Lecture 17: Review Session

UofU ACM club kickoff!

Midterm Rules

Just one

Students are allowed to bring 3 A4/letter-sized sheets of paper with anything written/printed on both sides. In addition, you may bring the "green sheet". You may also bring a phone/calculator that can be used for any numeric calculations (but it's also ok to write a mathematical term, say $1.4 / 2.2 \mathrm{GHz}$ without doing the calculation). You may of course not use your phone to surf the web or consult with others during the test. You may also not use the MARS simulator or other calculators/tools for numeric conversions. If necessary, make reasonable assumptions and clearly state them. The only clarifications you may ask for during the exam are definitions of terms. You will receive partial credit if you show your steps and explain your line of thinking, so attempt every question even if you can't fully solve it. Complete your answers in the space provided (including the back-side of each page). Confirm that you have 14 questions on 8 pages, followed by a blank page. Turn in your answer sheets before 10:35am. The test is worth 100 points and you have about 90 minutes, so allocate timerdingly.

12:10pm

Modern Trends

- Historical contributions to performance:
- Better processes (faster devices) ~20\%
- Better circuits/pipelines ~15\%
- Better organization/architecture ~15\%

Today, annual improvement is closer to 20\%; this is primarily because of slowly increasing transistor count and more cores.

Need multi-thread parallelism and accelerators to boost performance every year.

Performance Measures

- Performance = 1 / execution time
- Speedup = ratio of performance
- Performance improvement = speedup -1
- Execution time $=$ clock cycle time $\times \mathrm{CPI} \times$ number of instrs

Program takes 100 seconds on ProcA and 150 seconds on ProcB

Speedup of A over $B=150 / 100=1.5$
Performance improvement of A over $B=1.5-1=0.5=50 \%$

Speedup of B over $A=100 / 150=0.66$ (speedup less than 1 means performance went down)
Performance improvement of B over $A=0.66-1=-0.33=-33 \%$ or Performance degradation of B, relative to $A=33 \%$

If multiple programs are executed, the execution times are combined into a single number using AM, weighted AM, or GM

Performance Equations

CPU execution time $=$ CPU clock cycles \times Clock cycle time

CPU clock cycles $=$ number of instrs x avg clock cycles per instruction (CPI)

Substituting in previous equation,

Execution time $=$ clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle, how many instructions are there in a program that runs for 10 seconds?

Power Consumption

- Dyn power α activity x capacitance x voltage ${ }^{2} \mathrm{x}$ frequency
- Capacitance per transistor and voltage are decreasing, but number of transistors and frequency are increasing at a faster rate
- Leakage power is also rising and will soon match dynamic power
- Power consumption is already around 100W in some high-performance processors today

Example Problem

- A 1 GHz processor takes 100 seconds to execute a CPU-bound program, while consuming 70 W of dynamic power and 30 W of leakage power. Does the program consume less energy in Turbo boost mode when the frequency is increased to 1.2 GHz ?

Normal mode energy $=100 \mathrm{~W} \times 100 \mathrm{~s}=10,000 \mathrm{~J}$
Turbo mode energy $=(70 \times 1.2+30) \times 100 / 1.2=9,500 \mathrm{~J}$

Note:
Frequency only impacts dynamic power, not leakage power.
We assume that the program's CPI is unchanged when frequency is changed, i.e., exec time varies linearly with cycle time.

Basic MIPS Instructions

- Iw \$t1, 16(\$t2)
- add \$t3, \$t1, \$t2
- addi \$t3, \$t3, 16
- sw \$t3, 16(\$t2)
- beq \$t1, \$t2, 16
- blt is implemented as slt and bne
- j 64
- jr \$t1
- sll \$t1, \$t1, 2

Convert to assembly: while (save[i] == k)
i += 1;
i and k are in \$s3 and \$s5 and base of array save[] is in \$s6

Registers

- The 32 MIPS registers are partitioned as follows:
- Register 0 : \$zero always stores the constant 0
- Regs 2-3 : \$v0, \$v1 return values of a procedure
- Regs 4-7 : \$a0-\$a3 input arguments to a procedure
- Regs 8-15 : \$t0-\$t7 temporaries
- Regs 16-23: \$s0-\$s7 variables
- Regs 24-25: \$t8-\$t9 more temporaries
- Reg 28 : \$gp global pointer
- Reg 29 : \$sp stack pointer
- Reg 30 : \$fp frame pointer
- Reg 31 : \$ra return address

