
ViChaR: A Dynamic Virtual Channel Regulator for Network-on-Chip Routers*

Chrysostomos A. Nicopoulos, Dongkook Park, Jongman Kim,

N. Vijaykrishnan, Mazin S. Yousif
†
, Chita R. Das

 Dept. of CSE, The Pennsylvania State University
†
Corporate Technology Group, Intel Corp.

 University Park, PA 16802, USA Hillsboro, OR 97124, USA

 {nicopoul,dpark,jmkim,vijay,das}@cse.psu.edu mazin.s.yousif@intel.com

Abstract

The advent of deep sub-micron technology has
recently highlighted the criticality of the on-chip
interconnects. As diminishing feature sizes have led to
increases in global wiring delays, Network-on-Chip
(NoC) architectures are viewed as a possible solution to
the wiring challenge and have recently crystallized into
a significant research thrust. Both NoC performance
and energy budget depend heavily on the routers' buffer
resources. This paper introduces a novel unified buffer
structure, called the dynamic Virtual Channel Regulator
(ViChaR), which dynamically allocates Virtual
Channels (VC) and buffer resources according to
network traffic conditions. ViChaR maximizes
throughput by dispensing a variable number of VCs on
demand. Simulation results using a cycle-accurate
simulator show a performance increase of 25% on
average over an equal-size generic router buffer, or
similar performance using a 50% smaller buffer.
ViChaR's ability to provide similar performance with
half the buffer size of a generic router is of paramount
importance, since this can yield total area and power
savings of 30% and 34%, respectively, based on
synthesized designs in 90 nm technology.

1. Introduction

Rapidly diminishing feature sizes into the nanoscale
regime have resulted in dramatic increases in transistor
densities. While gate delays are scaling down
accordingly, wiring delays are, in fact, increasing; as
wire cross-sections decrease, resistance increases. This
undesirable behavior has transformed the interconnect
into a major hindrance. A signal would require multiple
clock cycles to traverse the length of a large System-on-
Chip (SoC). To combat the delay issues emanating from
slow global wiring, researchers have proposed the use of
packet-based communication networks, known as
Networks-on-Chip (NoC) [1-4]. NoCs, much like macro
networks, can scale efficiently as the number of nodes
(i.e. processing elements) increases. Besides
performance, current designs indicate an additional
alarming trend pertaining to the on-chip interconnect: the

chip area and power budgets are increasingly being
dominated by the interconnection network [5-7]. As the
architectural focus shifts from monolithic, computation-
centric designs to multi-core, communication-centric
systems, communication power has become comparable
to logic and memory power, and is expected to
eventually surpass them [6]. This ominous trend has
been observed by several researchers [1, 5, 8] and the
realization of its ramifications has fueled momentum in
investigating NoC architectures. Researchers have
proposed sophisticated router architectures with
performance enhancements [9], area-constrained
methodologies [7], power-efficient and thermal-aware
designs [5, 10], and fault-tolerant mechanisms [11].

It is known that router buffers are instrumental in the
overall operation of the on-chip network. However, of
the different components comprising the interconnection
fabric of SoCs, buffers are the largest leakage power
consumers in an NoC router, consuming about 64% of
the total router leakage power [12]. Similarly, buffers
consume significant dynamic power [8, 13] and this
consumption increases rapidly as packet flow throughput
increases [13]. In fact, it has been observed that storing a
packet in a buffer consumes far more energy than
transmitting the packet [13]. Furthermore, the area
occupied by an on-chip router is dominated by the
buffers [2, 14, 15]. Consequently, buffer design plays a
crucial role in architecting high performance and energy
efficient on-chip interconnects, and is the focus of this
paper.

1.1. Importance of Buffer Size and Organiza-

tion

Decreasing the buffer size arbitrarily to reclaim
silicon area and minimize power consumption is not a
viable solution, because of the intricate relationship
between network performance and buffer resources.
Buffer size and management are directly linked to the
flow control policy employed by the network; flow
control, in turn, affects network performance and
resource utilization. Whereas an efficient flow control
policy enables a network to reach 80% of its theoretical
capacity, a poorly implemented policy would result in a
meager 30% [16]. Wormhole flow control [17] was
introduced to improve performance through finer-
granularity buffer and channel control at the flit level
instead of the packet level (a flit is the smallest unit of
flow control; one packet is composed of a number of

* This research was supported in part by NSF grants CCR-0208734,

EIA-0202007, CCF-0429631, CNS-0509251, CRI-0454123,

CAREER 0093085, SRC grant 00541, and a grant from

DARPA/MARCO GSRC.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

flits). This technique relaxes the constraints on buffer
size at each router, allowing for a more efficient use of
storage space than store-and-forward and virtual cut-
through [18] switching. However, the channel capacity is
still poorly utilized; while the buffers are allocated at the
flit level, physical paths are still allocated at the packet
level. Hence, a blocked packet can impede the progress
of other packets waiting in line and may also cause
multi-node link blocking (a direct consequence of the
fact that the flits of a single packet are distributed across
several nodes in wormhole routers). To remedy this
predicament, Virtual Channel (VC) flow control [19]
assigns multiple virtual paths (each with its own
associated buffer queue) to the same physical channel. It
has been shown that VC routers can increase throughput
by up to 40% over wormhole routers without VCs [16].
As a side bonus, virtual channels can also help with
deadlock avoidance [20]. The work in this paper
assumes, without loss of generality, the use of VC-based
wormhole flow control, which suits the low buffer
requirements of NoC routers.

The way virtual channels – and hence buffers – are
organized within a router is also instrumental in
optimizing performance. The number of VCs per
physical channel and the VC depth are two parameters
that form an elaborate interplay between buffer
utilization, throughput and latency. Researchers in the
macro-network field have identified the decisive role of
virtual channel organization in overall system
performance [21, 22]. Detailed studies of the relation
between virtual channels and network latency indicate
that for low traffic intensity, a small number of VCs can
suffice. In high traffic rates, however, increasing the
number of VCs is a more effective way of improving
performance than simply increasing the buffer depth
[22]. Under light network traffic, the number of packets
traveling through a router is small enough to be
accommodated by a limited number of VCs; increasing
the number of VCs yields no tangible benefits. Under
high traffic, many packets are contenting for router
resources; increasing VC depth will not alleviate this
contention because of Head-of-Line (HoL) blocking.
Increasing the number of VCs, though, will allow more
packets to share the physical channels. This dichotomy
in VC organization implies that routers with fixed buffer
structures will either be underutilized or will
underperform under certain traffic conditions, as
illustrated in the examples of Figure 1. This figure
highlights the weaknesses of statically-partitioned
buffers.

Since buffer resources come at a premium in
resource-constrained NoC environments (they consume
valuable power and silicon real-estate), it is imperative
to limit the buffer size to a minimum without severely
affecting performance. This objective function can only
be achieved through the use of efficient management
techniques which optimize buffer utilization. Since size
and organization are design-time decisions, they cannot
be dynamically changed during operation based on
observed traffic patterns. However, the use of a carefully
designed buffer controller can significantly affect the
efficiency of storing and forwarding of the flits.
Therefore, the throughput of a switch can be maximized
through dynamic and real-time throttling of buffer
resources.

