Lecture: Branch Prediction

- Topics: dynamic branch prediction, bimodal/global/local/tournament predictors (Chapter 3, notes on class webpage)

Software Pipelining

Loop:	L.D	F0, O(R1)
	ADD.D	F4, F0, F2
	S.D	F4, O(R1)
	DADDUI	R1, R1,\# -8
	BNE	R1, R2, Loop

Loop:	S.D	F4, 16(R1)
	ADD.D	F4, F0, F2
	L.D	F0, O(R1)
	DADDUI	R1, R1, \#-8
	BNE	R1, R2, Loop

- Advantages: achieves nearly the same effect as loop unrolling, but without the code expansion - an unrolled loop may have inefficiencies at the start and end of each iteration, while a sw-pipelined loop is almost always in steady state - a sw-pipelined loop can also be unrolled to reduce loop overhead
- Disadvantages: does not reduce loop overhead, may require more registers
Loop: L.D F0, O(R1) ; F0 = array element
MUL.D F4, F0, F2 ; multiply scalar
S.D F4, O(R2) ; store result
DADDUI R1, R1,\#-8 ; decrement address pointer
Assembly code
DADDUI R2, R2,\#-8 ; decrement address pointer
BNE R1, R3, Loop ; branch if R1 != R3
NOP
- Show the SW pipelined version of the code and does it cause stalls?

Loop: S.D F4, 0(R2)
MUL F4, F0, F2
L.D FO, O(R1)

DADDUI R2, R2, \#-8
BNE R1, R3, Loop
DADDUI R1, R1, \#-8
There will be no stalls

Software Pipelining Reminders

- Note how the store instruction needs an offset in some cases
- Easiest to use more register names to avoid artificial dependences

LD	R1 \leftarrow	SD	R1 \rightarrow
ADD	$\mathrm{R} 1 \leftarrow \mathrm{R} 1$	ADD	$\mathrm{R} 1 \leftarrow \mathrm{R} 1$
SD	R1 \rightarrow []	LD	R1 \leftarrow
LD	R1 \leftarrow	SD	$\mathrm{R} 2 \rightarrow$
ADD	$\mathrm{R} 2 \leftarrow \mathrm{R} 1$	ADD	$\mathrm{R} 2 \leftarrow \mathrm{R} 1$
SD	R2 \rightarrow []	LD	R1 \leftarrow

Static vs. Dynamic

- Predication and speculation are other compiler techniques needed to increase performance
- To get high performance with a compiler-based approach, we need support for predication, tables to analyze dependences, etc. Plus, scheduling goes haywire if there are cache misses.
- Difficult to achieve the highest performance with a purely static (compiler-based) approach - it continues to have value for highly simple in-order processors
- For highest performance, dynamic/hardware approaches are most effective, and the compiler can help such processors too'

Amdahl's Law

- Architecture design is very bottleneck-driven - make the common case fast, do not waste resources on a component that has little impact on overall performance/power
- Amdahl's Law: performance improvements through an enhancement is limited by the fraction of time the enhancement comes into play
- Example: a web server spends 40% of time in the CPU and 60% of time doing l/O - a new processor that is ten times faster results in a 36% reduction in execution time (speedup of 1.56) - Amdahl's Law states that maximum execution time reduction is 40% (max speedup of 1.66)

Principle of Locality

- Most programs are predictable in terms of instructions executed and data accessed
- The 90-10 Rule: a program spends 90% of its execution time in only 10% of the code
- Temporal locality: a program will shortly re-visit X
- Spatial locality: a program will shortly visit X+1

Pipeline without Branch Predictor

In the 5 -stage pipeline, a branch completes in two cycles \rightarrow If the branch went the wrong way, one incorrect instr is fetched \rightarrow One stall cycle per incorrect branch

Pipeline with Branch Predictor

In the 5 -stage pipeline, a branch completes in two cycles \rightarrow If the branch went the wrong way, one incorrect instr is fetched \rightarrow One stall cycle per incorrect branch

1-Bit Bimodal Prediction

- For each branch, keep track of what happened last time and use that outcome as the prediction
- What are prediction accuracies for branches 1 and 2 below:
while (1) \{
for ($\mathrm{i}=0 ; \mathrm{i}<10 ; \mathrm{i}++$) \quad branch-1
\}
for $(j=0 ; j<20 ; j++)$ branch-2
\}
\}

2-Bit Bimodal Prediction

- For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter $=\min (3$, counter +1$)$
if the branch is not taken: counter $=\max (0$, counter -1$)$
- If (counter >= 2), predict taken, else predict not taken
- Advantage: a few atypical branches will not influence the prediction (a better measure of "the common case")
- Especially useful when multiple branches share the same counter (some bits of the branch PC are used to index into the branch predictor)
- Can be easily extended to N -bits (in most processors, $\mathrm{N}=2$)

Bimodal 1-Bit Predictor

Bimodal 2-Bit Predictor

Correlating Predictors

- Basic branch prediction: maintain a 2-bit saturating counter for each entry (or use 10 branch PC bits to index into one of 1024 counters) - captures the recent
"common case" for each branch
- Can we take advantage of additional information?
$>$ If a branch recently went 01111, expect 0; if it recently went 11101, expect 1 ; can we have a separate counter for each case?
$>$ If the previous branches went 01, expect 0; if the previous branches went 11, expect 1; can we have a separate counter for each case?

