
1

Lecture 17: Review Session

2

Midterm Rules

Students are allowed to bring 3 A4/letter-sized sheets of paper with anything
written/printed on both sides. In addition, you may bring the ``green sheet''. You
may also bring a phone/calculator that can be used for any numeric calculations (but
it's also ok to write a mathematical term, say 1.4/2.2 GHz without doing the
calculation). You may of course not use your phone to surf the web or consult with
others during the test. You may also not use the MARS simulator or other
calculators/tools for numeric conversions. If necessary, make reasonable
assumptions and clearly state them. The only clarifications you may ask for during the
exam are definitions of terms. You will receive partial credit if you show your steps
and explain your line of thinking, so attempt every question even if you can't fully
solve it. Complete your answers in the space provided (including the back-side of
each page). Confirm that you have 14 questions on 8 pages, followed by a blank page.
Turn in your answer sheets before 10:35am. The test is worth 100 points and you
have about 90 minutes, so allocate time accordingly.

Just one

12:10pm

3

Modern Trends

• Historical contributions to performance:
 Better processes (faster devices) ~20%
 Better circuits/pipelines ~15%
 Better organization/architecture ~15%

Today, annual improvement is closer to 20%; this is primarily
because of slowly increasing transistor count and more cores.

Need multi-thread parallelism and accelerators to boost
performance every year.

4

Performance Measures

• Performance = 1 / execution time
• Speedup = ratio of performance
• Performance improvement = speedup -1
• Execution time = clock cycle time x CPI x number of instrs

Program takes 100 seconds on ProcA and 150 seconds on ProcB

Speedup of A over B = 150/100 = 1.5
Performance improvement of A over B = 1.5 – 1 = 0.5 = 50%

Speedup of B over A = 100/150 = 0.66 (speedup less than 1 means
 performance went down)
Performance improvement of B over A = 0.66 – 1 = -0.33 = -33%
 or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined
into a single number using AM, weighted AM, or GM

5

Performance Equations

CPU execution time = CPU clock cycles x Clock cycle time

CPU clock cycles = number of instrs x avg clock cycles
 per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
 how many instructions are there in a program that runs for
 10 seconds?

6

Power Consumption

• Dyn power α activity x capacitance x voltage2 x frequency

• Capacitance per transistor and voltage are decreasing,
 but number of transistors and frequency are increasing at
 a faster rate

• Leakage power is also rising and will soon match dynamic
 power

• Power consumption is already around 100W in
 some high-performance processors today

7

Example Problem

• A 1 GHz processor takes 100 seconds to execute a CPU-bound
 program, while consuming 70 W of dynamic power and 30 W of
 leakage power. Does the program consume less energy in
 Turbo boost mode when the frequency is increased to 1.2 GHz?

 Normal mode energy = 100 W x 100 s = 10,000 J
 Turbo mode energy = (70 x 1.2 + 30) x 100/1.2 = 9,500 J

 Note:
 Frequency only impacts dynamic power, not leakage power.
 We assume that the program’s CPI is unchanged when
 frequency is changed, i.e., exec time varies linearly
 with cycle time.

8

Basic MIPS Instructions

• lw $t1, 16($t2)
• add $t3, $t1, $t2
• addi $t3, $t3, 16
• sw $t3, 16($t2)
• beq $t1, $t2, 16
• blt is implemented as slt and bne
• j 64
• jr $t1
• sll $t1, $t1, 2

Convert to assembly:
 while (save[i] == k)
 i += 1;

 i and k are in $s3 and $s5 and
 base of array save[] is in $s6

Loop: sll $t1, $s3, 2
 add $t1, $t1, $s6
 lw $t0, 0($t1)
 bne $t0, $s5, Exit
 addi $s3, $s3, 1
 j Loop
Exit:

9

Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 : $zero always stores the constant 0
 Regs 2-3 : $v0, $v1 return values of a procedure
 Regs 4-7 : $a0-$a3 input arguments to a procedure
 Regs 8-15 : $t0-$t7 temporaries
 Regs 16-23: $s0-$s7 variables
 Regs 24-25: $t8-$t9 more temporaries
 Reg 28 : $gp global pointer
 Reg 29 : $sp stack pointer
 Reg 30 : $fp frame pointer
 Reg 31 : $ra return address

10

Memory Organization

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

Proc A’s values

Proc B’s values

Proc C’s values
…

High address

Low address
Stack grows

this way

$fp

$sp
$gp

11

Procedure Calls/Returns

procA (int i)
{
 int j;
 j = …;
 i = call procB(j);
 … = i;
}

procB (int j)
{
 int k;
 … = j;
 k = …;
 return k;
}

procA:
 $s0 = … # value of j
 $t0 = … # some tempval
 $a0 = $s0 # the argument
 …
 jal procB
 …
 … = $v0

procB:
 $t0 = … # some tempval
 … = $a0 # using the argument
 $s0 = … # value of k
 $v0 = $s0;
 jr $ra

