Lecture 8: Number Crunching

- Today's topics:
- MARS wrap-up
- RISC vs. CISC
- Numerical representations
- Signed/Unsigned

Example Print Routine

```
.data
    str: .asciiz "the answer is"
.text
To put "5" in $a0, we can also do:
.data
    myint: .word 5
.text
    la $t0, myint
```

 li \(\$ v 0,4 \quad \#\) load immediate; 4 is the code for print_string
 \# the print_string syscall expects the string
 \# address as the argument; la is the instruction
 \# to load the address of the operand (str)
 syscall \# MARS will now invoke syscall-4
 li \$v0, \(1 \quad \#\) syscall-1 corresponds to print_int
 li \$a0, 5 \# print_int expects the integer as its argument
 syscall \# MARS will now invoke syscall-1

Example

- Write an assembly program to prompt the user for two numbers and print the sum of the two numbers

Example

```
.text
    li $v0,4
    la $a0, str1
    syscall
    li $v0,5
    syscall
    add $t0, $v0, $zero
    li $v0,5
    syscall
    add $t1, $v0, $zero
    li $v0,4
    la $aO, str2
    syscall
    li $v0,1
    add $a0, $t1, $t0
    syscall
```

.text
li \$v0, 4
la \$a0, str1
syscall
li \$v0, 5
syscall
add \$t0, \$v0, \$zero
li \$v0, 5
syscall
add \$t1, \$v0, \$zero
li \$v0, 4
la \$aO, str2
syscall
li \$v0, 1
add \$a0, \$t1, \$t0
syscall
.data
str1: .asciiz "Enter 2 numbers:"
str2: .asciiz "The sum is"

IA-32 Instruction Set

- Intel's IA-32 instruction set has evolved over 20 years old features are preserved for software compatibility
- Numerous complex instructions - complicates hardware design (Complex Instruction Set Computer - CISC)
- Instructions have different sizes, operands can be in registers or memory, only 8 general-purpose registers, one of the operands is over-written
- RISC instructions are more amenable to high performance (clock speed and parallelism) - modern Intel processors convert IA-32 instructions into simpler micro-operations

Endian-ness

Two major formats for transferring values between registers and memory

Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register Register: 7f 87 7b 45
Most-significant bit \nearrow Least-significant bit

Big-endian register: the first byte read goes in the big end of the register
Register: $457 \mathrm{bl} 87 \mathrm{7f}$
Most-significant bit \nearrow
(MIPS, IBM)

Binary Representation

- The binary number

represents the quantity
$0 \times 2^{31}+1 \times 2^{30}+0 \times 2^{29}+\ldots+1 \times 2^{0}$
- A 32-bit word can represent 2^{32} numbers between 0 and $2^{32}-1$
... this is known as the unsigned representation as we're assuming that numbers are always positive

ASCII Vs. Binary

- Does it make more sense to represent a decimal number in ASCII?
- Hardware to implement arithmetic would be difficult
- What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?

ASCII Vs. Binary

- Does it make more sense to represent a decimal number in ASCII?
- Hardware to implement arithmetic would be difficult
- What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
In binary: 30 bits ($2^{30}>1$ billion)
In ASCII: 10 characters, 8 bits per char $=80$ bits

Negative Numbers

32 bits can only represent 2^{32} numbers - if we wish to also represent negative numbers, we can represent 2^{31} positive numbers (incl zero) and 2^{31} negative numbers

```
0000000000000000000000000000 0000 two = = ten
```



```
011111111111 1111 11111111 1111 1111 two = 231-1
10000000000000000000000000000000 two =-231
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 _ { \text { two } } ^ { = - ( 2 ^ { 3 1 } - 1 ) }
100000000000000000000000000000010 two =-(231-2)
1111 1111 1111 1111 1111 1111 1111 1110)
11111111 11111111111111111 1111 1111 two = -1
```


