
1

Lecture: Branch Prediction, Out-of-order Processors

• Topics: branch predictors, out-of-order intro, register renaming



2

2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the
prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same
counter (some bits of the branch PC are used to index
into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)



3

Bimodal 2-Bit Predictor

Branch PC

10 bits Table of
1K entries

Each
entry is
a 2-bit

sat.
counterThe table keeps track of the common-case

outcome for the branch



4

Correlating Predictors

• Basic branch prediction: maintain a 2-bit saturating
counter for each entry (or use 10 branch PC bits to index
into one of 1024 counters) – captures the recent 
“common case” for each branch

• Can we take advantage of additional information?
 If a branch recently went  01111, expect 0; if it

recently went  11101, expect 1; can we have a
separate counter for each case?

 If the previous branches went  01, expect 0; if the
previous branches went 11, expect 1; can we have
a separate counter for each case?

Hence, build correlating predictors



5

Global Predictor

Branch PC

10 bits Table of
16K entries

Each
entry is
a 2-bit

sat.
counterThe table keeps track of the common-case

outcome for the branch/history combo

Global history

CAT or XOR



6

Local Predictor

Branch PC

Table of
16K entries

of 2-bit
saturating
counters

Table of 64 entries of 14-bit
histories for a single branch

10110111011001

Use 6 bits of branch PC to
index into local history table

14-bit history
indexes into

next level

Also a two-level predictor that only
uses local histories at the first level



7

Local Predictor

Branch PC

6 bits Table of
1K entries

Each
entry is
a 2-bit

sat.
counter

The table keeps track of the common-case
outcome for the branch/local-history combo

Local history
10 bit entries

XOR

64 entries

10 bits



8

Local/Global Predictors

• Instead of maintaining a counter for each branch to
capture the common case,

Maintain a counter for each branch and surrounding pattern
 If the surrounding pattern belongs to the branch being

predicted, the predictor is referred to as a local predictor
 If the surrounding pattern includes neighboring branches,

the predictor is referred to as a global predictor



9

Tournament Predictors

• A local predictor might work well for some branches or
programs, while a global predictor might work well for others

• Provide one of each and maintain another predictor to
identify which predictor is best for each branch

Tournament
Predictor

Branch PC

Table of 2-bit
saturating counters

Local
Predictor

Global
Predictor

M
U
X

Alpha 21264:
1K entries in level-1
1K entries in level-2

4K entries
12-bit global history

4K entries

Total capacity: ?



10

Branch Target Prediction

• In addition to predicting the branch direction, we must
also predict the branch target address

• Branch PC indexes into a predictor table; indirect branches
might be problematic

• Most common indirect branch: return from a procedure –
can be easily handled with a stack of return addresses



11

Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?



12

Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

The index is 12 bits wide, so the table has 2^12 saturating
counters.  Each counter is 3 bits wide.  So total storage
= 3 * 4096 = 12 Kb  or 1.5 KB



13

Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC 

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history.  The L2 uses 2-bit counters.



14

Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC 

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history.  The L2 uses 2-bit counters.

Selector = 4K * 2b = 8 Kb
Global = 3b * 2^14 = 48 Kb
Local = (12b * 2^8) + (2b * 2^12) = 3 Kb + 8 Kb = 11 Kb
Total = 67 Kb



15

Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)



16

Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)

PC+4:  2/13 = 15%
1b Bim: (2+6+1)/(4+8+1) 

= 9/13 = 69%
2b Bim: (3+7+1)/13

= 11/13 = 85%
Global: (4+7+1)/13

= 12/13 = 92%
Local: (4+7+1)/13

= 12/13 = 92%



17

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ



18

Problem 1

• Show the renamed version of the following code:
Assume that you have 4 rename registers T1-T4

R1  R2+R3
R3  R4+R5
BEQZ  R1
R1  R1 + R3
R1  R1 + R3
R3  R1 + R3



19

Problem 1

• Show the renamed version of the following code:
Assume that you have 4 rename registers T1-T4

R1  R2+R3                     T1  R2+R3
R3  R4+R5                     T2  R4+R5
BEQZ  R1                           BEQZ  T1
R1  R1 + R3                   T4  T1+T2
R1  R1 + R3                   T1  T4+T2
R3  R1 + R3                   T2  T1 +R3



20

Design Details - I

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions
that enter also get placed in the ROB – the process of an
instruction leaving the ROB (in order) is called commit –
an instruction commits only if it and all instructions before
it have completed successfully (without an exception)

• To preserve precise exceptions, a result is written into the
register file only when the instruction commits – until then,
the result is saved in a temporary register in the ROB



21

Design Details - II

• Instructions get renamed and placed in the issue queue –
some operands are available (T1-T6; R1-R32), while 
others are being produced by instructions in flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6)
and broadcast the operand tag (T1-T6) to the issue queue –
instructions now know if their operands are ready

• When a ready instruction issues, it reads its operands from
T1-T6 and R1-R32 and executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more
names (T1-T6), name dependences can be avoided



22

Design Details - III

• If instr-3 raises an exception, wait until it reaches the top
of the ROB – at this point, R1-R32 contain results for all
instructions up to instr-3 – save registers, save PC of instr-3,
and service the exception

• If branch is a mispredict, flush all instructions after the
branch and start on the correct path – mispredicted instrs
will not have updated registers (the branch cannot commit
until it has completed and the flush happens as soon as the
branch completes)

• Potential problems: ?



23


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

