## Lecture 13: ALUs, Adders

- Note: HW 6 submission has been moved to 2/29
- Today's topics:
- ALU wrap-up
- Carry-lookahead adder


## 1-Bit ALU with Add, Or, And

- Multiplexor selects between Add, Or, And operations



## 32-bit Ripple Carry Adder

1-bit ALUs are connected
"in series" with the carry-out of 1 box going into the carry-in of the next box


## Incorporating Subtraction

Must invert bits of $B$ and add a 1

- Include an inverter
- Carryln for the first bit is 1
- The Carryln signal (for the first bit) can be the same as the Binvert signal


Source: H\&P textbook

## Incorporating NOR and NAND



## Control Lines

> What are the values of the control lines and what operations do they correspond to?

|  | Ai | Bn | Op |
| :--- | :---: | :---: | :---: |
| AND | 0 | 0 | 00 |
| OR | 0 | 0 | 01 |
| Add | 0 | 0 | 10 |
| Sub | 0 | 1 | 10 |
| NAND | 1 | 1 | 01 |
| NOR | 1 | 1 | 00 |



## Incorporating slt

- Perform a - b and check the sign
- New signal (Less) that is zero for ALU boxes 1-31
- The $31^{\text {st }}$ box has a unit to detect overflow and sign - the sign bit serves as the Less signal for the $0^{\text {th }}$ box


Source: H\&P textbook

## Incorporating beq

- Perform a - b and confirm that the result is all zero's



## Control Lines



## Control Lines

> What are the values of the control lines and what operations do they correspond to?

|  | Ai | Bn | Op |
| :--- | :---: | :---: | :---: |
| AND | 0 | 0 | 00 |
| OR | 0 | 0 | 01 |
| Add | 0 | 0 | 10 |
| Sub | 0 | 1 | 10 |
| NOR | 1 | 1 | 00 |
| NAND | 1 | 1 | 01 |
| SLT | 0 | 1 | 11 |
| BEQ | 0 | 1 | 10 |



## Speed of Ripple Carry

- The carry propagates thru every 1-bit box: each 1-bit box sequentially implements AND and OR - total delay is the time to go through 64 gates!
- We've already seen that any logic equation can be expressed as the sum of products - so it should be possible to compute the result by going through only 2 gates!
- Caveat: need many parallel gates and each gate may have a very large number of inputs - it is difficult to efficiently build such large gates, so we'll find a compromise:
- moderate number of gates
- moderate number of inputs to each gate
- moderate number of sequential gates traversed


## Computing CarryOut

$$
\begin{aligned}
\text { Carryln} 1 & =b 0 \cdot C a r r y \ln 0+a 0 \cdot C a r r y \ln 0+a 0 \cdot b 0 \\
\text { Carryln} 2 & =b 1 \cdot C a r r y \ln 1+a 1 \cdot C a r r y \ln 1+a 1 \cdot b 1 \\
& =b 1 \cdot b 0 \cdot c 0+b 1 \cdot a 0 \cdot c 0+b 1 \cdot a 0 \cdot b 0+ \\
& a 1 \cdot b 0 \cdot c 0+a 1 \cdot a 0 \cdot c 0+a 1 \cdot a 0 \cdot b 0+a 1 \cdot b 1
\end{aligned}
$$

Carryln32 = a really large sum of really large products

- Potentially fast implementation as the result is computed by going thru just 2 levels of logic - unfortunately, each gate is enormous and slow


## Generate and Propagate

Equation re-phrased:

$$
\begin{aligned}
\mathrm{Ci}+1 & =\text { ai. } \mathrm{bi}+\mathrm{ai} \cdot \mathrm{Ci}+\mathrm{bi} \cdot \mathrm{Ci} \\
& =(\mathrm{ai} \cdot \mathrm{bi})+(\mathrm{ai}+\mathrm{bi}) \cdot \mathrm{Ci}
\end{aligned}
$$

Stated verbally, the current pair of bits will generate a carry if they are both 1 and the current pair of bits will propagate a carry if either is 1

