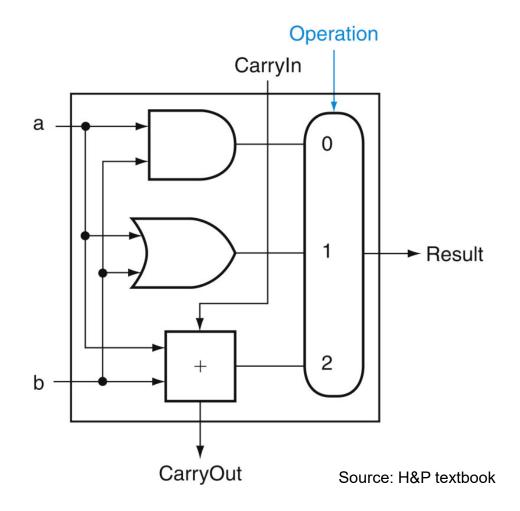
Lecture 13: ALUs, Adders

- Note: HW 6 submission has been moved to 2/29
- Today's topics:
 - ALU wrap-up
 - Carry-lookahead adder

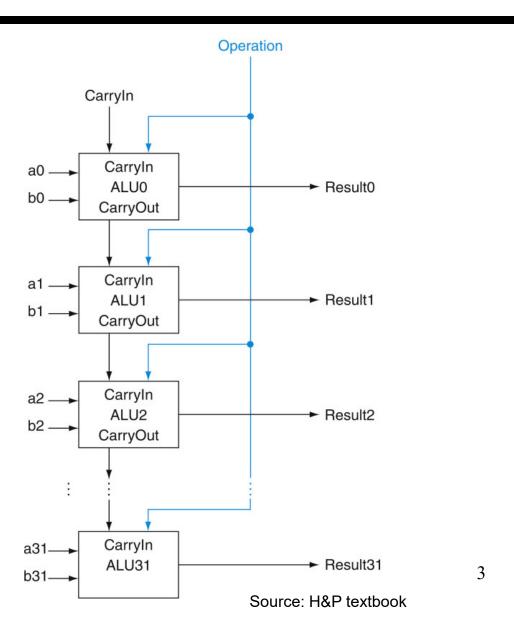
1-Bit ALU with Add, Or, And

• Multiplexor selects between Add, Or, And operations



32-bit Ripple Carry Adder

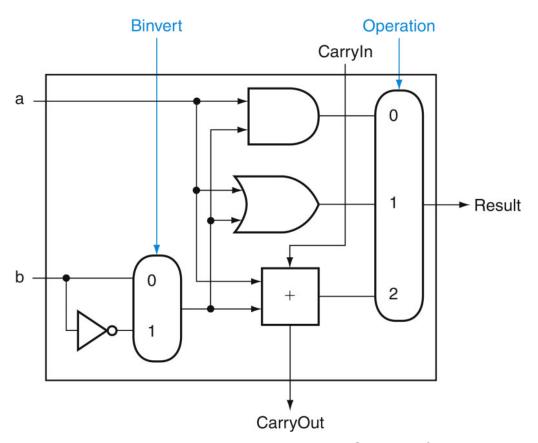
1-bit ALUs are connected "in series" with the carry-out of 1 box going into the carry-in of the next box



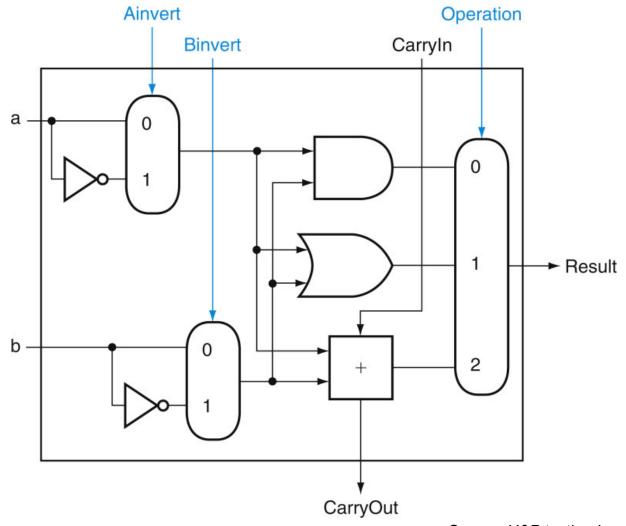
Incorporating Subtraction

Must invert bits of B and add a 1

- Include an inverter
- CarryIn for the first bit is 1
- The CarryIn signal (for the first bit) can be the same as the Binvert signal