Memory Organization

Procedure Calls/Returns

```
procA (int i)
{
    int j;
    j = ...;
    i = call procB(j);
    ... = i;
}
```

procA:
$\$ s 0=\ldots$ value of j
\$t0 = ... \# some tempval
$\$ a 0=\$ s 0$ \# the argument
jal procB
... = \$v0
procB (int j)
\{
int k;
... $=\mathrm{j}$;
k = ...;
return k;
\}
procB:
\$t0 = ... \# some tempval
... = \$a0 \# using the argument
$\$ \mathrm{sO}=\ldots$ \# value of k
\$v0 = \$s0;
jr \$ra

Saves and Restores

- Caller saves:
- \$ra, \$a0, \$t0, \$fp (if reqd)
- As every element is saved on stack, the stack pointer is decremented
- Callee saves:
- \$s0

```
procA:
    $s0 = ... # value of j
    $t0 = ... # some tempval
    $a0 = $s0 # the argument
    jal procB
    ... = $v0
```


Example 2

```
int fact (int n)
{
    if (n<1) return (1);
    else return (n * fact(n-1));
}
```

Notes:
The caller saves \$a0 and \$ra in its stack space.
Temps are never saved.

fact:	
addi	\$sp, \$sp, -8
sw	$\$ r a, 4(\$ s p)$
sw	$\$ a 0,0(\$ s p)$
slti	$\$ t 0, \$ a 0,1$
beq	$\$ t 0, \$ z e r o$, L1
addi	$\$ v 0, \$ z e r o, 1$
addi	$\$ s p, \$ s p, 8$
jr	$\$ r a$
L1:	
addi	$\$ a 0, \$ a 0,-1$
jal	fact
Iw	$\$ a 0,0(\$ s p)$
Iw	$\$ r a, 4(\$ s p)$
addi	$\$ s p, \$ s p, 8$
mul	$\$ v 0, \$ a 0, \$ v 0$
jr	$\$ r a$

fact:
addi \$sp, \$sp, -8
sw \$ra, 4(\$sp)
sw \$a0, 0(\$sp)
slti \$t0, \$a0, 1
beq \$t0, \$zero, L1
addi \$vo, \$zero, 1
addi \$sp, \$sp, 8
jr \$ra
addi \$a0, \$a0, -1
jal fact
\$a0, $0(\$ \mathrm{sp})$
\$ra, 4(\$sp)
addi \$sp, \$sp, 8
mul \$v0, \$a0, \$v0
jr \quad \$ra

Recap - Numeric Representations

- Decimal $35_{10}=3 \times 10^{1}+5 \times 10^{0}$
- Binary $00100011_{2}=1 \times 2^{5}+1 \times 2^{1}+1 \times 2^{0}$
- Hexadecimal (compact representation)
0×23 or $23_{\text {hex }}=2 \times 16^{1}+3 \times 16^{0}$

$$
0-15 \text { (decimal) } \rightarrow 0-9, \text { a-f (hex) }
$$

Dec	Binary	Hex									
0	0000	00	4	0100	04	8	1000	08	12	1100	Oc
1	0001	01	5	0101	05	9	1001	09	13	1101	Od
2	0010	02	6	0110	06	10	1010	$0 a$	14	1110	$0 e$
3	0011	03	7	0111	07	11	1011	$0 b$	15	1111	Of

2's Complement


```
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 _ { \text { two } } = 1 _ { \text { ten } }
01111111 1111 111111111111 1111 1111 two = 231-1
1000000000000000000000000000 0000 two }=-\mp@subsup{2}{}{31
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 _ { \text { two } } = - ( 2 ^ { 3 1 } - 1 )
1000000000000000000000000000 0010 two =-(231-2)
1111 1111 1111 1111 1111 1111 1111 1110 two =-2
1111111111111111111111111 1111 11111 two = -1
```

Note that the sum of a number x and its inverted representation x^{\prime} always equals a string of $1 \mathrm{~s}(-1)$.

$$
\begin{array}{cc}
x+x^{\prime}=-1 & \\
x^{\prime}+1=-x & \text {... hence, can compute the negative of a number by } \\
-x=x^{\prime}+1 & \text { inverting all bits and adding } 1
\end{array}
$$

