
1

Lecture: Pipelining, Static ILP

• Topics: wrap-up of pipelining impacts, static ILP approaches,
scheduling, loop unrolling, software pipelines

2

Multicycle Instructions

3

Effects of Multicycle Instructions

• Potentially multiple writes to the register file in a cycle

• Frequent RAW hazards

• WAW hazards (WAR hazards not possible)

• Imprecise exceptions because of o-o-o instr completion

Note: Can also increase the “width” of the processor: handle
multiple instructions at the same time: for example, fetch
two instructions, read registers for both, execute both, etc.

4

Precise Exceptions

• On an exception:
must save PC of instruction where program must resume
 all instructions after that PC that might be in the pipeline

must be converted to NOPs (other instructions continue
to execute and may raise exceptions of their own)

 temporary program state not in memory (in other words,
registers) has to be stored in memory

 potential problems if a later instruction has already
modified memory or registers

• A processor that fulfils all the above conditions is said to
provide precise exceptions (useful for debugging and of
course, correctness)

5

Dealing with these Effects

• Multiple writes to the register file: increase the number of
ports, stall one of the writers during ID, stall one of the
writers during WB (the stall will propagate)

• WAW hazards: detect the hazard during ID and stall the
later instruction

• Imprecise exceptions: buffer the results if they complete
early or save more pipeline state so that you can return to
exactly the same state that you left at

6

Slowdowns from Stalls

• Perfect pipelining with no hazards an instruction
completes every cycle (total cycles ~ num instructions)
 speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
instruction completes

• Total cycles = number of instructions + stall cycles

• Slowdown because of stalls = 1/ (1 + stall cycles per instr)

7

Pipelining Limits

A B C
A B C

A B C D E F
A B C D E F

Assume that there is a dependence where the final result of the
first instruction is required before starting the second instruction

Gap between indep instrs: T + Tovh

Gap between dep instrs: T + Tovh

Gap between indep instrs:
T/3 + Tovh

Gap between dep instrs:
T + 3Tovh

Gap between indep instrs:
T/6 + Tovh

Gap between dep instrs:
T + 6Tovh

8

Problem 2

• Assume an unpipelined processor where it takes 5ns to
go through the circuits and 0.1ns for the latch overhead.
What is the throughput for 20-stage and 40-stage
pipelines? Assume that the P.O.P and P.O.C in the
unpipelined processor are separated by 2ns. Assume that
half the instructions do not introduce a data hazard and
half the instructions depend on their preceding instruction.

9

Problem 2

• Assume an unpipelined processor where it takes 5ns to
go through the circuits and 0.1ns for the latch overhead.
What is the throughput for 1-stage, 20-stage and 50-stage
pipelines? Assume that the P.O.P and P.O.C in the
unpipelined processor are separated by 2ns. Assume that
half the instructions do not introduce a data hazard and
half the instructions depend on their preceding instruction.

• 1-stage: 1 instr every 5.1ns
• 20-stage: first instr takes 0.35ns, the second takes 2.8ns
• 50-stage: first instr takes 0.2ns, the second takes 4ns
• Throughputs: 0.20 BIPS, 0.63 BIPS, and 0.48 BIPS

10

ILP

• Instruction-level parallelism: overlap among instructions:
pipelining or multiple instruction execution

• What determines the degree of ILP?
 dependences: property of the program
 hazards: property of the pipeline

11

Static vs Dynamic Scheduling

• Arguments against dynamic scheduling:
 requires complex structures to identify independent

instructions (scoreboards, issue queue)
 high power consumption
 low clock speed
 high design and verification effort

 the compiler can “easily” compute instruction latencies
and dependences – complex software is always
preferred to complex hardware (?)

12

Loop Scheduling

• The compiler’s job is to minimize stalls

• Focus on loops: account for most cycles, relatively easy
to analyze and optimize

13

Assumptions

• Load: 2-cycles (1 cycle stall for consumer)
• FP ALU: 4-cycles (3 cycle stall for consumer; 2 cycle stall

if the consumer is a store)
• One branch delay slot
• Int ALU: 1-cycle (no stall for consumer, 1 cycle stall if the

consumer is a branch)

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

14

Loop Example

for (i=1000; i>0; i--)
x[i] = x[i] + s;

Loop: L.D F0, 0(R1) ; F0 = array element
ADD.D F4, F0, F2 ; add scalar
S.D F4, 0(R1) ; store result
DADDUI R1, R1,# -8 ; decrement address pointer
BNE R1, R2, Loop ; branch if R1 != R2
NOP

Source code

Assembly code

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

15

Loop Example

for (i=1000; i>0; i--)
x[i] = x[i] + s;

Loop: L.D F0, 0(R1) ; F0 = array element
ADD.D F4, F0, F2 ; add scalar
S.D F4, 0(R1) ; store result
DADDUI R1, R1,# -8 ; decrement address pointer
BNE R1, R2, Loop ; branch if R1 != R2
NOP

Source code

Assembly code

Loop: L.D F0, 0(R1) ; F0 = array element
stall
ADD.D F4, F0, F2 ; add scalar
stall
stall
S.D F4, 0(R1) ; store result
DADDUI R1, R1,# -8 ; decrement address pointer
stall
BNE R1, R2, Loop ; branch if R1 != R2
stall

10-cycle
schedule

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

16

Smart Schedule

• By re-ordering instructions, it takes 6 cycles per iteration instead of 10
• We were able to violate an anti-dependence easily because an

immediate was involved
• Loop overhead (instrs that do book-keeping for the loop): 2

Actual work (the ld, add.d, and s.d): 3 instrs
Can we somehow get execution time to be 3 cycles per iteration?