1.2. A Dynamic Virtual Channel Regulator

Given the aforementioned significance of the NoC
buffers in the area, power and performance triptych, we
thereby introduce ViChaR

∗

: a dynamic Virtual Channel
Regulator, which dispenses VCs according to network
traffic. The ViChaR module is a very compact unit
operating at the granularity of one router input/output
port; therefore, a conventional 5-port NoC router would
employ five such units to oversee buffer management.

ViChaR's operation revolves around two intertwined
concepts which constitute the two fundamental
contributions of this work:

(1) ViChaR uses a Unified Buffer Structure
(UBS), instead of individual and statically partitioned
First-In-First-Out (FIFO) buffers. While the unified
buffer concept is not new, in this work we are revisiting
the concept within the confinements of the strict resource
limitations of on-chip networks. This is the first attempt
to incorporate a unified buffer management in NoC
routers. The new flavor in our endeavor stems from a
fundamentally different implementation approach: we
introduce a novel, table-based design which provides
single-clock operation without incurring prohibitive
overhead. Most importantly though, it enables the use of
a flexible and dynamically varying virtual channel
management scheme, thereby replacing the conventional,
static resource allocation.

(2) ViChaR provides each individual router port
with a variable number of VCs, each of which is
dispensed dynamically according to network traffic
conditions. This translates into fewer but deeper VCs

∗ The name ViChaR was intentionally chosen to echo the word Vicar,

who is someone acting as a substitute or agent for a superior.

VC0H

HD VC1

Inefficient!

VC v

Remaining
buffer slots are

not utilized!

DT

DDT

T
w

o
 p

a
c
k
e

ts

b
lo

c
k
e

d
 d

u
e

 t
o

s
h

a
llo

w
 V

C
s

VC0H

HD VC1

VC v

DT

DDT

A
ll

p
a

c
k
e

ts
 a

re
 s

e
rv

e
d

DDT H

Buffer slots

are fully

utilized

Efficient!

VC0H

VC1

Efficient!

Both packets

accommodated

by deep VCs

DDT

HDDT

Buffer slots

are fully

utilized

VC0H

VC1

Inefficient!

Two packets

accommodated

by deep VCs

DDT

HDDT

Remaining
packets

blocked due to

lack of VCs!

DDT H

DDT H

(a) Light Traffic

Many/Shallow VCs
(b) Heavy Traffic

Many/Shallow VCs

(c) Light Traffic

Few/Deep VCs
(d) Heavy Traffic

Few/Deep VCs

Figure 1. Limitations of a Statically Assigned Buffer Organization (H=Head flit, D=Data/Middle flit, T=Tail flit)

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

under light traffic, and more but shallower VCs under
heavy traffic. This attribute successfully marries two
contradicting buffer organizations, which are impossible
to combine in conventional, statically-allocated buffers.
Furthermore, ViChaR's dynamic allocation scheme
ensures a smooth continuum between these two extremes
(few/deeper VCs versus more/shallower VCs) as the
network intensity fluctuates.

The proposed ViChaR architecture and a generic
buffer architecture were synthesized in 90 nm
technology. Area and power extracts indicate that a
modest overhead in area and power due to more
elaborate control logic in ViChaR is amortized by
greater area and power gains through the use of fewer
virtual channel arbiters. Thus, overall ViChaR allows for
4% area reduction and incurs a minimal 2% power
increase compared to an equal-size generic buffer
implementation. Further, simulations with a cycle-
accurate NoC simulator under various traffic patterns
show that ViChaR reduces network latency by 25% on
average compared to a generic buffer of equal size.
Alternatively, ViChaR can achieve the same
performance as a conventionally buffered router by
using 50% less buffer space. This result is of profound
significance because it allows the designer to reduce the
buffer size by half without affecting performance. This
yields net area and power benefits of around 30% and
34%, respectively, over the entire NoC router.

The rest of the paper is organized as follows: a
summary of related work is presented in Section 2, the
proposed ViChaR architecture is analyzed in Section 3,
simulation results are discussed in Section 4, and the
concluding remarks are given in Section 5.

2. Related Work in Buffer Design

Interest in packet-based on-chip networks has rapidly
gained momentum over the last few years, and analysis
and optimization of on-chip interconnect architectures
have garnered great attention. In this section, we focus
solely on buffer related aspects. Within the realm of on-
chip buffer design, both size and organization have been
shown to be directly related to network performance
[14]. Buffer sizing in particular has been investigated in
[14, 15]. However, these papers adopt a static approach,
where optimal buffer sizes are pre-determined at design-
time based on a detailed analysis of application-specific
traffic patterns. The sizing is optimal for only one
particular application and one hardware mapping.
However, a technique to dynamically alter the buffer
organization at run-time is more desirable for a general
purpose and reconfigurable SoC executing different
workloads. A dynamic scheme would maximize
utilization regardless of the traffic type in the NoC.

Centralized buffer organizations have been studied
extensively in the macro-network realm, but the
solutions proposed are not amenable to resource
constrained on-chip implementations. In particular, a
unified and dynamically-allocated buffer structure was
originally presented in [23] in the form of the
Dynamically Allocated Multi-Queue (DAMQ) buffer.
However, whereas the DAMQ architecture was part of a
single-chip communication coprocessor for multi-
computer systems, the proposed implementation in this

paper is aimed at area- and power-constrained, ultra-low
latency on-chip communication. This profoundly
affected our design considerations as follows:

(1) The DAMQ used a fixed number of queues (i.e.
virtual channels) per input port. Specifically, four queues
were used, one for each of three output ports and a local
processor interface. Consequently, all packets in the
same queue had to obey the FIFO order, i.e. all packets
in the same queue could still get stuck behind a blocked
packet at the head of the queue.

(2) The control logic of the DAMQ buffer was very
complex, relying on a system of linked lists to organize
the data path. These linked lists were stored in pointer
registers which had to be updated constantly. This
caused a three-cycle delay for every flit
arrival/departure, mainly because data had to be moved
between pointer registers, and a so-called "free list" had
to be updated (a linked list keeping track of available
buffer slots) [24]. This three-cycle delay – while
acceptable for inter-chip communication – would prove
intolerable in an on-chip router.

The DAMQ project spawned a few other designs,
which aimed to simplify the hardware implementation
and lower overall complexity. Two notable examples of
these designs were the DAMQ with self-compacting
buffers [25] and the Fully Connected Circular Buffer
(FC-CB) [26]. Both designs have less overhead than the
linked-list approach of [23] by employing registers,
which selectively shift some flits inside the buffer to
enable all flits of one VC to occupy a contiguous buffer
space. The FC-CB design [26] improves on [25] by
using a circular structure, which shifts in only one
direction and ensures that any flit will shift by at most
one position each cycle. However, the FC-CB has two
main disadvantages when applied to an on-chip network.
First, being fully connected, it requires a P

2
 x P crossbar

instead of the regular P x P crossbar for a P-input
switch. Such large and power-hungry crossbars are
unattractive for on-chip routers. Second, the circular
shifter allows an incoming flit to be placed anywhere in
the buffer and requires selective shifting of some parts of
the buffer while leaving the rest of the buffer
undisturbed. This functionality inflicts considerable
increases in latency, area and power over a simple, non-
shifting buffer implementation, like the proposed
ViChaR design. The overhead is due to the large
MUXes which are required between each buffer slot to
enable both shifting and direct input.

