
1

Lecture: Review Session

• Datacenters, energy proportionality, GPUs – watch posted
recordings

• Final exam details:
– Tuesday 12/13, 1pm – 3pm
– 80%+ on post-midterm material
– A couple “unseen” problems, a few “short-response” questions
– 3+3 reference sheets (double sided)
– Show steps; calculators allowed

2

Hardware Trends

Why the recent emphasis on accelerators?

– Stagnant single- and multi-thread performance with
general-purpose cores

• Dark silicon (emphasis on power-efficient throughput)
• End of scaling
• No low-hanging fruit

– Emergence of deep neural networks

3

Commercial Hardware

Machine Learning accelerators

Google TPU (inference and training)
Recent NVIDIA chips (Volta, NVDLA)
Microsoft Brainwave, Catapult
Intel Loihi and Nervana
Cambricon
Graphcore (training)
Cerebras (training)
Groq (inference)
Tesla FSD (inference)

4

Machine Learning Workloads

• Dominated by dot-product computations

• Deep neural networks: convolutional and fully-connected layers

• Convolutions exhibit high data reuse

• Fully-connected layers have high memory-to-compute ratio

5

Google TPU

• Version 1: 15-month effort, basic design, only for
inference, 92 TOPs peak, 15x faster than GPU, 40 W
28nm 300 mm2 chip

• Version 2: designed for training, a pod is a collection
of v2 chips connected with a torus topology

• Version 3: 8x higher throughput, liquid cooled

Ref: Google

6

TPU Architecture

8 GB

256 KB

24 MB

Weights are pre-loaded during previous
phase and inputs flow left to right.

7

8

Tesla FSD

• Tesla’s custom accelerator chip, shipping in cars since April 2019
• FSD sits behind the glovebox, consumes 72W
• 18 months for first design, next generation out in 2 years

Image Source: Tesla

9

NN Accelerator Chip (NNA)

• Goals: under 100 W (2% impact on driving range, cooling, etc.),
50 TOPs, batch size of 1 for low latency, GPU support as well,
security/safety.

• Security: all code must be attested by Tesla

• Safety: two completely independent systems on the board that
verify every output

• The FSD 2.5 design (GPU based) consumes 57 W, the 3.0 design
consumes 72 W, but is 21x faster (72 TOPs)

• 20% saving in cost by designing their own chip

10

OoO Timeline

11

Problem 4

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1 [R2] 3 abcd
LD R3 [R4] 6 adde
ST R5 [R6] 4 7 abba
LD R7 [R8] 2 abce
ST R9 [R10] 8 3 abba
LD R11 [R12] 1 abba

12

Problem 1

• Memory access time: Assume a program that has cache
access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
Should you get rid of the L3?

With L3: 1000 + 10x20 + 30x10 + 300x5 = 3000
Without L3: 1000 + 10x20 + 10x300 = 4200

13

Problem 3

• Assume a 2-way set-associative cache with just 2 sets.
Assume that block A maps to set 0, B to 1, C to 0, D to 1,
E to 0, and so on. For the following access pattern,
estimate the hits and misses:

A B B E C C A D B F A E G C G A
M MH M MH MM HM HMM M H M

14

Problem 5

• 8 KB fully-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets (1) ? How many ways (128) ?
• How many index bits (0), offset bits (6), tag bits (34) ?
• How large is the tag array (544 bytes) ?

Equations:
Data array size (cache size) = #sets x #ways x blocksize
Tag array size = #sets x #ways x tagsize
Index bits = log2 (#sets)
Offset bits = log2 (blocksize)
Tag bits + index bits + offset bits = address width

15

Problem 3

• Assume that page size is 16KB and cache block size is 32 B.
If I want to implement a virtually indexed physically tagged
L1 cache, what is the largest direct-mapped L1 that I can
implement? What is the largest 2-way cache that I can
implement?

16

Similar to HW 7, Q1

• Assume a large shared LLC that is tiled and distributed on the
chip. Assume that the OS page size is 16KB. The entire LLC has a
size of 32 MB, uses 128-byte blocks, and is 32-way set-associative.
What is the maximum number of tiles such that the OS has full
flexibility in placing a page in a tile of its choosing?

