
is shown, they are linked with a low-saturation bar that
stretches between the two points. This was scientifically mo-
tivated as the researchers want to directly compare two sub-
sets of species and use a third metric as a reference. For this
reason we explicitly show the difference between two met-
rics.

We designed the visual encoding with mark type, mark
shape, and color to create visual layers, allowing for selec-
tive attention when just one attribute type is interesting, or
perceived together as a whole when the full context is re-
quired. Our collaborators need to see both the genes and
metabolites along the pathways, but may need to focus on
one or the other when looking for certain trends. A simi-
lar situation holds for all genes versus those of a particular
directionality, or when comparing different metrics for ag-
gregating similarity scores.

7. Interaction and Implementation

Pathline is built using multiple views linked through explicit
clicks and lightweight mouseover interaction, following the
general tradition of many previous information visualization
systems [MMP09, SS02].

In the linearized pathways overview, mousing over the
pathway elements shows the metadata of their name and the
numerical value for the metric. Clicking on the point repre-
senting the aggregate similarity score for an element selects
the underlying data for further investigation as a full col-
umn of time series curves in the curvemap detail view. In
the overview where the click occurred, that element is high-
lighted with a small red bar drawn to the right of the segment,
along with the name of the element. In Figure 1, 10 elements
are selected across multiple pathways.

In the curvemap detail view, mousing over the name of a

species in the phylogenetic tree highlights the curve associ-
ated with it in the overlay plots at the bottom of the main
matrix, and mousing over a subtree highlights all of its asso-
ciated curves. Similarly, mousing over a label at the top of a
curvemap column highlights the associated gene or metabo-
lite curve in the overlay plots to the right of the main matrix.
This latter interaction also highlights the selected gene or
metabolite name in the pathways overview.

The number of viewable genes and metabolites that can
be added to the curvemap view and the size of the plots is
determined by the window size. A vertical scrollbar appears
in the pathway overview if the window is too short to render
all of the pathways at once.

Pathline was implemented in the Processing lan-
guage [RFMO7]. Executables, source code, and example
data are available at http://www.pathline.org.

8. Previous Work

We divide the most related previous work into general time
series, networks and pathways, heatmaps, and genomics-
specific time series visualization.

8.1. General Time Series Visualization

Several previous information visualization systems tackle
the problem of visualizing time series data. Time-
Searcher [HSO1] offers good support for exploring a few
long series, and for finding patterns within them. In con-
trast, the problem we address is to inspect a large collec-
tion of very short series. LiveRAC [MMKNOS] is designed
for a similar dataset, but the semantic zooming and guar-
anteed visibility techniques that support large-scale system
management tasks are not appropriate for the comparative
functional genomics analysis tasks presented in Section 3.

8.2. Network and Pathway Visualization

Cytoscape [SMO*03] is a leading example of a system de-
signed to show the detailed topological structure of large
biological networks made up of many pathways intercon-
nected in complex ways. In contrast, Pathline addresses anal-
ysis tasks where only a small number of pathways are under
consideration at one time, and their topological structure is
a secondary, rather than primary, concern.

Many pathway visualization tools use color encoding to
show a single experimental data value at each node, includ-
ing Cytoscape [SMO*03], MicrobesOnline [AHP*05], and
iPath [LYKBOS]. Others show an entire set of experimental
data values at each node. Cerebral [BMGKOS8] uses linked
small multiples, with a separate node-link graph shown for
each time point whose nodes are colored by the value at that
time. Pathway Tools [KPRO2] encodes a single data value
with color at each pathway node, and uses animation to show
the entire set of values. Several tools use a glyph to encode
a set of values at each node, including VANTED [JKS06],
PathwayExplorer [MSH*05], and GENeVis IT [BW09].
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All of these tools focus on graph layout, overlaying ex-
perimental data on a node-link graph representation where
nodes are distributed in space to emphasize the connectiv-
ity relationships of nodes and edges. This representation is
less useful for the tasks of our collaborators, where the goal
is to accurately compare values of, and look for trends in,
the experimental data. Thus, in Pathline we instead treat the
experimental data as primary structure that drives spatial po-
sitioning, and relegate the topological structure to secondary
status. Moreover, these tools are also limited to showing only
a single set of data points at each pathway node, while our
collaborators want to analyze multiple sets of data points.