The circular-shift buffer of the FC-CB was
implemented in Verilog HDL and synthesized in 90 nm
commercial TSMC libraries to assess its viability in on-
chip designs. The circular buffer implementation of the
FC-CB increases the datapath delay by 26% compared to
ViChaR's stationary (i.e. non-shifting) buffer. Increases
in datapath delay may affect the pipeline period in
deeply pipelined router designs; a longer period will
adversely affect throughput. Moreover, the FC-CB's
large MUXes incur an increase of approximately 18% in
buffer area. More importantly, though, the continuous
shifting of the FC-CB buffer every clock cycle
(assuming continuous incoming traffic) increases the
dynamic power budget by 66%. Obviously, this
overhead renders the FC-CB implementation

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

unattractive for on-chip applications. Finally, the FC-CB
still works with a fixed number of VCs, just like the
DAMQ design. In this paper, we will show that a
dynamically variable number of VCs optimizes
performance.

The notion of dynamically allocating VC resources
based on traffic conditions was presented in [27],
through the VCDAMQ and DAMQ-with-recruit-
registers (DAMQWR) implementations. However, both
designs were coupled to DAMQ underpinnings; hence,
they employed the linked-list approach of the original
DAMQ, which is too costly for an on-chip network.
Nevertheless, the work of [27] highlighted the
significance of dynamic allocation of buffer resources,
which forms the premise of the design proposed in this
paper.

Finally, the Chaos router [28] and BLAM routing
algorithm [29] provide an alternative technique to saving
buffer space. They employ packet misrouting, instead of
storage, under heavy load. However, randomized (non-
minimal) routing may make it harder to meet strict
latency guarantees required in many NoCs (e.g.,
multimedia SoCs). Moreover, these schemes do not
support dynamic VC allocation to handle fluctuating
traffic.

3. The Proposed Dynamic Virtual Channel

Regulator (ViChaR)

3.1. A Baseline NoC Router

A generic NoC router architecture [9] is illustrated in
Figure 2. The router has P input and P output
channels/ports. In most implementations, P=5; four
inputs from the four cardinal directions (North, East,
South and West) and one from the local Processing
Element (PE). The Routing Computation unit, RC, is
responsible for directing the header flit of an incoming
packet to the appropriate output Physical Channel/port
(PC) and dictating valid Virtual Channels (VC) within
the selected PC. The routing is done based on
destination information present in each header flit, and
can be deterministic or adaptive. The Virtual channel
Allocation unit (VA) arbitrates amongst all packets

requesting access to the same VCs and decides on
winners. The Switch Allocation unit (SA) arbitrates
amongst all VCs requesting access to the crossbar and
grants permission to the winning flits. The winners are
then able to traverse the crossbar and are placed on the
respective output links. Simple router implementations
require a clock cycle for each component within the
router. Lower-latency router architectures parallelize the
RC, VA and SA using speculative allocation [30], which
predicts the winner of the VA stage and performs SA
based on that. Further, look-ahead routing can also be
employed to perform routing of node i+1 at node i.
These two modifications have led to two-stage, and even
single-stage [9], routers, which parallelize the various
stages of operation.

So far, as a result of scarce area and power resources
and ultra-low latency requirements, on-chip routers have
relied on very simple buffer structures. In the case of
virtual channel-based NoC routers, these structures
consist of a specified number of FIFO buffers per input
port, with each FIFO corresponding to a virtual channel.
This is illustrated in Figure 2. Such organization
amounts to a static partitioning of buffer resources.
Hence, each input port of an NoC router has v virtual
channels, each of which has a dedicated k-flit FIFO
buffer. Current on-chip routers have small buffers to
minimize their overhead; v and k are usually much
smaller than in macro networks [9]. The necessity for
very low latency dictates the use of a parallel FIFO
implementation, as shown in the bottom right of Figure
2. As opposed to a serial FIFO implementation [31], the
parallel flavor eliminates the need for a flit to traverse all
slots in a pipelined manner before exiting the buffer
[31]. This fine-grained control requires more complex
logic, which relies on read and write pointers to maintain
the FIFO order. Given the small sizes of on-chip buffers,
though, the inclusion of a parallel FIFO implementation
is by no means prohibitive. The buffers within an NoC
router can be implemented as either registers or
SRAM/DRAM memory [32, 33]. However, given the
relatively small buffer sizes employed, it is more
reasonable to use small registers as buffers to avoid the
address decoding/encoding latencies of big memories

VC 1

VC v

Crossbar
(P x P)

Routing
Computation

(RC)

VC Allocator

(VA)

Switch
Allocator (SA)

Credits

in

VC Identifier

Input
Port P

In
p

u
t

C
h

a
n

n
e
l
1

C
re

d
it

o
u

t

Output
Channel 1

Output
Channel P

Generic NoC Router

Input
Port 1

VC 2

VC 1

VC Identifier

F
li

t
1

F
li

t
2

F
li

t
3

F
li

t
k

VC 2

F
li

t
1

F
li

t
2

F
li

t
3

F
li

t
k

VC v

F
li

t
1

F
li

t
2

F
li

t
3

F
li

t
k

Input
Channel P

Input Port P

F
ro

m
S

A
T

o
C

ro
s
s

b
a
r

One FIFO buffer

per VC

VC 1

Flit 1

Flit 2

Flit 3

Flit k

Control Logic
(Read/Write

Pointers) R
e

a
d

P

o
in

te
r

W
ri

te

P
o

in
te

r

From
Input

DEMUX

T
o

 O
u

tp
u

t
M

U
X

VC Identifier SA Control

Parallel
FIFO

Implementation

In
p

u
t

C
h

a
n

n
e
l
P

C
re

d
it

o
u

t

VC0HH

H

H

VC1

VC2

VC3

Head-of-Line

(HoL) Blocking

HHBlocked flits
at the head of

the queue block

following packets

VC0H

H

VC1

VC2

VC3

These slots
cannot be used

by other packets
(to avoid packet

mixing)

DD

DD

DD
Buffers are
underutlized

H=Head flit, D=Data flit, T=Tail flit

DD

T D

*Atomic buffer
allocation assumed

*Non-atomic buffer

allocation assumed

Figure 2. A Generic NoC Router Architecture Figure 3. Limitations of Existing FIFO Buffers

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

and the access latencies associated with global
bitlines/wordlines [32]. To this extent, the NoC buffers
in this paper were implemented as registers.

FIFO buffers in statically assigned buffer structures
have two inherent disadvantages. First, a packet at the
head of a VC whose designated output port is busy will
block all subsequent packets in that VC from being
transmitted (assuming non-atomic buffer allocation)
even if their designated output ports are free. This Head-
of-Line (HoL) blocking can severely affect network
performance in congested conditions, similar to the
previously discussed DAMQ. This scenario is illustrated
at the top of Figure 3. Second, if only part of a packet
occupies a VC buffer at a given time, then any vacant
slots in that buffer cannot be reassigned to a new packet
for as long as that VC is reserved by the partial packet to
avoid packet/message mixing. Thus, a VC buffer may
only be occupied by a single header flit because the
remaining flits happen to be blocked in preceding routers
due to congestion. In such a scenario, the remaining free
slots in the buffer cannot be assigned to other packets
until the tail flit of the current packet releases the VC.
This attribute of FIFO buffers can lead to substantial
under-utilization of the buffers, as shown at the bottom
of Figure 3, and cripple network performance.