17

Problem 1

• What is the maximum memory capacity supported by the
following server: 2 processor sockets, each socket has
4 memory channels, each channel supports 2 dual-ranked
DIMMs, and x4 4Gb DRAM chips?

2 sockets x 4 channels x 2 DIMMs x 2 ranks x
16 chips x 4Gb capacity = 256 GB

What is the memory bandwidth available to the server if
each memory channel runs at 800 MHz?
2 sockets x 4 channels x 800M (cycles per second) x
2 (DDR, hence 2 transfers per cycle) x 64 (bits per transfer)
= 102.4 GB/s

18

Problem 4

For the following access stream, estimate the finish times for
each access with the following scheduling policies:
Req Time of arrival Open Closed Oracular
X 10 ns 50 50 50
X+1 15 ns 70 70 70
Y 100 ns 160 140 140
Y+1 180 ns 200 220 200
X+2 190 ns 260 300 260
Y+2 205 ns 320 240 320

Note that X, X+1, X+2, X+3 map to the same row and Y, Y+1
map to a different row in the same bank. Ignore bus and
queuing latencies. The bank is precharged at the start.
** A more sophisticated oracle can do even better.

19

Problem 5

• Consider a single 4 GB memory rank that has 8 banks.
Each row in a bank has a capacity of 8KB. On average,
it takes 40ns to refresh one row. Assume that all 8 banks
can be refreshed in parallel. For what fraction of time will
this rank be unavailable? How many rows are refreshed
with every refresh command?

The memory has 4GB/8KB = 512K rows
There are 8K refresh operations in one 64ms interval.
Each refresh operation must handle 512K/8K = 64 rows
Each bank must handle 8 rows
One refresh operation is issued every 7.8us and the
memory is unavailable for 320ns, i.e., for 4% of time.

20

Meltdown

Attacker code
Fill the cache with your own data X

lw R1 [illegal address]
lw … [R1]

Scan through X and record time per access

21

Spectre: Variant 1

if (x < array1_size)
y = array2[array1[x]];

Victim
Code

x is controlled by
attacker

array1[] is the secret

Access pattern of array2[] betrays
the secret

Thanks to bpred, x can be anything

22

Spectre: Variant 2

R1 (from attacker)
R2 some secret
Label0: if (…)

… …

Victim code

Victim code
Label1:

lw [R2]

Attacker code

Label0: if (1)

Label1: …

23

Snooping Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in
Cache 1

State in
Cache 2

State in
Cache 3

State in
Cache 4

Inv Inv Inv Inv

P1: Rd X Miss Rd X Memory S Inv Inv Inv

P2: Rd X Miss Rd X Memory S S Inv Inv

P2: Wr X Perms
Miss

Upgrade X No response.
Other caches

invalidate.

Inv M Inv Inv

P3: Wr X Write
Miss

Wr X P2 responds Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd X P3 responds.
Mem wrtbk

Inv Inv S S

24

Directory Example

Request Cache
Hit/Miss

Messages Dir
State

State
in C1

State
in C2

State
in C3

State
in C4

Inv Inv Inv Inv

P1: Rd X Miss Rd-req to Dir. Dir responds. X: S: 1 S Inv Inv Inv

P2: Rd X Miss Rd-req to Dir. Dir responds. X: S: 1, 2 S S Inv Inv

P2: Wr X Perms
Miss

Upgr-req to Dir. Dir sends
INV to P1. P1 sends ACK to
Dir. Dir grants perms to P2.

X: M: 2 Inv M Inv Inv

P3: Wr X Write
Miss

Wr-req to Dir. Dir fwds
request to P2. P2 sends

data to Dir. Dir sends data
to P3.

X: M: 3 Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd-req to Dir. Dir fwds
request to P3. P3 sends

data to Dir. Memory wrtbk.
Dir sends data to P4.