Incorporating NOR and NAND



Control Lines

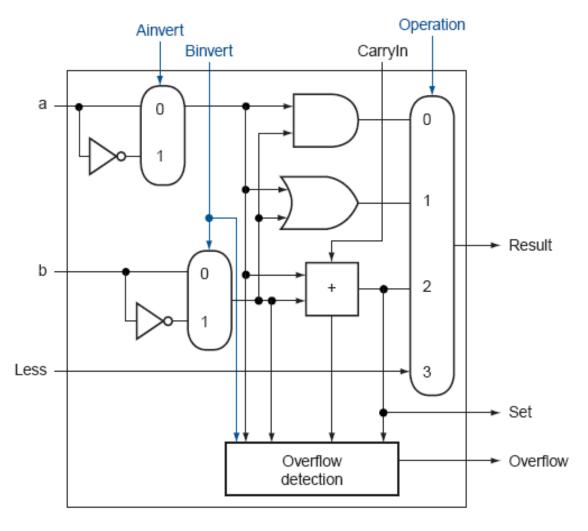
What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Op
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
NAND	1	1	01
NOR	1	1	00



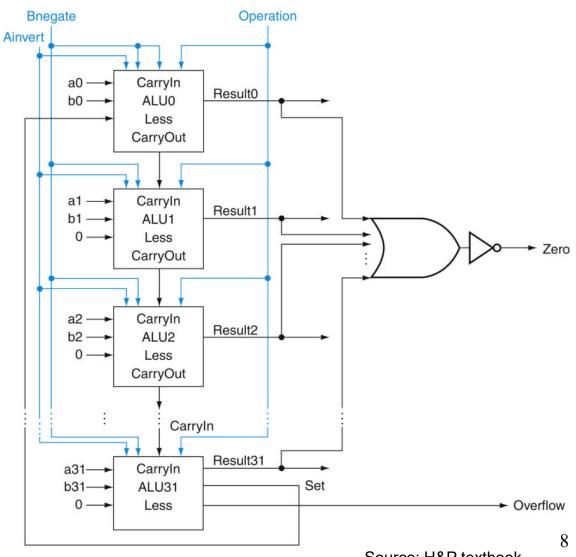
Incorporating slt

- Perform a b and check the sign
- New signal (Less) that is zero for ALU boxes 1-31
- The 31st box has a unit to detect overflow and sign – the sign bit serves as the Less signal for the 0th box



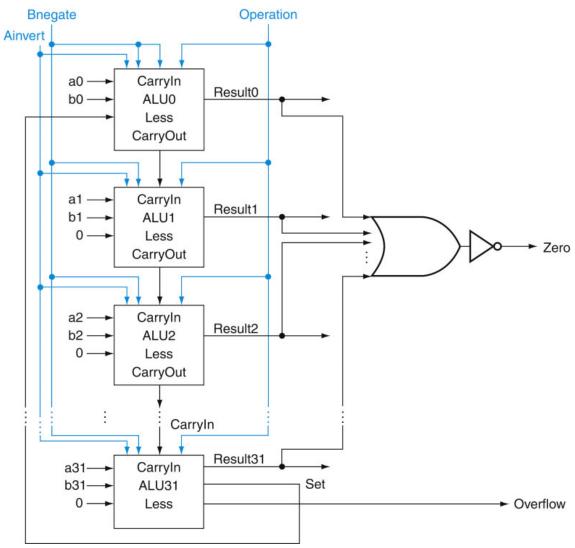
Incorporating beq

• Perform a – b and confirm that the result is all zero's



Control Lines

What are the values of the control lines and what operations do they correspond to?

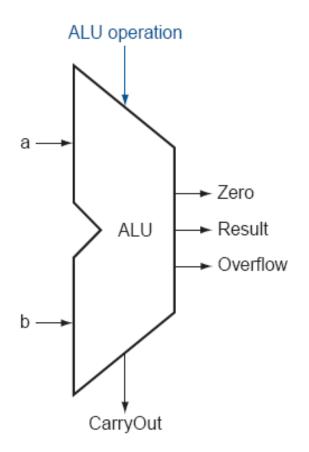


9

Control Lines

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Op
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
NOR	1	1	00
NAND	1	1	01
SLT	0	1	11
BEQ	0	1	10



Speed of Ripple Carry

- The carry propagates thru every 1-bit box: each 1-bit box sequentially implements AND and OR total delay is the time to go through 64 gates!
- We've already seen that any logic equation can be expressed as the sum of products – so it should be possible to compute the result by going through only 2 gates!
- Caveat: need many parallel gates and each gate may have a very large number of inputs – it is difficult to efficiently build such large gates, so we'll find a compromise:
 - moderate number of gates
 - moderate number of inputs to each gate
 - moderate number of sequential gates traversed

Computing CarryOut

```
CarryIn1 = b0.CarryIn0 + a0.CarryIn0 + a0.b0

CarryIn2 = b1.CarryIn1 + a1.CarryIn1 + a1.b1

= b1.b0.c0 + b1.a0.c0 + b1.a0.b0 +

a1.b0.c0 + a1.a0.c0 + a1.a0.b0 + a1.b1
```

...