8.3. Heatmaps

A different set of visualization tools focus on the task
of comparing multiple sets of experimental data points;
for biological data the most common visual encoding is a
heatmap [WF09]. Heatmap visualizations are often coupled
with clustering algorithms, as in TreeView [ESBB98,Sal04],
the Hierarchical Clustering Explorer [SS02], and Genom-
ica [LS10]. As discussed in Section 5, heatmaps show
only a single value at each cell, and extending them to en-
code multiple values is nontrivial for perceptual reasons.
Also, they do not explicitly show pathway information. Past
work [SNDOS5] has shown that the ability of scientists to
extract biologically meaningful insights from gene activity
data is severely hampered by the lack of this kind of contex-
tual information.

8.4. Genomics Pathway and Time Series Visualization

GeneShelf [KLK*09], designed to be a lightweight web tool
for exploring large public gene expression databases, han-
dles data most similar to that supported by Pathline. The user
selects a single pathway, which the system shows side by
side with the time series data for the genes contained within
the pathway. The time series data are shown using a small
multiples matrix where each axis is an experimental condi-
tion, and each grid cell has a parallel coordinates view of the
gene set over the time points. Any time point in a parallel
coordinates view can be expanded to show a bar chart of the
expression level of all the genes. Extending this approach to
the time series curves that we show would disrupt the shape
perception required for many of the detailed analysis tasks of
our collaborators. As we discuss in Section 6.1, seeing only
a single pathway at once is a limitation of GeneShelf that we
explicitly address in Pathline, as is the problem of encoding
aggregate quantitative values directly along the pathway.

9. Case Studies

We collaborated with a team of seven biologists who have
been collecting and analyzing comparative functional ge-
nomics data for several years — one of the authors on this
paper is a member of the team. We conducted weekly meet-
ings over the course of three months with members of the
team to learn about their scientific questions, analysis needs,
and available visualization tools. The team was previously
using conventional heatmaps generated using Java TreeView

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

[Sal04] to analyze gene activity and metabolite levels. They
began using Pathline through a series of interactive proto-
types that were gradually refined to the current design over
the course of two months. The current version of Pathline
is now their main visualization tool for analyzing this data.
The biologists verified that Pathline can show known infor-
mation more clearly than could be seen with their previous
tools, and they directly attribute new insights into their data
to the use of Pathline. We present their experiences with the
tool as preliminary evidence towards the validity of our core
design choices.

We have anonymized the species, gene, metabolite, and
pathway names in these case studies by request from our col-
laborators, because they represent as-yet unpublished data
and findings. Their insights derived from using Pathline have
spurred them to undertake further analyses, and they antici-
pate publishable results.

9.1. Missing Data

One member of the research team noticed that the occur-
rence of missing data in many of the time series coincided
with high values in the curve, as shown in Figure 3(a). Sub-
sequent analysis of their data processing pipeline revealed
a previously unknown bias for discarding high values. They
then modified their pipeline; the reprocessed data shown in
Figure 3(b) contain fewer missing data points for the same
set of genes. Although the team was aware of the existence
of missing values from the heatmap visualizations, they had
not noticed that they occurred most often near high values.

glé g20 g21 g22 g23 glé g20 g21 g22 923

sl sl
s2 s2

s3 s3

(a) (b)

Figure 3: (a) Our collaborators noticed a correlation be-
tween high values and missing data in the curvemap de-
tail view that had not been obvious when inspecting the
heatmaps, and after investigation found a problem in the
data processing pipeline. (b) After fixing the problem many
missing data points were recovered.

