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Lecture: Branch Prediction, Out-of-order Processors

• Topics: branch predictors, out-of-order intro, register renaming
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2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the
prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same
counter (some bits of the branch PC are used to index
into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)
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Bimodal 2-Bit Predictor

Branch PC

10 bits Table of
1K entries

Each
entry is
a 2-bit

sat.
counterThe table keeps track of the common-case

outcome for the branch
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Correlating Predictors

• Basic branch prediction: maintain a 2-bit saturating
counter for each entry (or use 10 branch PC bits to index
into one of 1024 counters) – captures the recent 
“common case” for each branch

• Can we take advantage of additional information?
 If a branch recently went  01111, expect 0; if it

recently went  11101, expect 1; can we have a
separate counter for each case?

 If the previous branches went  01, expect 0; if the
previous branches went 11, expect 1; can we have
a separate counter for each case?

Hence, build correlating predictors
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Global Predictor

Branch PC

10 bits Table of
16K entries

Each
entry is
a 2-bit

sat.
counterThe table keeps track of the common-case

outcome for the branch/history combo

Global history

CAT or XOR
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Local Predictor

Branch PC

Table of
16K entries

of 2-bit
saturating
counters

Table of 64 entries of 14-bit
histories for a single branch

10110111011001

Use 6 bits of branch PC to
index into local history table

14-bit history
indexes into

next level

Also a two-level predictor that only
uses local histories at the first level
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Local Predictor

Branch PC

6 bits Table of
1K entries

Each
entry is
a 2-bit

sat.
counter

The table keeps track of the common-case
outcome for the branch/local-history combo

Local history
10 bit entries

XOR

64 entries

10 bits
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Local/Global Predictors

• Instead of maintaining a counter for each branch to
capture the common case,

Maintain a counter for each branch and surrounding pattern
 If the surrounding pattern belongs to the branch being

predicted, the predictor is referred to as a local predictor
 If the surrounding pattern includes neighboring branches,

the predictor is referred to as a global predictor
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Tournament Predictors

• A local predictor might work well for some branches or
programs, while a global predictor might work well for others

• Provide one of each and maintain another predictor to
identify which predictor is best for each branch

Tournament
Predictor

Branch PC

Table of 2-bit
saturating counters

Local
Predictor

Global
Predictor

M
U
X

Alpha 21264:
1K entries in level-1
1K entries in level-2

4K entries
12-bit global history

4K entries

Total capacity: ?
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Branch Target Prediction

• In addition to predicting the branch direction, we must
also predict the branch target address

• Branch PC indexes into a predictor table; indirect branches
might be problematic

• Most common indirect branch: return from a procedure –
can be easily handled with a stack of return addresses
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Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?
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Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

The index is 12 bits wide, so the table has 2^12 saturating
counters.  Each counter is 3 bits wide.  So total storage
= 3 * 4096 = 12 Kb  or 1.5 KB
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Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC 

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history.  The L2 uses 2-bit counters.
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Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC 

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history.  The L2 uses 2-bit counters.

Selector = 4K * 2b = 8 Kb
Global = 3b * 2^14 = 48 Kb
Local = (12b * 2^8) + (2b * 2^12) = 3 Kb + 8 Kb = 11 Kb
Total = 67 Kb
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Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)
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Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)

PC+4:  2/13 = 15%
1b Bim: (2+6+1)/(4+8+1) 

= 9/13 = 69%
2b Bim: (3+7+1)/13

= 11/13 = 85%
Global: (4+7+1)/13

= 12/13 = 92%
Local: (4+7+1)/13

= 12/13 = 92%
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An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ
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Problem 1

• Show the renamed version of the following code:
Assume that you have 4 rename registers T1-T4

R1  R2+R3
R3  R4+R5
BEQZ  R1
R1  R1 + R3
R1  R1 + R3
R3  R1 + R3
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Problem 1

• Show the renamed version of the following code:
Assume that you have 4 rename registers T1-T4

R1  R2+R3                     T1  R2+R3
R3  R4+R5                     T2  R4+R5
BEQZ  R1                           BEQZ  T1
R1  R1 + R3                   T4  T1+T2
R1  R1 + R3                   T1  T4+T2
R3  R1 + R3                   T2  T1 +R3
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Design Details - I

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions
that enter also get placed in the ROB – the process of an
instruction leaving the ROB (in order) is called commit –
an instruction commits only if it and all instructions before
it have completed successfully (without an exception)

• To preserve precise exceptions, a result is written into the
register file only when the instruction commits – until then,
the result is saved in a temporary register in the ROB
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Design Details - II

• Instructions get renamed and placed in the issue queue –
some operands are available (T1-T6; R1-R32), while 
others are being produced by instructions in flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6)
and broadcast the operand tag (T1-T6) to the issue queue –
instructions now know if their operands are ready

• When a ready instruction issues, it reads its operands from
T1-T6 and R1-R32 and executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more
names (T1-T6), name dependences can be avoided
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Design Details - III

• If instr-3 raises an exception, wait until it reaches the top
of the ROB – at this point, R1-R32 contain results for all
instructions up to instr-3 – save registers, save PC of instr-3,
and service the exception

• If branch is a mispredict, flush all instructions after the
branch and start on the correct path – mispredicted instrs
will not have updated registers (the branch cannot commit
until it has completed and the flush happens as soon as the
branch completes)

• Potential problems: ?
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