
1

Lecture 15: Basic CPU Design

• Today’s topics:

 FSM examples
 Single-cycle CPU
 Multi-cycle CPU

2

State Diagram

State Transition Table:
 CurrState InputEW InputNS NextState=Output
 N 0 0 N
 N 0 1 N
 N 1 0 E
 N 1 1 E
 E 0 0 E
 E 0 1 N
 E 1 0 E
 E 1 1 N

Source: H&P textbook

3

Tackling FSM Problems

• Three questions worth asking:
 What are the possible output states? Draw a
 bubble for each.
 What are inputs? What values can those inputs take?
 For each state, what do I do for each possible
 input value? Draw an arc out of every bubble for
 every input value.

4

Example – Residential Thermostat

• Two temp sensors: internal and external
• If internal temp is within 1 degree of desired, don’t
 change setting
• If internal temp is > 1 degree higher than desired, turn
 AC on; if internal temp is < 1 degree lower than
 desired, turn heater on
• If external temp and desired temp are within 5
 degrees, disregard the internal temp, and turn both AC
 and heater off

Finite State Machine Table

5

6

Finite State Diagram

U-H

HEAT COOL

OFF

U-C

D-C,
D-G,
D-H

D-C,
D-G,
D-H

D-C, D-G, D-H, U-G

U-C,
U-G

U-H,
U-G

U-C U-H

Ext temp settings:
D – desired zone
U – undesired zone

Int temp settings:
C – cold
G – goldilocks
H – hot

7

Latch vs. Flip-Flop

• Recall that we want a circuit to have stable inputs for
 an entire cycle – so I want my new inputs to arrive at
 the start of a cycle and be fixed for an entire cycle

• A flip-flop provides the above semantics (a door that
 swings open and shut at the start of a cycle)

• But a flip-flop needs two back-to-back D-latches, i.e.,
 more transistors, delay, power

• You can reduce these overheads with just a single
 D-latch (a door that is open for half a cycle) as long as
 you can tolerate stable inputs for just half a cycle

8

Basic MIPS Architecture

• Now that we understand clocks and storage of states,
 we’ll design a simple CPU that executes:

 basic math (add, sub, and, or, slt)
 memory access (lw and sw)
 branch and jump instructions (beq and j)

9

Implementation Overview

• We need memory
 to store instructions
 to store data
 for now, let’s make them separate units

• We need registers, ALU, and a whole lot of control logic

• CPU operations common to all instructions:
 use the program counter (PC) to pull instruction out
 of instruction memory
 read register values

10

View from 30,000 Feet

• What is the role of the Add units?
• Explain the inputs to the data memory unit
• Explain the inputs to the ALU
• Explain the inputs to the register unit

Note: we haven’t bothered
 showing multiplexors

Source: H&P textbook

11

View from 30,000 Feet

• What is the role of the Add units?
• Explain the inputs to the data memory unit
• Explain the inputs to the ALU
• Explain the inputs to the register unit

Note: we haven’t bothered
 showing multiplexors

Source: H&P textbook

12

Clocking Methodology

• Which of the above units need a clock?
• What is being saved (latched) on the rising edge of the clock?
 Keep in mind that the latched value remains there for an entire cycle

Source: H&P textbook

13

Implementing R-type Instructions

• Instructions of the form add $t1, $t2, $t3
• Explain the role of each signal

Source: H&P textbook

14

Implementing Loads/Stores

• Instructions of the form lw $t1, 8($t2) and sw $t1, 8($t2)

Where does this input come from?

Source: H&P textbook

15

Implementing Loads/Stores

• Instructions of the form lw $t1, 8($t2) and sw $t1, 8($t2)

Where does this input come from?

Source: H&P textbook

16

Implementing J-type Instructions

• Instructions of the form beq $t1, $t2, offset

Source: H&P textbook

17

View from 10,000 Feet

Source: H&P textbook

18

View from 5,000 Feet

Source: H&P textbook

19

Latches and Clocks in a Single-Cycle Design

PC Instr
Mem

Reg
File ALU Data

MemoryAddr

• The entire instruction executes in a single cycle
• Green blocks are latches
• At the rising edge, a new PC is recorded
• At the rising edge, the result of the previous cycle is recorded
• At the falling edge, the address of LW/SW is recorded so
 we can access the data memory in the 2nd half of the cycle

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

