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Lecture 3: Performance/Power, MIPS Instructions

• Today’s topic: 

 More performance/power equations, examples
 MIPS instructions

• HW1 is due on Thursday (+ 1.5 days)

• TA office hours (CADE Lab, TA queue)
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A Primer on Clocks and Cycles
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Performance Equation - I

CPU execution time = CPU clock cycles  x  Clock cycle time
Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks
3 billion times in a second – as we’ll soon see, with each
clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor,
 how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz
 processor, what is the execution time in seconds?
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Performance Equation - II

CPU clock cycles = number of instrs  x  avg clock cycles
                                                                     per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time  x  number of instrs  x  avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?
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Factors Influencing Performance

Execution time = clock cycle time x number of instrs x avg CPI

• Clock cycle time: manufacturing process (how fast is each
   transistor), how much work gets done in each pipeline stage
   (more on this later)

• Number of instrs: the quality of the compiler and the
   instruction set architecture

• CPI: the nature of each instruction and the quality of the
   architecture implementation
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Example

Execution time = clock cycle time x number of instrs x avg CPI

Which of the following two systems is better?

• A program is converted into 4 billion MIPS instructions by a
   compiler ; the MIPS processor is implemented such that
   each instruction completes in an average of 1.5 cycles and
   the clock speed is 1 GHz

• The same program is converted into 2 billion x86 instructions;
    the x86 processor is implemented such that each instruction
    completes in an average of 6 cycles and the clock speed is
    1.5 GHz
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Power and Energy

• Total power = dynamic power + leakage power

• Dynamic power α activity x capacitance x voltage2 x frequency

• Leakage power α voltage

• Energy  =  power  x  time
   (joules)     (watts)     (sec)

• For a CPU-bound program,
   Execution time α cycle time α 1 / clock speed
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Example Problem

• A 1 GHz processor takes 100 seconds to execute a CPU-bound 
   program, while consuming 70 W of dynamic power and 30 W of
   leakage power.  Does the program consume less energy in
   Turbo boost mode when the frequency is increased to 1.2 GHz?
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Example Problem

• A 1 GHz processor takes 100 seconds to execute a CPU-bound
   program, while consuming 70 W of dynamic power and 30 W of
   leakage power.  Does the program consume less energy in
   Turbo boost mode when the frequency is increased to 1.2 GHz?
  
  Normal mode energy = 100 W x 100 s = 10,000 J
  Turbo mode energy = (70 x 1.2 + 30) x 100/1.2 = 9,500 J

  Note: 
     Frequency only impacts dynamic power, not leakage power.
     We assume that the program’s CPI is unchanged when
           frequency is changed, i.e., exec time varies linearly
           with cycle time.
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Benchmark Suites

• Each vendor announces a SPEC rating for their system
 a measure of execution time for a fixed collection of
   programs
 is a function of a specific CPU, memory system, IO
   system, operating system, compiler
 enables easy comparison of different systems

The key is coming up with a collection of relevant programs 
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SPEC CPU

• SPEC: System Performance Evaluation Corporation, an industry
  consortium that creates a collection of relevant programs

• SPEC 2006 includes 12 integer and 17 floating-point applications

• The SPEC rating specifies how much faster a system is, compared 
   to a baseline machine – a system with SPEC rating 600 is 1.5
   times faster than a system with SPEC rating 400

• Note that this rating incorporates the behavior of all 29
   programs – this may not necessarily predict performance for
   your favorite program!

• Latest version: SPEC 2017
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Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

• SPEC uses geometric mean (GM) – the execution time
   of each program is multiplied and the Nth root is derived

• Another popular metric is arithmetic mean (AM) – the
   average of each program’s execution time

• Weighted arithmetic mean – the execution times of some
   programs are weighted to balance priorities
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Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
   common case fast, do not waste resources on a component
   that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
   enhancement is limited by the fraction of time the
   enhancement comes into play

• Example: a web server spends 40% of time in the CPU
   and 60% of time doing I/O – a new processor that is ten
   times faster results in a 36% reduction in execution time
   (speedup of 1.56) – Amdahl’s Law states that maximum
   execution time reduction is 40% (max speedup of 1.66)
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Common Principles

• Amdahl’s Law

• Energy: performance improvements typically also result
                  in energy improvements – less leakage

• 90-10 rule: 10% of the program accounts for 90% of
                        execution time

• Principle of locality: the same data/code will be used
   again (temporal locality), nearby data/code will be
   touched next (spatial locality)
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Recap

• Knowledge of hardware improves software quality:
   compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core
   and accelerators, slowing rate of performance improvement,
   power/thermal constraints, long memory/disk latencies

• Reasoning about performance: clock speeds, CPI, 
   benchmark suites, performance and power equations

• Next: assembly instructions
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Instruction Set

• Understanding the language of the hardware is key to understanding
   the hardware/software interface

• A program (in say, C) is compiled into an executable that is composed
   of machine instructions – this executable must also run on future
   machines – for example, each Intel processor reads in the same x86
   instructions, but each processor handles instructions differently

• Java programs are converted into portable bytecode that is converted
   into machine instructions during execution (just-in-time compilation)

• What are important design principles when defining the instruction
   set architecture (ISA)?
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A Basic MIPS Instruction

C  code:                                  a = b + c ;

Assembly code: (human-friendly machine instructions)
                             add   a, b, c      #  a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
                     00000010001100100100000000100000

Translate the following C code into assembly code:
                          a = b + c + d + e;
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