12

Saves and Restores

• Caller saves:
 $ra, $a0, $t0, $fp (if reqd)

• Callee saves:
 $s0

procA:
 $s0 = … # value of j
 $t0 = … # some tempval
 $a0 = $s0 # the argument
 …
 jal procB
 …
 … = $v0

procB:
 $t0 = … # some tempval
 … = $a0 # using the argument
 $s0 = … # value of k
 $v0 = $s0;
 jr $ra

• As every element is saved on stack,
 the stack pointer is decremented

13

Example 2

int fact (int n)
{
 if (n < 1) return (1);
 else return (n * fact(n-1));
}

fact:
 addi $sp, $sp, -8
 sw $ra, 4($sp)
 sw $a0, 0($sp)
 slti $t0, $a0, 1
 beq $t0, $zero, L1
 addi $v0, $zero, 1
 addi $sp, $sp, 8
 jr $ra
L1:
 addi $a0, $a0, -1
 jal fact
 lw $a0, 0($sp)
 lw $ra, 4($sp)
 addi $sp, $sp, 8
 mul $v0, $a0, $v0
 jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temps are never saved.

14

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
 0x 23 or 23hex = 2 x 161 + 3 x 160

 0-15 (decimal) 0-9, a-f (hex)

Dec Binary Hex
 0 0000 00
 1 0001 01
 2 0010 02
 3 0011 03

Dec Binary Hex
 4 0100 04
 5 0101 05
 6 0110 06
 7 0111 07

Dec Binary Hex
 8 1000 08
 9 1001 09
 10 1010 0a
 11 1011 0b

Dec Binary Hex
 12 1100 0c
 13 1101 0d
 14 1110 0e
 15 1111 0f

15

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
 0000 0000 0000 0000 0000 0000 0000 0001two = 1ten
 …
 0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

 1000 0000 0000 0000 0000 0000 0000 0000two = -231

 1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
 1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)
 …
 1111 1111 1111 1111 1111 1111 1111 1110two = -2
 1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals a string of 1s (-1).
 x + x’ = -1
 x’ + 1 = -x … hence, can compute the negative of a number by
 -x = x’ + 1 inverting all bits and adding 1
This format can directly undergo addition without any conversions!
Each number represents the quantity
 x31 -231 + x30 230 + x29 229 + … + x1 21 + x0 20

16

Multiplication Example

Multiplicand 1000ten
Multiplier x 1001ten

 1000
 0000
 0000
 1000

Product 1001000ten

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product

17

Division

 1001ten Quotient
Divisor 1000ten | 1001010ten Dividend

-1000
 10
 101
 1010

-1000
 10ten Remainder

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
 as the next bit of the quotient

18

Division

 1001ten Quotient
Divisor 1000ten | 1001010ten Dividend

 0001001010 0001001010 0000001010 0000001010
100000000000 0001000000 00001000000000001000
Quo: 0 000001 0000010 000001001

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
 as the next bit of the quotient

19

Binary FP Numbers

• 20.45 decimal = ? Binary

• 20 decimal = 10100 binary

• 0.45 x 2 = 0.9 (not greater than 1, first bit after binary point is 0)
 0.90 x 2 = 1.8 (greater than 1, second bit is 1, subtract 1 from 1.8)
 0.80 x 2 = 1.6 (greater than 1, third bit is 1, subtract 1 from 1.6)
 0.60 x 2 = 1.2 (greater than 1, fourth bit is 1, subtract 1 from 1.2)
 0.20 x 2 = 0.4 (less than 1, fifth bit is 0)
 0.40 x 2 = 0.8 (less than 1, sixth bit is 0)
 0.80 x 2 = 1.6 (greater than 1, seventh bit is 1, subtract 1 from 1.6)
… and the pattern repeats

 10100.011100110011001100…
Normalized form = 1.0100011100110011… x 24

20

Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent -0.75ten in single and double-precision formats

 Single: (1 + 8 + 23)

 Double: (1 + 11 + 52)

• What decimal number is represented by the following
 single-precision number?
 1 1000 0001 01000…0000

Remember:

True exponent Exponent in register
+127

-127

21

Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent -0.75ten in single and double-precision formats

 Single: (1 + 8 + 23)
 1 0111 1110 1000…000

 Double: (1 + 11 + 52)
 1 0111 1111 110 1000…000

• What decimal number is represented by the following
 single-precision number?
 1 1000 0001 01000…0000
 -5.0

22

Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent 36.90625ten in single-precision format

36 / 2 = 18 rem 0
18 / 2 = 9 rem 0
 9 / 2 = 4 rem 1
 4 / 2 = 2 rem 0
 2 / 2 = 1 rem 0
 1 / 2 = 0 rem 1