3.2. The ViChaR Architecture

Figure 4 illustrates the buffer organization of a
conventional NoC router (left) and our proposed
alterations (right). The crux of ViChaR is composed of
two main components: (1) the Unified Buffer Structure
(UBS), shown in Figure 4, and (2) the associated control
logic, called Unified Control Logic (UCL).

Figure 4 shows only one of the five sub-modules of
UCL, the Arriving/Departing Flit Pointer Logic. This
sub-module constitutes the interface between the UBS
and the UCL; the UCL controls the unified buffer (UBS)
through the Arriving/Departing Flit Pointer Logic
module. A top-level block diagram of the entire ViChaR
architecture is shown in Figure 6. This figure illustrates
all five of the UCL sub-modules: (1) the
Arriving/Departing Flit Pointers Logic, (2) the Slot
Availability Tracker, (3) the VC Availability Tracker, (4)
the VC Control Table, and (5) the Token (VC)
Dispenser. The operation of each component and the

interaction between the UBS and its controlling entity
(the UCL) are described in detail in section 3.2.2. All
five modules function independently and in parallel,
which is of critical importance to the ultra-low latency
requirements of the router. The UCL components work
in tandem with the unified buffer (UBS), providing
dynamic allocation of both virtual channels and their
associated buffer depth. As illustrated in Figure 6, the
two main ViChaR components (UBS and UCL) are
logically separated into two groups: the unified buffer
(UBS) and two of the five UCL modules (the
Arriving/Departing Flit Pointers Logic and the Slot
Availability Tracker) are situated at the input side of the
router (i.e. to accept all incoming flits), while the
remaining modules of the control logic (UCL) are
responsible for the VC arbitration of all flits destined to
a particular output port. Based on incoming traffic and
information from the Slot and VC Availability Trackers,
the Token (VC) Dispenser grants VC IDs to new packets
accordingly. The VC Control Table is the central hub of
ViChaR's operation, keeping track of all in-use VCs and
a detailed status of the unified buffer (UBS). When flits
arrive and/or depart, the Arriving/Departing Flit Pointers
Logic controls the UBS's MUXes and DEMUXes in
accordance with the VC Control Table.

It is important to realize that the UBS is physically
identical to the generic buffer structure: the v
independent k-flit FIFO buffers of a traditional
implementation are simply logically grouped in a single
vk-flit entity (the UBS in Figure 4). Hence, other than
the control logic, there is no additional hardware
complexity, since the vk-flit UBS is NOT a large,
monolithic structure; it groups the existing buffers
together, and it is only through the use of its control
mechanism (the UCL) that the buffers appear as a
logically unified structure. As shown in Figure 4, UBS
retains the same number of MUXes/DEMUXes as the
generic implementation, i.e. one MUX/DEMUX per k
flits, to avoid large (and hence slower) components.

3.2.1. Variable Number of Virtual Channels. Where-
as a conventional NoC router can support only a fixed,
statically assigned number of VCs per input port (namely
v, as shown in Figure 4), the ViChaR architecture can
have a variable number of assigned VCs, based on

V
C

 1

Flit 1

Flit 2

Flit 3

Flit k

R
e

a
d

P

o
in

te
r

W
ri

te

P
o

in
te

r

VC Identifier SA Control

V
C

 v

Flit 1

Flit 2

Flit 3

Flit k

VC Identifier SA Control

In
p

u
t

D
E

M
U

X

In
p

u
t

P
o

rt
 P

O
u

tp
u

t
M

U
X

Unified Buffer

Structure (UBS)

Flit 1

Flit 2

Flit 3

Flit k

Flit vk

VC Identifier SA Control
In

p
u

t
D

E
M

U
X

In
p

u
t

P
o

rt
 P

O
u

tp
u

t
M

U
X

Flit k+1

Flit k+2

Flit k+3

Flit 2k

VC
Identifier

SA
Control

One DEMUX per k

buffer slots (just

like generic case)

to avoid oversized

components

Generic Buffer Organization Proposed ViChaR Buffer Organization

Parallel
FIFO

Implement.
Arriving/Departing
Flit Pointers Logic

Control Logic

(R/W Pointers)

Control Logic
(R/W Pointers)

R
e

a
d

P
o

in
te

r

W
ri

te

P
o

in
te

r

Part of

UCL

Rest of UCL

H

H

H

H

H

H

H

H

H

H

H

H

1

2

3

4

vk

k

k

k

H

H

H

H

H

vk in-use
VCs

(1 slot/VC)

v in-use
VCs

(k slots/VC)

Between v
and vk

in-use VCs

H=Head flitViChaR’s UBS

Figure 4. The Proposed ViChaR Architecture Figure 5. Possible VC Configurations in ViChaR

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

network conditions. ViChaR assigns at most one packet
to each VC so as to enable fine flow control granularity;
on the contrary, the sharing of a single VC by multiple
packets can lead to situations where a blocked packet
impedes the progress of another packet which happens to
use the same VC (known as HoL blocking, as described
in Section 3.1). A vk-flit ViChaR structure can support
anywhere between v VCs (when each VC occupies the
maximum of k flits) and vk VCs (when each VC
occupies the minimum of 1 flit) at any given time under
full load. This variability in the number of in-use VCs is
illustrated in Figure 5. To aid understanding, each VC in
Figure 5 is shown to occupy a contiguous space in the
buffer (UBS); in reality, however, this may not be the
case because the UBS allows the VCs to include non-
consecutive buffer slots (this fact will be explained in
more detail in Section 3.2.2). Hence, the system can
support a variable number of in-flight packets per port,
dynamically allocating new VCs when network
conditions dictate it. Dynamic variability in in-flight
messages can increase throughput under heavy traffic.

As a result of its unified buffer and dynamic
behavior, the ViChaR structure alters the Virtual channel
Allocation (VA) logic of the router. Since the router
function may return multiple output VCs restricted to a
single physical channel [30], two arbitration stages are
required in both the generic and ViChaR cases, as shown
in Figure 7. In the generic case, the first stage reduces
the number of requests from each input VC to one (this
ensures the request of a single VC at a particular output
port by each input VC). Subsequently, the winning
request from each input VC proceeds to the second
arbitration stage. Details of the VA operation are omitted
for brevity, but can be found in [30].

In the proposed ViChaR architecture, VA takes a
different approach due to the dynamic VC allocation
scheme: the first arbitration stage reduces the number of
requests for a particular output port to one request per
input port. The generic router (Figure 7(a)) requires v:1
arbiters, since the number of VCs supported is fixed to v.
ViChaR, on the other hand, supports anywhere between
v and vk VCs per port at any given time. To
accommodate the worst case scenario (i.e. vk in-flight
VCs), ViChaR needs larger vk:1 arbiters in stage 1 of the
allocation (Figure 7(b)). The second arbitration stage in
ViChaR produces a winner for each output port among
all the competing input ports. Therefore, while the
proposed ViChaR architecture uses larger Stage 1

arbiters (vk:1 vs. v:1), it uses much smaller and fewer
Stage 2 arbiters. The reason for the simplified second
stage is that ViChaR dynamically allocates VCs as
needed, instead of accepting requests for specific VCs
(which would necessitate one arbiter per output VC, just
like the generic case). It is this attribute that helps the
ViChaR implementation incur only a slight increase in
power consumption (and even achieve a small area
decrease), compared to a generic architecture, as will be
shown shortly.

