Lecture 10: Division, Floating Point

- Today's topics:
- Division
- IEEE 754 representations

Divide Example

- Divide $7_{\text {ten }}\left(00000111_{\text {two }}\right)$ by $2_{\text {ten }}\left(0010_{\text {two }}\right)$

Iter	Step	Quot	Divisor	Remainder
0	Initial values	0000	00100000	00000111
1	Rem = Rem - Div	0000	00100000	11100111
	Rem < 0 \rightarrow +Div, shift 0 into Q	0000	00100000	00000111
	Shift Div right	0000	00010000	00000111
2	Same steps as 1	0000	00010000	11110111
		0000	00010000	00000111
		0000	00001000	00000111
3	Same steps as 1	0000	00000100	00000111
4	Rem = Rem - Div	0000	00000100	00000011
	Rem >= 0 \rightarrow shift 1 into Q	0001	00000100	00000011
	Shift Div right	0001	00000010	00000011
5	Same steps as 4	0011	00000001	00000001

Hardware for Division

A comparison requires a subtract; the sign of the result is examined; if the result is negative, the divisor must be added back

Similar to multiply, results are placed in Hi (remainder) and Lo (quotient)

Efficient Division

Divisions involving Negatives

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation:

Dividend = Quotient x Divisor + Remainder

+7 div +2	Quo $=$	Rem $=$
-7 div +2	Quo $=$	Rem $=$
+7 div -2	Quo $=$	Rem $=$
-7 div -2	Quo $=$	Rem $=$

Divisions involving Negatives

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation:

Dividend = Quotient x Divisor + Remainder

$$
\begin{array}{rlll}
+7 & \text { div }+2 & \text { Quo }=+3 & \text { Rem }=+1 \\
-7 & \text { div }+2 & \text { Quo }=-3 & \text { Rem }=-1 \\
+7 & \text { div }-2 & \text { Quo }=-3 & \text { Rem }=+1 \\
-7 & \text { div }-2 & \text { Quo }=+3 & \text { Rem }=-1
\end{array}
$$

Convention: Dividend and remainder have the same sign
Quotient is negative if signs disagree These rules fulfil the equation above

Take Homes

- Grade school algorithms are commonly used - the algorithms are even easier in binary (mult by 1 and 0)
- They can be implemented in hardware with shifts, add, sub, checks
- To improve efficiency, look for ineffectuals - are only some bits changing in every step - allows us to use narrow adders and registers - allows us to pack more operands in one register
- Can also improve speed by throwing more transistors and parallel computations at the problem

Floating Point

- Normalized scientific notation: single non-zero digit to the left of the decimal (binary) point - example: 3.5×10^{9}
- $1.010001 \times 2^{-5}{ }_{\text {two }}=\left(1+0 \times 2^{-1}+1 \times 2^{-2}+\ldots+1 \times 2^{-6}\right) \times 2^{-5}$ ten
- A standard notation enables easy exchange of data between machines and simplifies hardware algorithms - the IEEE 754 standard defines how floating point numbers are represented

Sign and Magnitude Representation

- More exponent bits $\boldsymbol{\rightarrow}$ wider range of numbers (not necessarily more numbers - recall there are infinite real numbers)
- More fraction bits $\boldsymbol{\rightarrow}$ higher precision
- Register value $=(-1)^{\mathrm{S}} \times \mathrm{F} \times 2^{\mathrm{E}}$
- Since we are only representing normalized numbers, we are guaranteed that the number is of the form 1.xxxx.. Hence, in IEEE 754 standard, the 1 is implicit Register value $=(-1)^{\mathrm{S}} \times(1+\mathrm{F}) \times 2^{\mathrm{E}}$

Exponent Representation

- To simplify sort, sign was placed as the first bit
- For a similar reason, the representation of the exponent is also modified: in order to use integer compares, it would be preferable to have the smallest exponent as $00 \ldots 0$ and the largest exponent as $11 \ldots 1$
- This is the biased notation, where a bias is subtracted from the exponent field to yield the true exponent
- IEEE 754 single-precision uses a bias of 127 (since the exponent must have values between -127 and 128)...double precision uses a bias of 1023

Final representation: $(-1)^{5} \times(1+$ Fraction $) \times 2^{(\text {Exponent }}$ - Bias $)$

Sign and Magnitude Representation

Fraction
23 bits

F

- Largest number that can be represented: $2.0 \times 2^{128}=2.0 \times 10^{38}$ (not really - see upcoming details)
- Smallest number that can be represented: $1.0 \times 2^{-127}=2.0 \times 10^{-38}$ (not really - see upcoming details)
- Overflow: when representing a number larger than the max; Underflow: when representing a number smaller than the min
- Double precision format: occupies two 32-bit registers: Largest:
Sign Exponent
1 bit 11 bits
 Smallest:

Fraction
52 bits

Details

- The number " 0 " has a special code so that the implicit 1 does not get added: the code is all Os (it may seem that this takes up the representation for 1.0, but given how the exponent is represented, that's not the case) (see discussion of denorms in the textbook)
- The largest exponent value (with zero fraction) represents +/- infinity
- The largest exponent value (with non-zero fraction) represents NaN (not a number) - for the result of 0/0 or (infinity minus infinity)
- Note that these choices impact the smallest and largest numbers that can be represented

Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers

Examples

Final representation: $(-1)^{S} \times(1+$ Fraction $) \times 2^{(\text {Exponent }- \text { Bias })}$

- Represent $-0.75_{\text {ten }}$ in single and double-precision formats

Single: $(1+8+23)$

Double: (1+11+52)

$$
\begin{array}{|ll}
\text { Remember: } \\
\text { True exponent } & \xrightarrow{\stackrel{+127}{\longleftrightarrow}} \text { Exponent in register }
\end{array}
$$

- What decimal number is represented by the following single-precision number?
110000001 01000... 0000

Examples

Final representation: $(-1)^{S} \times(1+$ Fraction $) \times 2^{(\text {Exponent }- \text { Bias })}$

- Represent $-0.75_{\text {ten }}$ in single and double-precision formats

Single: $(1+8+23)$
101111110 1000... 000

Double: (1+11+52)
101111111110 1000... 000

- What decimal number is represented by the following single-precision number?
110000001 01000... 0000 -5.0

Example 2

Final representation: $(-1)^{s} \times(1+$ Fraction $) \times 2^{\text {(Exponent }- \text { Bias })}$

- Represent $36.90625_{\text {ten }}$ in single-precision format

```
36 / 2 = 18 rem 0 0.90625 x 2 = 1.81250
18/2 = 9 rem 0 0.8125 x 2 = 1.6250
    9/2 = 4 rem 1 0.625 x 2 = 1.250
    4/2=2 rem 0 0.25 x 2=0.50
    2/2 = 1 rem 0
    0.5 x 2 = 1.00
    0.0 x 2 = 0.0
                                    \uparrow
    36 is 100100
    0.90625 is 0.1110100...0
```


Example 2

Final representation: $(-1)^{s} \times(1+$ Fraction $) \times 2^{(\text {Exponent }- \text { Bias })}$

We've calculated that $36.90625_{\text {ten }}=100100.1110100 \ldots 0$ in binary Normalized form $=1.001001110100 . . .0 \times 2^{5}$
(had to shift 5 places to get only one bit left of the point)

The sign bit is 0 (positive number)
The fraction field is 001001110100 ... 0 (the 23 bits after the point)
The exponent field is $5+127$ (have to add the bias) $=132$, which in binary is 10000100

The IEEE 754 format is 0100001000010011101000 sign exponent 23 fraction bits