2's Complement

$$
\begin{aligned}
& 00000000000000000000000000000000_{\text {two }}=0_{\text {ten }} \\
& 00000000000000000000000000000001_{\text {two }}==_{\text {ten }} \\
& \ldots \\
& 01111111111111111111111111111111_{\text {two }}=2^{31}-1 \\
& 10000000000000000000000000000000_{\text {two }}=-2^{31} \\
& 10000000000000000000000000000001_{\text {two }}=-\left(2^{31}-1\right) \\
& 10000000000000000000000000000010_{\text {two }}=-\left(2^{31}-2\right) \\
& \ldots \\
& 11111111111111111111111111111110_{\text {two }}=-2 \\
& 11111111111111111111111111111111_{\text {two }}=-1
\end{aligned}
$$

Why is this representation favorable?
Consider the sum of 1 and $-2 \ldots$ we get -1
Consider the sum of 2 and $-1 \ldots$ we get +1
This format can directly undergo addition without any conversions!
Each number represents the quantity

$$
x_{31}-2^{31}+x_{30} 2^{30}+x_{29} 2^{29}+\ldots+x_{1} 2^{1}+x_{0} 2^{0}
$$

2's Complement

```
0000000000000000000000000000 00000 two }=\mp@subsup{0}{\mathrm{ ten}}{
```



```
0111111111111111111111111111 11111 two = 231-1
10000000000000000000000000000000 two }=-\mp@subsup{2}{}{31
1000000000000000000000000000 0001 two }=-(\mp@subsup{2}{}{31}-1
1000000000000000000000000000 0010 two =-(231-2)
1111111111111111 11111111 1111 1110 two = -2
1111111111111111111111111111 1111 two = -1
```

Note that the sum of a number x and its inverted representation x^{\prime} always equals a string of $1 \mathrm{~s}(-1)$.

$$
\begin{array}{ll}
x+x^{\prime}=-1 & \\
x^{\prime}+1=-x & \text {... hence, can compute the negative of a number by } \\
-x=x^{\prime}+1 & \text { inverting all bits and adding } 1
\end{array}
$$

Similarly, the sum of x and $-x$ gives us all zeroes, with a carry of 1 In reality, $x+(-x)=2^{n} \quad \ldots$ hence the name 2^{\prime} 's complement

Example

- Compute the 32-bit 2's complement representations for the following decimal numbers:
5, -5, -6

Example

- Compute the 32-bit 2's complement representations for the following decimal numbers:
5, -5, -6
$\begin{array}{ccccccccc}\text { 5: } & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0101 \\ -5: & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1011 \\ -6: & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1010\end{array}$

Given -5 , verify that inverting and adding 1 yields the number 5

Signed / Unsigned

- The hardware recognizes two formats:
unsigned (corresponding to the C declaration unsigned int)
-- all numbers are positive, a 1 in the most significant bit just means it is a really large number
signed (C declaration is signed int or just int)
-- numbers can be +/- , a 1 in the MSB means the number is negative

This distinction enables us to represent twice as many numbers when we're sure that we don't need negatives

MIPS Instructions

Consider a comparison instruction: slt \$t0, \$t1, \$zero
and \$t1 contains the 32-bit number $111101 . . .01$

What gets stored in \$t0?

MIPS Instructions

Consider a comparison instruction: slt \$t0, \$t1, \$zero
and \$t1 contains the 32-bit number $111101 . . .01$

What gets stored in \$t0?
The result depends on whether $\$ \mathrm{t} 1$ is a signed or unsigned number - the compiler/programmer must track this and accordingly use either slt or sltu

slt \$t0, \$t1, \$zero stores 1 in \$t0
sltu \$t0, \$t1, \$zero stores 0 in \$t0

Sign Extension

- Occasionally, 16-bit signed numbers must be converted into 32-bit signed numbers - for example, when doing an add with an immediate operand
- The conversion is simple: take the most significant bit and use it to fill up the additional bits on the left - known as sign extension

> So 2_{10} goes from 0000000000000010 to 00000000000000000000000000000010
> and -2_{10} goes from 1111111111111110 to
> 11111111111111111111111111111110

Alternative Representations

- The following two (intuitive) representations were discarded because they required additional conversion steps before arithmetic could be performed on the numbers
- sign-and-magnitude: the most significant bit represents $+/-$ and the remaining bits express the magnitude
- one's complement: -x is represented by inverting all the bits of x

Both representations above suffer from two zeroes