The variable number of VCs supported by ViChaR
also necessitates bigger arbiters in the first stage of
Switch Allocation (SA), as shown in Figure 8. Similar to
VA, switch allocation is performed in two stages. The
first stage accounts for the sharing of a single port by a
number of VCs. Again, ViChaR needs larger vk:1
arbiters. The second stage arbitrates between the
winning requests from each input port (i.e. P ports) for
each output port; thus, it is the same for both
architectures. The ViChaR overhead due to the bigger
stage-1 SA arbiters (illustrated in Table 1's detailed
breakdown) is almost fully amortized by the bigger
savings resulting from the smaller VA stage discussed
previously.

To analyze the area and power overhead, NoC
routers with (a) a generic buffer and (b) the proposed
ViChaR buffer were implemented in structural Register-
Transfer Level (RTL) Verilog and then synthesized in
Synopsys Design Compiler using a TSMC 90 nm
standard cell library. The resulting designs operate at a
supply voltage of 1 V and a clock frequency of 500
MHz. The routers have 5 input ports (i.e. P=5), 4 VCs
per input port (i.e. v=4), each VC is four-flit deep (i.e.
k=4), and each flit is 128 bits long. Both area and power
estimates were extracted from the synthesized router
implementations. A comparison of the area and power
overhead of the two schemes is shown in Table 1. Note
that both routers have equal buffer space (vk=16 buffer
slots per input port) for fairness. It is evident that while
ViChaR incurs an overhead in terms of control logic and
switch allocation (SA), this overhead is over-
compensated (in terms of area) by a larger reduction in
the VA logic. Thus, the ViChaR model provides area
savings of around 4%. In terms of power, ViChaR
consumes slightly more power (1.75%). This power
increase, however, is negligible compared to the
performance benefits of ViChaR, as will be
demonstrated in Section 4.

In
p

u
t

D
E

M
U

X

O
u

tp
u

t
M

U
X

UBS

T
o

 C
ro

s
s
b

a
r

Flit
In

Input Port P

Arriving/Departing
Flit Pointers Logic

1st Stage

(Local) VC
Arbitration (VA)

2nd Stage

(Global) VC
Arbitration (VA)

Slot Availability
Tracker

VC Availability

Tracker

VC Control Table

Token (VC)
Dispenser

Logic For Output Port P

UCL

From/To Other Input Ports
Unified Control Logic (UCL)

Winners of 1
st
 Stage

(Local) VA from other

Input Ports

Part of UCL

(See Figure 7) (See Figure 7)

UCL-UBS
Control Signals

Figure 6. ViChaR Block Diagram (Only One of P Ports Shown Here)

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

3.2.2. ViChaR Component Analysis. The key
challenges in designing ViChaR were to avoid (a)
deepening the router's pipeline, and (b) decreasing the
operating frequency. To circumvent the multi-cycle
delay induced by a linked-list approach [23] to ViChaR,
we opted instead for a table-based approach, as
illustrated in Figure 10. This logic is required for each
output port in the router. Following is a break-down of
the control logic (UCL) sub-modules of the proposed
ViChaR architecture:

VC Control Table: The VC Control Table (see
Figure 10) forms the core of the control logic of
ViChaR. It is a compact table, holding the slot IDs of all
flits currently in the buffers, which are requesting the
particular output port (e.g. West). Note that since the
number of buffer slots in on-chip routers is resource-
constrained, the size of the table is minimal, as
demonstrated by the low overhead in the control logic in
Table 1. The VC Control Table is organized by VC ID,
with each VC having room for at most a single packet.
Without loss of generality, in this work we assumed a
packet to consist of four flits: a Head flit, two Data
(middle) flits, and a Tail flit. The packet size is assumed
to be constant, but the table can trivially be changed to
accommodate a variable-sized packet protocol. As seen
in the VC Control Table box of Figure 10 (right-hand
side), the VCs can include non-consecutive buffer slots
(e.g. VC1 comprises of slots 2, 4, 6 and 7) of the South
input port (i.e. flits arriving from the South). This
attribute allows full-flexibility in buffer utilization and
avoids the issues encountered in statically-allocated
buffers. VC3 only occupies one slot (10) in Figure 10. In
a static buffer, 3 additional slots would have to be
reserved for the remaining flits of VC3; those slots
would remain unused if the remaining flits happened to
be blocked in previous routers. Instead, in ViChaR those
slots can be used by other VCs, thus maximizing the
buffer utilization. Furthermore, the use of a table-based
controller makes the management of a variable number
of VCs very easy: non-used VCs are simply NULLed out
in the VC Control Table (e.g. VC4 in Figure 10).

Arriving/Departing Flit Pointers Logic: The Flit
Pointers Logic directly controls the Input and Output
MUXes/ DEMUXes of the unified buffer (UBS), as

illustrated in Figure 9, and is directly linked to the VC
Control Table module. Once a flit departs, its location in
the VC Control Table is invalidated by asserting a
NULL bit. There is a set of such pointers for each VC in
the table. However, the overhead is minimal due to the
simplicity of the pointer logic; both Departing and
Arriving Flit Pointers are implemented in combinational
logic and simply have to observe the non-NULL
locations in their VC. For example, the Departing Flit
pointer points at the first non-NULL location (in its
particular VC) starting from the left of the table, as
shown on the right side of Figure 10 for VC2 (in the VC
Control Table box). If all the entries in a single row of
the VC Control Table are NULL, then the VC must be
empty; thus, the pointer logic releases the VC by
notifying the VC Availability Tracker (Release Token
signal in Figure 9). When a new flit arrives, the pointer
logic guides the flit to the appropriate slot in the unified
buffer (UBS), based on the flit's VC ID and information
from the Slot Availability Tracker. Finally, newly
arrived header flits in the UBS can request an output VC
by first undergoing local (1

st
 stage) arbitration (top right

of Figure 9), and then global (2
nd

 stage) arbitration
(bottom left of Figure 10).

VC and Slot Availability Trackers: The VC
Availability Tracker simply keeps track of all the VCs in
the VC Control Table that are not used. The Token (VC)
Dispenser dynamically assigns VCs to new incoming
packets based on information provided by the VC
Availability Tracker. Similarly, the Slot Availability
Tracker keeps track of all the UBS slots which are not in
use. When a new flit arrives, it is stored into a slot
indicated by the Slot Availability Tracker. The VC and
Slot Availability Trackers are functionally identical.
They consist of a small table, as shown at the bottom
right of Figure 9 (Slot Availability Tracker) and the top
left of Figure 10 (VC Availability Tracker). Each row of
the table corresponds to one VC ID (in the VC
Availability Tracker) or one buffer slot (in the Slot
Availability Tracker). For each entry in the table, one bit
indicates that the VC/Slot is available (logic 1) or
occupied (logic 0). Both trackers have a pointer which
points to the top-most available entry. If all VCs are
occupied (i.e. all-zero table in the VC Availability

v:1
Arbiter

1

v:1
Arbiter

v

1
st

 stage arbiters

In
p

u
t

P
o

rt
 1

Pv:1
Arbiter

1

Pv:1
Arbiter

v

O
u

tp
u

t
P

o
rt

 1
Pv:1

Arbiter

1

Pv:1
Arbiter

v

O
u

tp
u

t
P

o
rt

 P
v:1

Arbiter

1

v:1
Arbiter

v

In
p

u
t

P
o

rt
 P

2
nd

 stage arbiters

One v:1 Arbiter
per Input VC

(Total of Pv v:1
Arbiters)