This format can directly undergo addition without any conversions!
Each number represents the quantity

Multiplication Example

Multiplicand
Multiplier

Product

$$
\begin{array}{r}
1000_{\text {ten }} \\
\times \quad 1001_{\text {ten }}
\end{array}
$$

1000
0000
0000
1000
$1001000_{\text {ten }}$

In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1 , shifted multiplicand is added to the product

Division

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Division

Divisor $1000_{\text {ten }}$\begin{tabular}{lll}
\& \multicolumn{2}{c}{$1001_{\text {ten }}-1001010_{\text {ten }}$}

Quotient

Dividend
\end{tabular}

$\quad 0001001010$
$100000000000 \rightarrow 0001001010$
Quo: 0

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Binary FP Numbers

- 20.45 decimal = ? Binary
- 20 decimal $=10100$ binary
- $0.45 \times 2=0.9 \quad$ (not greater than 1, first bit after binary point is 0)
$0.90 \times 2=1.8 \quad$ (greater than 1 , second bit is 1 , subtract 1 from 1.8)
$0.80 \times 2=1.6 \quad$ (greater than 1, third bit is 1 , subtract 1 from 1.6)
$0.60 \times 2=1.2 \quad$ (greater than 1, fourth bit is 1 , subtract 1 from 1.2)
$0.20 \times 2=0.4 \quad$ (less than 1 , fifth bit is 0)
$0.40 \times 2=0.8 \quad$ (less than 1 , sixth bit is 0)
$0.80 \times 2=1.6 \quad$ (greater than 1 , seventh bit is 1 , subtract 1 from 1.6)
... and the pattern repeats
10100.011100110011001100...

Normalized form $=1.0100011100110011 \ldots \times 2^{4}$

Examples

Final representation: $(-1)^{S} \times(1+$ Fraction $) \times 2^{(\text {Exponent }- \text { Bias })}$

- Represent $-0.75_{\text {ten }}$ in single and double-precision formats

Single: $(1+8+23)$

Double: (1+11+52)

$$
\begin{array}{|ll}
\text { Remember: } \\
\text { True exponent } & \xrightarrow{\stackrel{+127}{\longleftrightarrow}} \text { Exponent in register }
\end{array}
$$

- What decimal number is represented by the following single-precision number?
110000001 01000... 0000

Examples

Final representation: $(-1)^{S} \times(1+$ Fraction $) \times 2^{(\text {Exponent }- \text { Bias })}$

- Represent $-0.75_{\text {ten }}$ in single and double-precision formats

Single: $(1+8+23)$
101111110 1000... 000

Double: (1+11+52)
101111111110 1000... 000

- What decimal number is represented by the following single-precision number?
110000001 01000... 0000 -5.0

Example 2

Final representation: $(-1)^{s} \times(1+$ Fraction $) \times 2^{\text {(Exponent }- \text { Bias })}$

- Represent $36.90625_{\text {ten }}$ in single-precision format

```
36 / 2 = 18 rem 0 0.90625 x 2 = 1.81250
18/2 = r rem 0 0.8125 x 2 = 1.6250
    9/2 = 4 rem 1 0.625 x 2=1.250
    4/2=2 rem 0 0.25 x 2 = 0.50
    2/2=1 rem 0 0.5 < 2=1.00
    1/2 = 0 rem 1
```


36 is 100100
$0.90625 \times 2=1.81250$
$0.8125 \times 2=1.6250$
$0.625 \times 2=1.250$
$0.25 \times 2=0.50$
$0.5 \times 2=1.00$
$0.0 \times 2=0.0$

0.90625 is 0.1110100 ... 0

Example 2

Final representation: $(-1)^{s} \times(1+$ Fraction $) \times 2^{(\text {Exponent }- \text { Bias })}$

We've calculated that $36.90625_{\text {ten }}=100100.1110100 \ldots 0$ in binary Normalized form $=1.001001110100 . . .0 \times 2^{5}$
(had to shift 5 places to get only one bit left of the point)

The sign bit is 0 (positive number)
The fraction field is 001001110100 ... 0 (the 23 bits after the point)
The exponent field is $5+127$ (have to add the bias) $=132$, which in binary is 10000100

