
1

Lecture 3: Performance/Power, MIPS Instructions

• Today’s topic:

 More performance/power equations, examples
 MIPS instructions

• HW1 is due on Thursday (+ 1.5 days)

• TA office hours (CADE Lab, TA queue)

2

A Primer on Clocks and Cycles

3

Performance Equation - I

CPU execution time = CPU clock cycles x Clock cycle time
Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks
3 billion times in a second – as we’ll soon see, with each
clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor,
 how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz
 processor, what is the execution time in seconds?

4

Performance Equation - II

CPU clock cycles = number of instrs x avg clock cycles
 per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?

5

Factors Influencing Performance

Execution time = clock cycle time x number of instrs x avg CPI

• Clock cycle time: manufacturing process (how fast is each
 transistor), how much work gets done in each pipeline stage
 (more on this later)

• Number of instrs: the quality of the compiler and the
 instruction set architecture

• CPI: the nature of each instruction and the quality of the
 architecture implementation

6

Example

Execution time = clock cycle time x number of instrs x avg CPI

Which of the following two systems is better?

• A program is converted into 4 billion MIPS instructions by a
 compiler ; the MIPS processor is implemented such that
 each instruction completes in an average of 1.5 cycles and
 the clock speed is 1 GHz

• The same program is converted into 2 billion x86 instructions;
 the x86 processor is implemented such that each instruction
 completes in an average of 6 cycles and the clock speed is
 1.5 GHz

7

Power and Energy

• Total power = dynamic power + leakage power

• Dynamic power α activity x capacitance x voltage2 x frequency

• Leakage power α voltage

• Energy = power x time
 (joules) (watts) (sec)

• For a CPU-bound program,
 Execution time α cycle time α 1 / clock speed

8

Example Problem

• A 1 GHz processor takes 100 seconds to execute a CPU-bound
 program, while consuming 70 W of dynamic power and 30 W of
 leakage power. Does the program consume less energy in
 Turbo boost mode when the frequency is increased to 1.2 GHz?

9

Example Problem

• A 1 GHz processor takes 100 seconds to execute a CPU-bound
 program, while consuming 70 W of dynamic power and 30 W of
 leakage power. Does the program consume less energy in
 Turbo boost mode when the frequency is increased to 1.2 GHz?

 Normal mode energy = 100 W x 100 s = 10,000 J
 Turbo mode energy = (70 x 1.2 + 30) x 100/1.2 = 9,500 J

 Note:
 Frequency only impacts dynamic power, not leakage power.
 We assume that the program’s CPI is unchanged when
 frequency is changed, i.e., exec time varies linearly
 with cycle time.

10

Benchmark Suites

• Each vendor announces a SPEC rating for their system
 a measure of execution time for a fixed collection of
 programs
 is a function of a specific CPU, memory system, IO
 system, operating system, compiler
 enables easy comparison of different systems

The key is coming up with a collection of relevant programs

11

SPEC CPU

• SPEC: System Performance Evaluation Corporation, an industry
 consortium that creates a collection of relevant programs

• SPEC 2006 includes 12 integer and 17 floating-point applications

• The SPEC rating specifies how much faster a system is, compared
 to a baseline machine – a system with SPEC rating 600 is 1.5
 times faster than a system with SPEC rating 400

• Note that this rating incorporates the behavior of all 29
 programs – this may not necessarily predict performance for
 your favorite program!

• Latest version: SPEC 2017

12

Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

• SPEC uses geometric mean (GM) – the execution time
 of each program is multiplied and the Nth root is derived

• Another popular metric is arithmetic mean (AM) – the
 average of each program’s execution time

• Weighted arithmetic mean – the execution times of some
 programs are weighted to balance priorities

13

Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
 common case fast, do not waste resources on a component
 that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
 enhancement is limited by the fraction of time the
 enhancement comes into play

• Example: a web server spends 40% of time in the CPU
 and 60% of time doing I/O – a new processor that is ten
 times faster results in a 36% reduction in execution time
 (speedup of 1.56) – Amdahl’s Law states that maximum
 execution time reduction is 40% (max speedup of 1.66)

14

Common Principles

• Amdahl’s Law

• Energy: performance improvements typically also result
 in energy improvements – less leakage

• 90-10 rule: 10% of the program accounts for 90% of
 execution time

• Principle of locality: the same data/code will be used
 again (temporal locality), nearby data/code will be
 touched next (spatial locality)

15

Recap

• Knowledge of hardware improves software quality:
 compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core
 and accelerators, slowing rate of performance improvement,
 power/thermal constraints, long memory/disk latencies

• Reasoning about performance: clock speeds, CPI,
 benchmark suites, performance and power equations

• Next: assembly instructions

16

Instruction Set

• Understanding the language of the hardware is key to understanding
 the hardware/software interface

• A program (in say, C) is compiled into an executable that is composed
 of machine instructions – this executable must also run on future
 machines – for example, each Intel processor reads in the same x86
 instructions, but each processor handles instructions differently

• Java programs are converted into portable bytecode that is converted
 into machine instructions during execution (just-in-time compilation)

• What are important design principles when defining the instruction
 set architecture (ISA)?

17

A Basic MIPS Instruction

C code: a = b + c ;

Assembly code: (human-friendly machine instructions)
 add a, b, c # a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
 00000010001100100100000000100000

Translate the following C code into assembly code:
 a = b + c + d + e;

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