One Pv:1 Arbiter
per Output VC

(Total of Pv Pv:1
Arbiters)

vk:1
Arbiter

1

vk:1
Arbiter

P

1st stage arbiters

In
p

u
t

P
o

rt
 1

P:1
Arbiter

O
u

tp
u

t
P

o
rt

 1

P:1
Arbiter

O
u

tp
u

t
P

o
rt

 P

vk:1
Arbiter

1

vk:1
Arbiter

P

In
p

u
t

P
o

rt
 P

2nd stage arbiters

P vk:1 Arbiters
per Input Port

(Total of P2
vk:1 Arbiters)

One P:1 Arbiter
per Output Port
(Total of P P:1

Arbiters)

Table-
Based

Dynamic
VC

Arbitration
(UCL)

Table-
Based

Dynamic
VC

Arbitration
(UCL)

See Figure 10

v:1

Arbiter

1
st

 stage arbiters

In
p

.
P

o
rt

 1

2
nd

 stage arbiters

One v:1 Arbiter

per Input Port

(Total of P v:1
Arbiters)

One P:1 Arbiter

per Output Port

(Total of P P:1
Arbiters)

v:1

Arbiter

In
p

.
P

o
rt

 P

P:1

Arbiter

O
u

t.
 P

o
rt

 1

P:1

Arbiter

O
u

t.
 P

o
rt

 P

vk:1

Arbiter

1
st

 stage arbiters

In
p

.
P

o
rt

 1

2
nd

 stage arbiters

One vk:1 Arbiter

per Input Port

(Total of P vk:1
Arbiters)

One P:1 Arbiter

per Output Port

(Total of P P:1
Arbiters)

vk:1

Arbiter

In
p

.
P

o
rt

 P

P:1

Arbiter

O
u

t.
 P

o
rt

 1

P:1

Arbiter

O
u

t.
 P

o
rt

 P

(a) Generic Case [30] (b) ViChaR Case (a) Generic Case (b) ViChaR Case

Figure 7. Virtual Channel Arbitration (VA) Figure 8. Switch Allocation (SA)

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Tracker), the Token (VC) Dispenser stops granting new
VCs to requesting packets. Similarly, an all-zero table in
the Slot Availability Tracker implies a full buffer (UBS);
this is reflected in the credit information sent to adjacent
routers. The functionality of the VC/Slot Availability
Trackers is implemented in combinational logic, similar
to the Flit Pointers Logic described above.

Token (VC) Dispenser: The Token (VC) Dispenser
interfaces with the P:1 Arbiter and is responsible for
dispensing free VCs to requesting packets. VCs here are
like tokens; they are granted to new packets and then
returned to the dispenser upon release. The flow diagram
of the Dispenser's operation is illustrated on the right-
hand side of Figure 10. Based on information provided
by the VC Availability Tracker, the Token Dispenser
decides whether to grant a VC or not. The VC dispenser
keeps checking for possible deadlock situations among
the in-use VCs. Deadlocks may occur in networks which
employ adaptive routing schemes. If a pre-specified time
threshold is exceeded, the Token Dispenser can channel
an existing VC into one of the escape VCs to break the
deadlock. As a proof of concept of ViChaR's
functionality, the experiments in this paper use
deterministic (XY) routing, which is inherently
deadlock-free. However, ViChaR was designed to
operate under adaptive routing schemes as well.
Therefore, the Token (VC) Dispenser needs to account
for possible deadlock situations. Toward that extent, a
number of VCs can be designated as "escape", or "drain"
channels to provide deadlock recovery in adaptive
routing algorithms (escape channels employ a
deterministic routing algorithm to break the deadlock)
[34]. The Dispenser needs to switch deadlocked flits into
these escape channels if there is a need. One experiment
in Section 4.2 validates the effectiveness of this
technique under adaptive routing.

Assuming that no deadlock situation exists, the
Token Dispenser can proceed with its normal operation.
The Dispenser grants new VCs on a First-Come-First-
Served (FCFS) basis; if a new header flit wins the VC
arbitration and the VC Availability Tracker indicates
that a free VC is available, then the new packet will be
granted a new VC. The Dispenser does not give priority

to flits of existing VCs. In principle, a more elaborate
mechanism could be used for dispensing new VCs,
which would monitor on-going traffic and reach a
decision based on some quantitative metric or prior
traffic history. However, given the highly restrictive
objective function of minimal area, power and latency
budgets in the design of on-chip networks, such complex
monitoring mechanisms were deemed infeasible. After
all, ViChaR was architected to operate within one clock
cycle. The use of an FCFS scheme in the Token
Dispenser turns out to be very efficient at maximizing
performance. The Dispenser is able to self-throttle the
dispensing of new VCs based on traffic conditions: if
more packets request a channel (high traffic) more VCs
are dispensed; if fewer packets are present (low traffic)
fewer VCs are granted and more buffer depth is allotted
to existing VCs.

ViChaR's Effect on the Router Pipeline: The
control logic (UCL) of ViChaR was designed in such a
way as to decouple the operation of the sub-modules
from each other. Thus, sub-modules are kept compact
and can all operate in parallel, hence completing the
entire operation in a single clock cycle. This is a
significant improvement over the three-clock cycle delay
of [23]. Figure 11 shows the pipeline stages of both a
generic and the ViChaR router pipelines. As previously
mentioned, the ViChaR architecture modifies the VA
and SA stages (Stages 2 and 3 in Figure 11). The dark-
colored boxes indicate the components modified/added
in the ViChaR structure as compared to the generic case.
As shown in the figure, the additional hardware operates
in parallel without affecting the critical path of the
router. This fact is also verified by our studies of the
critical path delays of all major components of the router
architectures (extracted from the synthesized designs). In
both cases, the bottleneck that determines the minimum
clock period is the arbitration logic (for the VA and SA
stages, as shown in Figure 7 and Figure 8, respectively).
All the components of the ViChaR router remain within
the slack provided by the slower arbiters. Hence, the
ViChaR architecture does not affect the pipeline depth
or the clock frequency. Furthermore, since ViChaR does
not create any interdependencies between pipeline

In
p

u
t

D
E

M
U

X

O
u

tp
u

t
M

U
X

UBS

Arriving

Flit

Pointers
Logic

Departing

Flit

Pointers
LogicNO

YES

T
o

 C
ro

s
s
b

a
r

Flit In

empty
VC?

Next
Avail.

Slot

V
C

 I
d

e
n

ti
fi

e
r

Release
Slot

Release

Token (VC)

T
o

 r
e

s
t

o
f

U
n

if
ie

d
 C

o
n

tr
o

l

L
o

g
ic

 (
U

C
L

)
(F

ig
u

re
 1

0
)

vk:1

Arbiter

1

R
e

q
u

e
s

ts
 f

o
r

O
u

tp
u

t
P

o
rt

 1

(e
.g

.
E

a
s
t)

Grant

1

vk1
st

 stage arbiters
(Figure 7)

Slot

1
0

2

vk-1

8

N
e

x
t

A
v
a

il
.