9.2. Whole Genome Duplication

A whole genome duplication event occurred in yeast some
150 million years ago. An ancestral yeast species gained an
extra copy of all its genes, and thus living descendants of
that common ancestor often have multiple copies of genes
as a result of that duplication. Two such genes are g1 and
g2, which are shown in Figure 4. Scientists know that the
genetic controls responsible for the activity levels of these
genes have evolved to behave differently. A telltale sign of
this phenomenon is the shift in the peaks of the time series
curves for the g2 gene activity patterns compared to those
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for g1 in the post-duplication species s1 to s5, shown in
the first five rows of Figure 4(a). In the eighth row is one of
the pre-duplication species, s 8, where only one of the genes
exists and the data have been duplicated for consistency, re-
sulting in identical curves in both columns.

gl g2 g1 g2
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Figure 4: Whole genome duplication event. (a) The known
post-duplication shift in activity patterns in the first five rows
between the gl and g2 genes is immediately obvious in
Pathline, where the curves clearly have mirror symmetry. (b)
The mirror symmetry is much less apparent in a conventional
heatmap view showing the same data.

The evolution of g2 in the post-duplication species was
known by our collaborators, and was one of the first things
they looked for using an early version of Pathline. According
to the biologists, the expected shift is much more apparent
in the curvemap encoding than in the conventional heatmap
view, which is shown in Figure 4(b). The group remarked
that these types of inquires generally take about 30 minutes
to uncover in a heatmap, and require on the order of 5 min-
utes or less to see in Pathline — in this example, the trend
was immediately obvious to them.

The biologists attribute this efficiency gain to several as-
pects of Pathline. One central aspect is the ability to iden-
tify similarities and differences in shapes in the curvemap
views while still being able to understand the absolute mag-
nitudes of the changes in the curve overlay plots. A heatmap
typically relies on a fixed saturation value of the data corre-
sponding to the brightest colors in the image; changing the
saturation value significantly affects the viewer’s perception
of the trends in the data. Detecting the equivalent of similar
curve shapes requires a detailed analysis of the heatmap at
multiple saturation values — the identification of similari-
ties across these multiple versions can be difficult. Combin-
ing the curvemap views with the curve overlays in the same
window streamlines this process. Another central aspect of
Pathline is the pathway-centered approach for customizing

the curvemap view, which allows for the direct comparison
of two genes or metabolites that would likely be displayed
far from each other in a standard clustered heatmap, obscur-
ing their key similarities and differences.

After using Pathline to see this previously known find-
ing, the team continued their analysis and found something
new. They noticed that although the s6 species in the sixth
row is a post-duplication species, it exhibits behavior closer
to the pre-duplication species in the bottom rows than its
post-duplication relatives in the first five rows. Rather than
diverging to display early versus late activation, these two
different genes still display the same behavior, providing a
possible hint as to where in the phylogeny the regulation of
g2 changed to the dominant post-duplication behavior.

9.3. Pathway-Level Analysis

Our collaborators were also able to quickly identify some
known pathway trends in their dataset. Shown in Figure 5(a),
the metabolites in the P1 pathway and the P2 cycle show a
general decline in similarity for elements later in the path-
way with one notable outlier, the m19 metabolite. Identify-
ing this trend and its outlier previously required a significant
amount of effort; our collaborators stated that finding this
same information using Pathline is straightforward and ob-
vious using the linearized pathway view.

Our collaborators then probed deeper, and again analysis
with Pathline led them to new insights. The metabolite m18
is acted upon by several enzymes to form m19. Comparing
the m18 similarity scores for two important subgroups of
species it was clear that m18 is not only poorly conserved
across all of the species, but also within the two subgroups.
This result is in contrast to the highly conserved nature of
m19 across virtually the entire set of the species. By creat-
ing a curvemap only with m18 and m19, our collaborators
immediately recognized some previously unknown behav-
iors. These behaviors have provided our collaborators with
an interesting set of problems and hypotheses made possi-
ble by the link between the pathway view and the curvemap
view in Pathline.