36 is 100100

0.90625 x 2 = 1.81250
 0.8125 x 2 = 1.6250
 0.625 x 2 = 1.250
 0.25 x 2 = 0.50
 0.5 x 2 = 1.00
 0.0 x 2 = 0.0

0.90625 is 0.1110100…0

23

Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

We’ve calculated that 36.90625ten = 100100.1110100…0 in binary
Normalized form = 1.001001110100…0 x 25
 (had to shift 5 places to get only one bit left of the point)

The sign bit is 0 (positive number)
The fraction field is 001001110100…0 (the 23 bits after the point)
The exponent field is 5 + 127 (have to add the bias) = 132,
 which in binary is 10000100

The IEEE 754 format is 0 10000100 001001110100…..0
 sign exponent 23 fraction bits

24

0 00..0 00…0Value 0

Value 1 0 127 00…0

Value inf
Value NAN
Highest value ~2 x 2127

0 255 00…0
0 255 xx….x
0 254 11….1

Smallest Norm ~2 x 2-126

Largest Denorm ~1 x 2-126

Smallest Denorm ~2-149

0 0..01 00…0
0 0..00 11…1
0 0..00 00…1

Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers

Exponent field < 127, i.e., after
subtracting bias, they are negative
exponents, representing numbers < 1

2 special cases up top that use the
reserved exponent field of 255

Special case with exponent field 0, used to
represent denorms, that help us gradually approach 0

25

FP Addition – Binary Example

• Consider the following binary example

 1.010 x 21 + 1.100 x 23

 Convert to the larger exponent:
 0.0101 x 23 + 1.1000 x 23

 Add
 1.1101 x 23

 Normalize
 1.1101 x 23

 Check for overflow/underflow
 Round
 Re-normalize
 IEEE 754 format: 0 10000010 11010000000000000000000

26

Boolean Algebra

A B C E
 0 0 0 0
 0 0 1 0
 0 1 0 0
 0 1 1 1
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

(A . B . C) + (A . C . B) + (C . B . A)

• Can also use “product of sums”
• Any equation can be implemented
 with an array of ANDs, followed by
 an array of ORs

• A + B = A . B

• A . B = A + B
Any truth table can be expressed
 as a sum of products

27

Adder Implementations

• Ripple-Carry adder – each 1-bit adder feeds its carry-out to next stage –
 simple design, but we must wait for the carry to propagate thru all bits

• Carry-Lookahead adder – each bit can be represented by an equation
 that only involves input bits (ai, bi) and initial carry-in (c0) -- this is a
 complex equation, so it’s broken into sub-parts

 For bits ai, bi,, and ci, a carry is generated if ai.bi = 1 and a carry is
 propagated if ai + bi = 1
 Ci+1 = gi + pi . Ci

 Similarly, compute these values for a block of 4 bits, then for a block
 of 16 bits, then for a block of 64 bits….Finally, the carry-out for the
 64th bit is represented by an equation such as this:
 C4 = G3+ G2.P3 + G1.P2.P3 + G0.P1.P2.P3 + C0.P0.P1.P2.P3

 Each of the sub-terms is also a similar expression

28

Trade-Off Curve
#i

np
ut

s t
o

ea
ch

 g
at

e

sequential gates

Truth table
sum-of-products adder, (2, 264)

gp adder (3, 33)

Carry Lookahead GP adder (7, 5)

Ripple-Carry
adder (64, 2)

sequential gates

Pe
rf

or
m

an
ce

29

32-bit ALU

Source: H&P textbook

30

Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

 Ai Bn Op
AND 0 0 00
OR 0 0 01
Add 0 0 10
Sub 0 1 10
NOR 1 1 00
NAND 1 1 01
 SLT 0 1 11

 BEQ 0 1 10 (xx)

Source: H&P textbook

31

Tackling FSM Problems

• Three questions worth asking:
 What are the possible output states? Draw a
 bubble for each.
 What are inputs? What values can those inputs take?
 For each state, what do I do for each possible
 input value? Draw an arc out of every bubble for
 every input value.

32

Example – Residential Thermostat

• Two temp sensors: internal and external
• If internal temp is within 1 degree of desired, don’t
 change setting
• If internal temp is > 1 degree higher than desired, turn
 AC on; if internal temp is < 1 degree lower than
 desired, turn heater on
• If external temp and desired temp are within 5
 degrees, disregard the internal temp, and turn both AC
 and heater off

Finite State Machine Table

33

34

Finite State Diagram

U-H

HEAT COOL

OFF

U-C

D-C,
D-G,
D-H

D-C,
D-G,
D-H

D-C, D-G, D-H, U-G

U-C,
U-G

U-H,
U-G

U-C U-H

Ext temp settings:
D – desired zone
U – undesired zone

Int temp settings:
C – cold
G – goldilocks
H – hot

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