S
lo

t
P

o
in

te
r

Avail.?
0
0
0

1

1

Slot Avail. Tracker

Slot

Availability

Tracker

P

C
re

d
it

s

O
u

t

Table 1. Area and Power Overhead of the ViChaR Architecture.
The results in this table assume equal-size buffers for both router
designs. However, ViChaR's efficient buffer management scheme

allows for a 50% decrease in buffer size with no performance
degradation (see Section 4). In such a case, area and power is
reduced by 30% and 34%, respectively, over the whole router.

Component (one input port) Area (in µm2) Power (in mW)

ViChaR Table-Based Contr. Logic 12,961.16 5.36

ViChaR Buffer Slots (16 slots) 54,809.44 15.36

ViChaR VA Logic 27,613.54 8.82

ViChaR SA Logic 6,514.90 2.06

TOTAL for ViChaR Architecture 101,899.04 31.60

Generic Control Logic 10,379.92 5.12

Generic Buffer Slots (16 slots) 54,809.44 15.36

Generic VA Logic 38,958.80 9.94

Generic SA Logic 2,032.93 0.64

TOTAL for Gen. Architecture 106,181.09 31.06

ViChaR Overhead / Savings
- 4,282.05

4.03%
SAVINGS

+ 0.54
1.74%

OVERHEAD

Figure 9. The ViChaR UBS Architecture (One Input Port
Shown)

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

stages, it can also be used in speculative router
architectures which minimize the pipeline length.

4. Simulation Results

4.1. Simulation Platform

A cycle-accurate on-chip network simulator was used
to conduct detailed evaluation of the architectures under
discussion. The simulator operates at the granularity of
individual architectural components. The simulation test-
bench models the pipelined routers and the
interconnection links. All simulations were performed in
a 64-node (8x8) MESH network with 4-stage pipelined
routers. Each router has 5 physical channels (ports)
including the PE-router channel. The generic router
(shown as "GEN" in results graphs) has a set of 4 virtual
channels per port. Each VC holds four 128-bit flits (i.e. a
total of 5x4x4=80 buffer slots). The ViChaR router
("ViC" in results graphs) has a 16-flit unified buffer per
port (i.e. a total of 5x16=80 buffer slots, just like the
generic case). One packet consists of four flits. The
simulator keeps injecting messages into the network until
300,000 messages (including 100,000 warm-up
messages) are ejected. Two network traffic patterns were
investigated: (1) Uniform Random (UR), where a node
injects messages into the network at regular intervals
specified by the injection rate, and (2) Self-Similar (SS),
which emulates internet and Ethernet traffic. For
destination node selection, two distributions were used:
(1) Normal Random (NR), and (2) Tornado (TN) [35].
In all cases, except one, deterministic (XY) routing and
wormhole switching were employed. One experiment
used minimal adaptive routing to evaluate the systems in
a deadlock-prone environment. Single link traversal was
assumed to complete within one clock cycle at 500 MHz
clock frequency. Both dynamic and leakage power
estimates were extracted from the synthesized router
designs and back-annotated into the network simulator.

4.2. Analysis of Results

Our simulation exploration starts with a latency
comparison between a conventional, statically assigned
buffer architecture and the proposed ViChaR
implementation. We first assume that both designs have
equal-sized buffers; specifically, 16-flit buffers per input
port (i.e. a total of 80 flits per NoC router). In the

generic design (GEN), the 16 buffer slots are arranged as
4 VCs, each with a 4-flit depth. ViChaR (ViC), on the
other hand, can dynamically assign its 16 buffer slots to
a variable number of VCs, each with a variable buffer
depth. Figure 12(a) and Figure 12(b) show the average
network latency (in clock cycles) as a function of
injection rate (in flits/node/cycle) for Uniform Random
(UR) and Self-Similar (SS) traffic patterns, respectively.
The graphs include results for both Normal Random
(NR) and Tornado (TN) source-destination selection
patterns. In all cases, ViChaR substantially outperforms
the generic architecture; by 28% (NR) and 24% (TN) on
average for Uniform Random traffic, and 25% (NR) and
18% (TN) for Self-Similar traffic. More importantly,
though, ViChaR saturates at higher injection rates than
the generic case.

Figure 12(c) shows the buffer occupancy at injection
rates between 0.25 and 0.35 (i.e. before the onset of
saturation). Higher buffer occupancy indicates network
blocking. ViChaR is clearly much more efficient at
moving flits through the router; the buffer occupancy of
a 16-flit/port ViChaR design is considerably lower than
an equal-size static configuration. Buffer occupancy
alone, however, is not an indicative metric, since it does
not relay any information about network latency. To
validate ViChaR's highly efficient buffer management
scheme, its latency at these smaller buffer sizes should
also be investigated. To that extent, Figure 12(d) and
Figure 12(e) depict how the latency of ViChaR at
various buffer sizes compares to the latency of the
generic architecture with a fixed 16-flit/port buffer size.
It is evident from the graphs that the UBS can achieve
similar performance with less than half the buffer size of

VC ID H D D T
VC 0
VC 1
VC 2
VC 3

VC (vk-1)

2 4 6 7
0 1 3 5

N 11 N
N N N

N N N N

VC Avail.?

0
0

0
0

1

9
10

VC 4 N N N N

1

N
e

x
t

A
v

a
il

.

V
C

 P
o

in
te

r

VC 2 N 11 N9

VC 2
Departing

Flit Pointer

VC 2
Arriving

Flit Pointer

VC Control Table

V
C

 A
v

a
il

a
b

il
it

y
T

ra
c

k
e

r

NULL Indicator

(denotes free slot) Slot ID

H: Head Flit
D: Data (middle) Flit

T: Tail Flit

VC ID
VC 0
VC 1
VC 2
VC 3

VC (vk-1)

VC 4

Token (VC) Dispenser

VC Request

Is Flit
Deadlocked?

NO YES

Escape

VCs Free?

Grant
Escape VC

Any VCs

Free?

NO

YES

YES

NO

Token (VC)

Dispenser

VC Availability Tracker

VC
Control

Table

P:1
Arbiter

Grant

Release Token (VC) [from Flit Pointers Logic, Figure 9]

Next Available VC

ID of newly dispensed VC

1

P

V
C

 A
v
a

il
a
b

il
it

y
 S

ta
tu

s

Credits In (from adjacent router)

F
ro

m
/T

o
 F

li
t

P
o

in
te

rs
 L

o
g

ic
 a

n
d

S

lo
t

A
v

a
il

a
b

il
it

y

T
ra

c
k

e
r

(F
ig

u
re

 9
)

In Port
East

South
West
East

N

N

West

2
nd

 Stage Arbiter (see Figure 7)

Unified Control
Logic (UCL)

Signals from/to Input Ports

(UBS, Flit Pointers Logic, Slot
Availability Tracker)

(see Figure 9)

P Requests from 1st Stage

Arbiters (see Figure 7)

Grant VC
NO VC
Grant

Figure 10. ViChaR Table-Based UCL Architecture (Logic For One of P Ports Shown)

VC Arbitration
Switch

Allocation

(SA)

Stage 2 Stage 3

G
e
n

e
ri

c
 R

o
u

te
r

Slot Avail. Tracker

V
iC

h
a
R

 A
rc

h
it

e
c
tu

re

VC Avail. Tracker

Token (VC) Disp.