Global Predictor

Local Predictor

Branch PC
Use 6 bits of branch PC to

Table of 64 entries of 14-bit histories for a single branch

Also a two-level predictor that only uses local histories at the first level

Local Predictor

Local/Global Predictors

- Instead of maintaining a counter for each branch to capture the common case,
\rightarrow Maintain a counter for each branch and surrounding pattern
\rightarrow If the surrounding pattern belongs to the branch being predicted, the predictor is referred to as a local predictor
\rightarrow If the surrounding pattern includes neighboring branches, the predictor is referred to as a global predictor

Tournament Predictors

- A local predictor might work well for some branches or programs, while a global predictor might work well for others
- Provide one of each and maintain another predictor to identify which predictor is best for each branch

Branch Target Prediction

- In addition to predicting the branch direction, we must also predict the branch target address
- Branch PC indexes into a predictor table; indirect branches might be problematic
- Most common indirect branch: return from a procedure can be easily handled with a stack of return addresses

Problem 1

- What is the storage requirement for a global predictor that uses 3-bit saturating counters and that produces an index by XOR-ing 12 bits of branch PC with 12 bits of global history?

Problem 1

- What is the storage requirement for a global predictor that uses 3-bit saturating counters and that produces an index by XOR-ing 12 bits of branch PC with 12 bits of global history?

The index is 12 bits wide, so the table has $2^{\wedge} 12$ saturating counters. Each counter is 3 bits wide. So total storage $=3 * 4096=12 \mathrm{~Kb}$ or 1.5 KB

Problem 2

- What is the storage requirement for a tournament predictor that uses the following structures:
- a "selector" that has 4 K entries and 2-bit counters
- a "global" predictor that XORs 14 bits of branch PC with 14 bits of global history and uses 3-bit counters
- a "local" predictor that uses an 8-bit index into L1, and produces a 12-bit index into L2 by XOR-ing branch PC and local history. The L2 uses 2-bit counters.

Problem 2

- What is the storage requirement for a tournament predictor that uses the following structures:
- a "selector" that has 4 K entries and 2-bit counters
- a "global" predictor that XORs 14 bits of branch PC with 14 bits of global history and uses 3-bit counters
- a "local" predictor that uses an 8-bit index into L1, and produces a 12-bit index into L2 by XOR-ing branch PC and local history. The L2 uses 2-bit counters.

Selector $=4 \mathrm{~K} * 2 \mathrm{~b}=8 \mathrm{~Kb}$
Global $=3 b{ }^{*} 2^{\wedge} 14=48 \mathrm{~Kb}$
Local $=\left(12 \mathrm{~b} * 2^{\wedge} 8\right)+\left(2 b * 2^{\wedge} 12\right)=3 \mathrm{~Kb}+8 \mathrm{~Kb}=11 \mathrm{~Kb}$
Total $=67 \mathrm{~Kb}$

Problem 3

- For the code snippet below, estimate the steady-state bpred accuracies for the default PC+4 prediction, the 1-bit bimodal, 2-bit bimodal, global, and local predictors. Assume that the global/local preds use 5-bit histories.
do \{
for ($\mathrm{i}=0$; $\mathrm{i}<4$; $\mathrm{i}++$) \{
increment something
\}
for ($\mathrm{j}=0$; $\mathrm{j}<8$; $\mathrm{j}++$) \{
increment something
\}
k++;
\} while (k < some large number)

Problem 3

- For the code snippet below, estimate the steady-state bpred accuracies for the default PC+4 prediction, the 1-bit bimodal, 2-bit bimodal, global, and local predictors. Assume that the global/local preds use 5-bit histories. do \{
for ($\mathrm{i}=0$; $\mathrm{i}<4$; $\mathrm{i}++$) \{
increment something
\}
for ($\mathrm{j}=0$; $\mathrm{j}<8$; $\mathrm{j}++$) \{
increment something
\}
k++;
\} while (k < some large number)

$$
\begin{gathered}
\text { PC+4: } 2 / 13=15 \% \\
\text { 1b Bim: }(2+6+1) /(4+8+1) \\
=9 / 13=69 \% \\
\text { 2b Bim: }(3+7+1) / 13 \\
=11 / 13=85 \% \\
\text { Global: }(4+7+1) / 13 \\
=12 / 13=92 \% \\
\text { Local: }(4+7+1) / 13 \\
=12 / 13=92 \%
\end{gathered}
$$