Loop: L.D F0, 0(R1)
stall
ADD.D F4, F0, F2
stall
stall
S.D F4, 0(R1)
DADDUI R1, R1,# -8
stall
BNE R1, R2, Loop
stall

Loop: L.D F0, 0(R1)
DADDUI R1, R1,# -8
ADD.D F4, F0, F2
stall
BNE R1, R2, Loop
S.D F4, 8(R1)

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

17

Problem 1

for (i=1000; i>0; i--)
x[i] = y[i] * s;

Loop: L.D F0, 0(R1) ; F0 = array element
MUL.D F4, F0, F2 ; multiply scalar
S.D F4, 0(R2) ; store result
DADDUI R1, R1,# -8 ; decrement address pointer
DADDUI R2, R2,#-8 ; decrement address pointer
BNE R1, R3, Loop ; branch if R1 != R3
NOP

Source code

Assembly code

LD -> any : 1 stall
FPMUL -> any: 5 stalls
FPMUL -> ST : 4 stalls
IntALU -> BR : 1 stall

• How many cycles do the default and optimized schedules take?

18

Problem 1

for (i=1000; i>0; i--)
x[i] = y[i] * s;

Loop: L.D F0, 0(R1) ; F0 = array element
MUL.D F4, F0, F2 ; multiply scalar
S.D F4, 0(R2) ; store result
DADDUI R1, R1,# -8 ; decrement address pointer
DADDUI R2, R2,#-8 ; decrement address pointer
BNE R1, R3, Loop ; branch if R1 != R3
NOP

Source code

Assembly code

LD -> any : 1 stall
FPMUL -> any: 5 stalls
FPMUL -> ST : 4 stalls
IntALU -> BR : 1 stall

• How many cycles do the default and optimized schedules take?

Unoptimized: LD 1s MUL 4s SD DA DA BNE 1s -- 12 cycles

Optimized: LD DA MUL DA 2s BNE SD -- 8 cycles

19

Loop Unrolling

Loop: L.D F0, 0(R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
L.D F6, -8(R1)
ADD.D F8, F6, F2
S.D F8, -8(R1)
L.D F10,-16(R1)
ADD.D F12, F10, F2
S.D F12, -16(R1)
L.D F14, -24(R1)
ADD.D F16, F14, F2
S.D F16, -24(R1)
DADDUI R1, R1, #-32
BNE R1,R2, Loop

• Loop overhead: 2 instrs; Work: 12 instrs
• How long will the above schedule take to complete?

20

Scheduled and Unrolled Loop

Loop: L.D F0, 0(R1)
L.D F6, -8(R1)
L.D F10,-16(R1)
L.D F14, -24(R1)
ADD.D F4, F0, F2
ADD.D F8, F6, F2
ADD.D F12, F10, F2
ADD.D F16, F14, F2
S.D F4, 0(R1)
S.D F8, -8(R1)
DADDUI R1, R1, # -32
S.D F12, 16(R1)
BNE R1,R2, Loop
S.D F16, 8(R1)

• Execution time: 14 cycles or 3.5 cycles per original iteration

LD -> any : 1 stall
FPALU -> any: 3 stalls
FPALU -> ST : 2 stalls
IntALU -> BR : 1 stall

21

Loop Unrolling

• Increases program size

• Requires more registers

• To unroll an n-iteration loop by degree k, we will need (n/k)
iterations of the larger loop, followed by (n mod k) iterations
of the original loop

22

Automating Loop Unrolling

• Determine the dependences across iterations: in the
example, we knew that loads and stores in different iterations
did not conflict and could be re-ordered

• Determine if unrolling will help – possible only if iterations
are independent

• Determine address offsets for different loads/stores

• Dependency analysis to schedule code without introducing
hazards; eliminate name dependences by using additional
registers

23

Problem 2

for (i=1000; i>0; i--)
x[i] = y[i] * s;

Loop: L.D F0, 0(R1) ; F0 = array element
MUL.D F4, F0, F2 ; multiply scalar
S.D F4, 0(R2) ; store result
DADDUI R1, R1,# -8 ; decrement address pointer
DADDUI R2, R2,#-8 ; decrement address pointer
BNE R1, R3, Loop ; branch if R1 != R3
NOP

Source code

Assembly code

LD -> any : 1 stall
FPMUL -> any: 5 stalls
FPMUL -> ST : 4 stalls
IntALU -> BR : 1 stall

• How many unrolls does it take to avoid stall cycles?

24

Problem 2

for (i=1000; i>0; i--)
x[i] = y[i] * s;

Loop: L.D F0, 0(R1) ; F0 = array element
MUL.D F4, F0, F2 ; multiply scalar
S.D F4, 0(R2) ; store result
DADDUI R1, R1,# -8 ; decrement address pointer
DADDUI R2, R2,#-8 ; decrement address pointer
BNE R1, R3, Loop ; branch if R1 != R3
NOP

Source code

Assembly code

LD -> any : 1 stall
FPMUL -> any: 5 stalls
FPMUL -> ST : 4 stalls
IntALU -> BR : 1 stall

• How many unrolls does it take to avoid stall cycles?

Degree 2: LD LD MUL MUL DA DA 1s SD BNE SD
Degree 3: LD LD LD MUL MUL MUL DA DA SD SD BNE SD

– 12 cyc/3 iterations

25

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