Generate signal = ai.bi
Propagate signal = ai + bi

Therefore, $\mathrm{Ci}+1=\mathrm{Gi}+\mathrm{Pi} . \mathrm{Ci}$

## Generate and Propagate

$$
\begin{aligned}
& \mathrm{c} 1=\mathrm{g} 0+\mathrm{p} 0 . \mathrm{c} 0 \\
& \mathrm{c} 2=\mathrm{g} 1+\mathrm{p} 1 . \mathrm{c} 1 \\
& =g 1+p 1 . g 0+p 1 . p 0 . c 0 \\
& \mathrm{c} 3=\mathrm{g} 2+\mathrm{p} 2 . \mathrm{g} 1+\mathrm{p} 2 . \mathrm{p} 1 . \mathrm{g} 0+\mathrm{p} 2 . \mathrm{p} 1 . \mathrm{p} 0 . \mathrm{c} 0 \\
& \mathrm{c} 4=\mathrm{g} 3+\mathrm{p} 3 . \mathrm{g} 2+\mathrm{p} 3 . \mathrm{p} 2 . \mathrm{g} 1+\mathrm{p} 3 . \mathrm{p} 2 . \mathrm{p} 1 . \mathrm{g} 0+\mathrm{p} 3 . \mathrm{p} 2 . \mathrm{p} 1 . \mathrm{p} 0 . \mathrm{c} 0 \\
& \text { Either, } \\
& \text { a carry was just generated, or } \\
& \text { a carry was generated in the last step and was propagated, or } \\
& \text { a carry was generated two steps back and was propagated by both } \\
& \text { the next two stages, or } \\
& \text { a carry was generated } \mathrm{N} \text { steps back and was propagated by every } \\
& \text { single one of the } \mathrm{N} \text { next stages }
\end{aligned}
$$

## Divide and Conquer

- The equations on the previous slide are still difficult to implement as logic functions - for the $32^{\text {nd }}$ bit, we must AND every single propagate bit to determine what becomes of c0 (among other things)
- Hence, the bits are broken into groups (of 4) and each group computes its group-generate and group-propagate
- For example, to add 32 numbers, you can partition the task as a tree



## P and G for 4-bit Blocks

- Compute PO and GO (super-propagate and super-generate) for the first group of 4 bits (and similarly for other groups of 4 bits)

$$
\begin{aligned}
& \text { P0 }=\text { p0.p1.p2.p3 } \\
& \mathrm{G0}=\mathrm{g} 3+\mathrm{g} 2 . \mathrm{p} 3+\mathrm{g} 1 . \mathrm{p} 2 . \mathrm{p} 3+\mathrm{g} 0 . \mathrm{p} 1 . \mathrm{p} 2 . \mathrm{p} 3
\end{aligned}
$$

- Carry out of the first group of 4 bits is

$$
\begin{aligned}
& \mathrm{C} 1=\mathrm{G} 0+\mathrm{P} 0 . \mathrm{CO} \\
& \mathrm{C} 2=\mathrm{G} 1+\mathrm{P} 1 . \mathrm{GO}+\mathrm{P} 1 . \mathrm{PO} . \mathrm{CO} \\
& \mathrm{C} 3=\mathrm{G} 2+(\mathrm{P} 2 . \mathrm{G} 1)+(\mathrm{P} 2 . \mathrm{P} 1 . \mathrm{GO})+(\mathrm{P} 2 . \mathrm{P} 1 . \mathrm{PO} . \mathrm{CO}) \\
& \mathrm{C} 4=\mathrm{G} 3+(\mathrm{P} 3 . \mathrm{G} 2)+(\mathrm{P} 3 . \mathrm{P} 2 . \mathrm{G} 1)+(\mathrm{P} 3 . \mathrm{P} 2 . \mathrm{P} 1 . \mathrm{GO})+(\mathrm{P} 3 . \mathrm{P} 2 . \mathrm{P} 1 . \mathrm{P} 0 . \mathrm{CO})
\end{aligned}
$$

- By having a tree of sub-computations, each AND, OR gate has few inputs and logic signals have to travel through a modest set of gates (equal to the height of the tree)


## Example

Add A 0001101000110011

| B | 1110 | 0101 | 1110 | 1011 |
| :---: | :---: | :---: | :---: | :---: |
| g | 0000 | 0000 | 0010 | 0011 |
| p | 1111 | 1111 | 1111 | 1011 |


| P | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| G | 0 | 0 | 1 | 0 |

$C 4=1$

## Trade-Off Curve

\#inputs to each gate

## Truth table sum-of-products adder, $\left(2,2^{64}\right)$


gp adder $(3,33)$

Carry Lookahead GP adder (7, 5)
Ripple-Carry adder $(64,2)$
\# sequential gates

## Carry Look-Ahead Adder

- 16-bit Ripple-carry takes 32 steps
- This design takes how many steps? 5 sequential steps