CarryIn32 = a really large sum of really large products

 Potentially fast implementation as the result is computed by going thru just 2 levels of logic – unfortunately, each gate is enormous and slow

Generate and Propagate

Equation re-phrased:

Stated verbally, the current pair of bits will *generate* a carry if they are both 1 and the current pair of bits will *propagate* a carry if either is 1

Generate signal = ai.bi Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi. Ci

Generate and Propagate

```
c1 = g0 + p0.c0

c2 = g1 + p1.c1

= g1 + p1.g0 + p1.p0.c0

c3 = g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0

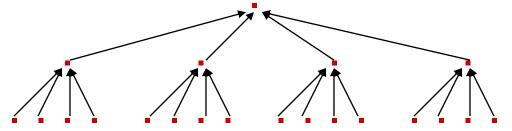
c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0
```

Either,

- a carry was just generated, or
- a carry was generated in the last step and was propagated, or
- a carry was generated two steps back and was propagated by both the next two stages, or
- a carry was generated N steps back and was propagated by every single one of the N next stages

Divide and Conquer

- The equations on the previous slide are still difficult to implement as logic functions – for the 32nd bit, we must AND every single propagate bit to determine what becomes of c0 (among other things)
- Hence, the bits are broken into groups (of 4) and each group computes its group-generate and group-propagate
- For example, to add 32 numbers, you can partition the task as a tree



P and G for 4-bit Blocks

• Compute P0 and G0 (super-propagate and super-generate) for the first group of 4 bits (and similarly for other groups of 4 bits)

$$P0 = p0.p1.p2.p3$$

 $G0 = g3 + g2.p3 + g1.p2.p3 + g0.p1.p2.p3$

• Carry out of the first group of 4 bits is

$$C1 = G0 + P0.c0$$

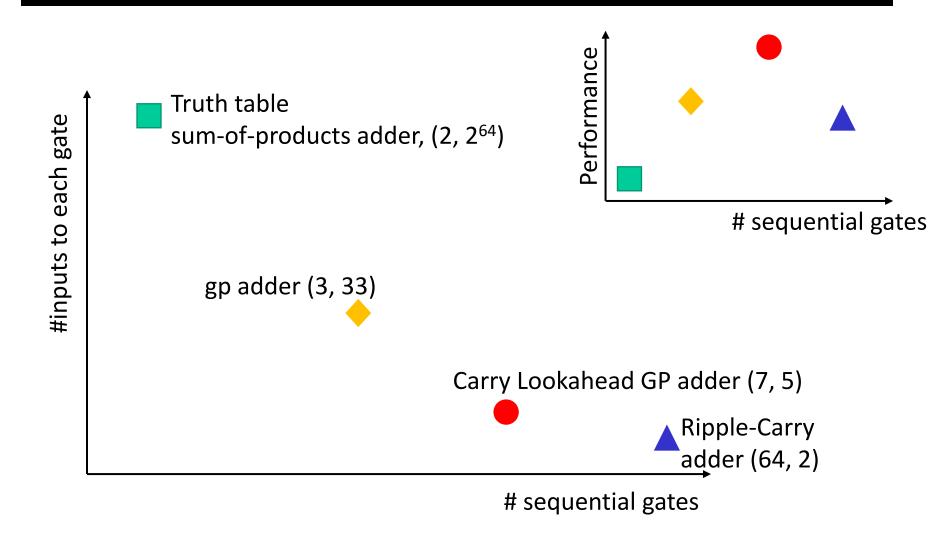
 $C2 = G1 + P1.G0 + P1.P0.c0$
 $C3 = G2 + (P2.G1) + (P2.P1.G0) + (P2.P1.P0.c0)$
 $C4 = G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0) + (P3.P2.P1.P0.c0)$

 By having a tree of sub-computations, each AND, OR gate has few inputs and logic signals have to travel through a modest set of gates (equal to the height of the tree)

Example

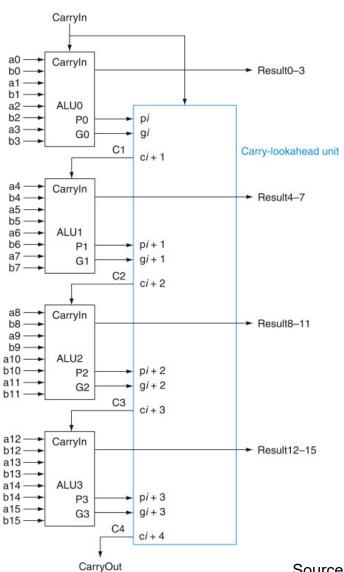
```
Add
         0001 1010 0011
                          0011
         1110
              0101
                   1110
                          1011
              0000 0010
                          0011
         0000
     g
         1111
               1111
                     1111
                           1011
     p
     C4 = 1
```

Trade-Off Curve



Carry Look-Ahead Adder

- 16-bit Ripple-carry takes 32 steps
- This design takes how many steps?5 sequential steps



19