The IEEE 754 format is 0100001000010011101000 sign exponent 23 fraction bits
Value inf 2 special cases up top that use the 0255 00... 0

Value 1 ---0.-- $012700 . . .0$

Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers

FP Addition - Binary Example

- Consider the following binary example

```
1.010 < 2 }\mp@subsup{}{}{1}+1.100\times\mp@subsup{2}{}{3
Convert to the larger exponent:
0.0101 \times 2 + + 1.1000 < 2 3
Add
1.1101 x 23
Normalize
1.1101 x 2 3
Check for overflow/underflow
Round
Re-normalize
IEEE 754 format: 0 10000010 11010000000000000000000
```


Boolean Algebra

- $\overline{A+B}=\bar{A} \cdot \bar{B}$
- $\overline{A \cdot B}=\bar{A}+\bar{B}$

A	B	C	E
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Any truth table can be expressed as a sum of products
$(A \cdot B \cdot \bar{C})+(A \cdot C \cdot \bar{B})+(C \cdot B \cdot \bar{A})$

- Can also use "product of sums"
- Any equation can be implemented with an array of ANDs, followed by an array of ORs

Adder Implementations

- Ripple-Carry adder - each 1-bit adder feeds its carry-out to next stage simple design, but we must wait for the carry to propagate thru all bits
- Carry-Lookahead adder - each bit can be represented by an equation that only involves input bits (a_{i}, b_{i}) and initial carry-in (c_{0}) -- this is a complex equation, so it's broken into sub-parts

For bits $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}$, and c_{i}, a carry is generated if $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}=1$ and a carry is propagated if $a_{i}+b_{i}=1$

$$
C_{i+1}=g_{i}+p_{i} \cdot C_{i}
$$

Similarly, compute these values for a block of 4 bits, then for a block of 16 bits, then for a block of 64 bits....Finally, the carry-out for the $64^{\text {th }}$ bit is represented by an equation such as this:
$\mathrm{C}_{4}=\mathrm{G}_{3}+\mathrm{G}_{2} \cdot \mathrm{P}_{3}+\mathrm{G}_{1} \cdot \mathrm{P}_{2} \cdot \mathrm{P}_{3}+\mathrm{G}_{0} \cdot \mathrm{P}_{1} \cdot \mathrm{P}_{2} \cdot \mathrm{P}_{3}+\mathrm{C}_{0} \cdot \mathrm{P}_{0} \cdot \mathrm{P}_{1} \cdot \mathrm{P}_{2} \cdot \mathrm{P}_{3}$
Each of the sub-terms is also a similar expression

Trade-Off Curve

\#inputs to each gate

Truth table sum-of-products adder, $\left(2,2^{64}\right)$

gp adder $(3,33)$

Carry Lookahead GP adder (7, 5)
Ripple-Carry adder $(64,2)$
\# sequential gates

32-bit ALU

Source: H\&P textbook

Control Lines

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Op
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
NOR	1	1	00
NAND	1	1	01
SLT	0	1	11
BEQ	0	1	$10(x x)$

Tackling FSM Problems

- Three questions worth asking:
- What are the possible output states? Draw a bubble for each.
- What are inputs? What values can those inputs take?
- For each state, what do I do for each possible input value? Draw an arc out of every bubble for every input value.

Example - Residential Thermostat

- Two temp sensors: internal and external
- If internal temp is within 1 degree of desired, don't change setting
- If internal temp is > 1 degree higher than desired, turn AC on; if internal temp is < 1 degree lower than desired, turn heater on
- If external temp and desired temp are within 5 degrees, disregard the internal temp, and turn both AC and heater off

Finite State Machine Table

Current State	Input E	Input I	Output State
HEAT	D	C	OFF
HEAT	D	G	OFF
HEAT	D	H	OFF
HEAT	U	C	HEAT
HEAT	U	G	HEAT
HEAT	U	H	COOL
COOL	D	C	OFF
COOL	D	G	OFF
COOL	D	H	OFF
COOL	U	C	HEAT
COOL	U	G	COOL
COOL	U	H	COOL
OFF	D	C	OFF
OFF	D	G	OFF
OFF	D	H	OFF
OFF	U	C	HEAT
OFF	U	G	OFF
OFF	U	H	COOL

Finite State Diagram