9.4. Gene-Level Relationships

Another interesting set of new insights involves the g5, g6,
and g7 genes. g5 and g6 are both forward enzymes that
work together to catalyze a single reaction in the P1 path-
way, while g7 is a reverse enzyme that catalyzes the same
reaction in the opposite direction — these three genes are se-
lected in Figure 5(a). In the curvemap view, shown in Figure
5(b), it is evident that in almost every species g5 and g6 dis-
play nearly the same behavior. This fact would also be easy
to detect in a heatmap because the genes would cluster to-
gether, making the rows adjacent — the proximity of the two
genes to each other in the heatmap would be an indication
that in each species the time series are nearly identical. The
new insight, however, is that the temporal behavior of these
two genes changes over the course of evolution, i.e., across
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Figure 5: (a) The metabolites along the P1 and P2 path-
ways show a general decline except for the outlier m19. (b)
Using this curvemap view of the genes g5, g6, and g7 the
biologists confirmed known trends and discovered unknown
gene duplication in the s7 species.

the species. Some species display an early peak, some a late
peak, and others no strong peak at all. In contrast, the re-
verse gene g7 is fairly similar in shape across all species, al-
though the magnitude of changes varies, which is evident in
the curve overlay plot at the bottom of the column. Our col-
laborators state that these latter two detailed analyses would
have been difficult to perform using standard heatmaps: for
instance, the different magnitudes of g7 data would require
inspection at many saturation levels to identify similarities
across species. Additionally, they would have been unlikely
to even probe for these specific behaviors due to the effort
needed to produce targeted, customized heatmaps for small
sets of genes.

In this same analysis, they quickly identified the ex-
tremely different behaviors in the s7 species for g5 and g6
as the shape-based curvemap view made the trend immedi-
ately salient. From this observation they have since identi-
fied the cause of the behavior as a gene duplication event,
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and they now plan to investigate the potential function of the
duplicate gene.

9.5. Bidirectional Enzymes

Another new insight sparked by the use of Pathline is the
observation that the bidirectional enzymes all seem to have
similar patterns, with just a few exceptions — these enzymes
are selected in Figure 1. This trend had gone unnoticed us-
ing the team’s previous visualization tools; visually encod-
ing directionality of enzymes on the pathway view and sup-
porting the direct comparison of this subset of enzymes in a
curvemap view helped the biologists to notice this trend.

10. Conclusions and Future Work

We have presented the design of Pathline, an interactive pro-
totype tool for visualizing comparative functional genomics
data across multiple pathways, multiple genes and metabo-
lites, and multiple species. Its curvemap detail view is an
alternative to the color-based visual encoding of traditional
heatmaps that supports detailed analysis of the shapes of
time series curves across species and genes. The linearized
pathways view provides an overview of multiple aggregate
similarity scores for each gene across multiple pathways. We
took a user-centered design approach in developing Pathline,
working closely with our biology collaborators to refine the
tool’s design. These biologists used Pathline in their analysis
process to confirm known findings and to generate new in-
sights, and are using the tool to communicate these findings.

We believe that Pathline will be an effective visualization
tool for many other biological problems. We have already
identified two other research groups as potential users of
Pathline — one group studies how stem cells give rise to
the various types of blood cells in the body, while the other
group is interested in abnormalities along cellular pathways
that are involved with cancer. Furthermore, the curvemap
and linearized pathway visual encodings are applicable to
the much larger bioinformatics community that currently use
heatmap and pathway visualization tools to explore a wide
range of scientific topics. We hope the open-source release
of Pathline will encourage a broader user base.

We would like to extend Pathline by allowing it to import
metabolic and cellular pathway information directly from
databases such as KEGG [KAG*08] and linearize it auto-
matically. A very exciting direction for future work would
be to add support for showing DNA sequence information,
which could help researchers answer the deep question of
how related genes have different gene activity patterns.
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