X: S: 3, 4 Inv Inv S S

25

Test-and-Test-and-Set

• lock: test register, location
bnz register, lock
t&s register, location
bnz register, lock
CS
st location, #0

26

Spin Lock with Low Coherence Traffic

lockit: LL R2, 0(R1) ; load linked, generates no coherence traffic
BNEZ R2, lockit ; not available, keep spinning
DADDUI R2, R0, #1 ; put value 1 in R2
SC R2, 0(R1) ; store-conditional succeeds if no one

; updated the lock since the last LL
BEQZ R2, lockit ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
bus transactions happen?
1 write by the releaser + i (or 1) read-miss requests +
i (or 1) responses + 1 write by acquirer + 0 (i-1 failed SCs) +
i-1 (or 1) read-miss requests + i-1 (or 1) responses

(The i/i-1 read misses can be reduced to 1)

27

Example Programs

Initially, A = B = 0

P1 P2
A = 1 B = 1
if (B == 0) if (A == 0)

critical section critical section

Initially, A = B = 0

P1 P2 P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A

Initially, Head = Data = 0

P1 P2
Data = 2000 while (Head == 0)
Head = 1 { }

… = Data

28

Problem 1

• What are possible outputs for the program below?

Assume x=y=0 at the start of the program

Thread 1 Thread 2
A x = 10 a y=20
B y = x+y b x = y+x
C Print y

Possible scenarios: 5 choose 2 = 10
ABCab ABaCb ABabC AaBCb AaBbC

10 20 20 30 30
AabBC aABCb aABbC aAbBC abABC

50 30 30 50 30

29

Fences

P1 P2
{ {
Region of code Region of code
with no races with no races

} }

Fence Fence
Acquire_lock Acquire_lock

Fence Fence

{ {
Racy code Racy code

} }

Fence Fence
Release_lock Release_lock

Fence Fence

30

Deadlock

• Deadlock happens when there is a cycle of resource
dependencies – a process holds on to a resource (A) and
attempts to acquire another resource (B) – A is not
relinquished until B is acquired

31

Topology Examples

Grid
Hypercube

Torus

Criteria
64 nodes

Bus Ring 2Dtorus Hypercube Fully
connected

Performance
Diameter

Bisection BW
1
1

32
2

8
16

6
32

1
1024

Cost
Ports/switch

Total links 1
3

64
5

128
7

192
64

2016

32

k-ary d-Cube

• Consider a k-ary d-cube: a d-dimension array with k
elements in each dimension, there are links between
elements that differ in one dimension by 1 (mod k)

• Number of nodes N = kd

Number of switches :
Switch degree :
Number of links :
Pins per node :

Avg. routing distance:
Diameter :
Bisection bandwidth :
Switch complexity :

N
2d + 1
Nd
2wd

d(k-1)/4
d(k-1)/2
2wkd-1

The switch degree, num links, pins per node, bisection bw for
a hypercube are half of what is listed above (diam and avg routing
distance are twice, switch complexity is) because unlike
the other cases, a hypercube does not have right and left neighbors.

Should we minimize or maximize dimension?

(2d + 1)2

(d + 1)2

33

Problem 1

Assume that a server consumes 100W at peak utilization
and 50W at zero utilization. Assume a linear relationship
between utilization and power. The server is capable of
executing many threads in parallel. Assume that a single
thread utilizes 25% of all server resources (functional units,
caches, memory capacity, memory bandwidth, etc.).
What is the total power dissipation when executing 99
threads on a collection of these servers, such that
performance and energy are close to optimal?

For near-optimal performance and energy, use 25 servers.
24 servers at 100% utilization, executing 96 threads,
consuming 2400W. The 25th server will run the last
3 threads and consume 87.5~W.

34

RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our
data from a single disk on a read – in case of a disk error,
read all 9 disks

• Block interleaving reduces thruput for a single request (as
only a single disk drive is servicing the request), but
improves task-level parallelism as other disk drives are
free to service other requests

• On a write, we access the disk that stores the data and the
parity disk – parity information can be updated simply by
checking if the new data differs from the old data

35

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