VC Control Table

VC Allocation

Pointer Update of
each FIFO Buffer

VC Arbitration

Arriving/Departing

Flit Pointers Logic

Routing

Computation

(RC)

Stage 1

Crossbar

Stage 4

Routing

Computation

(RC)

Switch

Allocation
(SA)

Crossbar

D
y
n

a
m

ic

 V

A
S

ta
ti

c

 V

A

Figure 11. Generic & ViChaR NoC Router Pipelines

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

the generic architecture. This is of profound importance,
since buffers dominate the area and power budgets of
NoC routers; reducing the buffer size by 50% will yield
significant savings. An alternative way to visualize this
phenomenon is illustrated in Figure 12(f). This graph
shows how the latency of ViChaR at various buffer sizes
compares to the latency of the generic architecture with a
16-flit/port buffer size (horizontal dashed line) at an
injection rate of 0.25. ViChaR has higher latency only
when its buffer size drops below 8 flits per port. On the
other hand, Figure 12(g) shows that decreasing the
buffer size in a generic, statically assigned buffer
structure always degrades performance.

Following on the very encouraging result that
ViChaR can achieve similar performance as a
conventional buffer by using only half the buffers,
Figure 12(h) shows the total average power consumption
of the 8x8 MESH network for different buffer
configurations. For equally sized configurations,
ViChaR consumes slightly more power than a
conventional buffer structure. At injection rates up to
0.3, ViChaR consumes about 2% more power,
corroborating the results of Table 1. At higher injection
rates (when the network saturates), excessive switching
activity causes this difference to grow a bit more, even

though it never exceeds 5%. However, since ViChaR's
efficiency allows us to halve the buffer resources with no
discernible effect on performance, the overall power
drops by about 34% (ViC-8 in Figure 12(h)) for
equivalent performance. Similarly, the area occupied by
the router decreases by around 30%, based on synthesis
results. These decreases can lead to more power- and
area-efficient SoCs.

Figure 12(i) compares average network latency under
minimal adaptive routing to validate ViChaR's
effectiveness in handling deadlocks. Escape (drain)
channels, which employ deterministic (i.e. deadlock-
free) routing, were used in both the generic and ViChaR
architectures to break deadlocks. Evidently, ViChaR was
able to handle all deadlock situations while significantly
outperforming the conventional design.

Figure 13(a) and Figure 13(b) present another metric
of network performance, namely throughput (in flits per
cycle). These graphs follow the same trend as the latency
experiments, with ViChaR clearly outperforming a
conventional buffer structure. Figure 13(c) includes the
throughput of two different (but of equal size) generic
configurations: 4 VCs each with a 3-flit depth, and 3
VCs with a 4-flit depth. The graph indicates that while
varying the statically-assigned VC configuration of a

0

20

40

60

80

100

120

140

160

180

200

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate (flits/node/cycle)

L
a
te

n
c
y
 (

c
y
c
le

s
)

GEN-NR-16
ViC-NR-16

GEN-TN-16
ViC-TN-16

[Uniform Random]

Buffer Size

(flits/port)

(a) Average Latency (UR Traffic)

0

20

40

60

80

100

120

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate (flits/node/cycle)

L
a
te

n
c
y
 (

c
y
c
le

s
)

GEN-NR-16

ViC-NR-16

GEN-TN-16

ViC-TN-16

[Self-Similar]

Buffer Size

(flits/port)

(b) Average Latency (SS Traffic)

0

10

20

30

40

50

60

70

80

0.25 0.275 0.3 0.325 0.35

Injection Rate (flits/node/cycle)

%
 B

u
ff

e
r

O
c
c
u

p
a
n

c
y

GEN-16
GEN-12
ViC-16
ViC-12
ViC-8

[Uniform Random]

Buffer Size

(flits/port)

(c) % Buffer Occupancy

0

20

40

60

80

100

120

140

160

180

200

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate (flits/node/cycle)

L
a
te

n
c
y
 (

c
y
c
le

s
)

GEN-16
ViC-16

ViC-12
ViC-8

[Uniform Random]

Buffer Size

(flits/port)

(d) Avg. Latency for Diff. Buffer Sizes
(UR)

0

20

40

60

80

100

120

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate (flits/node/cycle)

L
a
te

n
c
y
 (

c
y
c
le

s
)

GEN-16

ViC-16

ViC-12

ViC-8

[Self-Similar]

Buffer Size

(flits/port)

(e) Avg. Latency for Diff. Buffer Sizes
(SS)

0

20

40

60

80

100

120

140

6 7 8 10 12 14 16

ViChaR Buffer Size (flits/port)

L
a
te

n
c
y
 (

c
y
c
le

s
)

50.49 - Generic (16 flits/port)

ViChaR [Uniform Random] (Inj. Rate: 0.25)

(f) ViChaR vs. Generic Efficiency (UR)

0
.0
50
.10
.1
50
.2

0
.2
50
.3

0
.3
50
.4

0
.4
5 8

12
16
20

24

0

50

100

150

200

250

300

350

400

A
v
g

.
L

a
te

n
c
y
 (

c
y
c
le

s
)

Buffer Size

(flits/port) Inj. Rate (flits/node/cycle)

(g) Avg. Latency for Diff. Generic Buff.
Sizes

0

1

2

3

4

5

6

7

8

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate (flits/node/cycle)

A
v
g

.
P

o
w

e
r

C
o

n
s
.

(W
)

GEN-16
ViC-16

ViC-12
ViC-8

[Uniform Random]

Buffer Size

(flits/port)

(h) Avg. Power Consumption

0

20

40

60

80

100

120

140

160

180

200

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate (flits/node/cycle)
L

a
te

n
c
y
 (

c
y
c
le

s
)

GEN-NR-16
ViC-NR-16

GEN-TN-16
ViC-TN-16

[Uniform Random]

Buffer Size

(flits/port)

(i) Average Latency under Adaptive
Routing (UR Traffic)

Figure 12. Average Latency, % Buffer Occupancy, and Average Power Consumption Simulation Results

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

generic buffer does affect throughput, its performance
still trails that of the dynamically variable design of
ViChaR.

In the related work section (Section 2), we analyzed
in detail why the unified buffers of the DAMQ [23] and
FC-CB [26] would underperform compared to ViChaR's
dynamic design. Both the DAMQ and FC-CB structures
were implemented and incorporated into our cycle-
accurate simulator. Figure 13(d) shows how all designs
fare against each other. DAMQ loses out because of its
3-cycle buffer delay, and its fixed number of VCs, as
previously explained. For a fair comparison, we assumed
that the FC-CB design completes its buffer management
procedure in one clock cycle (just like ViChaR). As seen
in Figure 13(d), at low injection rates, the FC-CB's
performance is almost identical to ViChaR's. However,
as network traffic increases, FC-CB's performance starts
to degrade compared to ViChaR. This is attributed to
FC-CB's fixed number of VCs (i.e. just like DAMQ).
Under heavier traffic loads, ViChaR's ability to
dynamically dispense more VCs helps improve
performance quite drastically. Note also that both FC-
CB and DAMQ would incur much higher area and
power penalties (as explained in Section 2). In terms of
throughput (not shown here), ViChaR's improvement
over DAMQ and FC-CB is a more modest 5% (on
average). However, ViChaR would perform substantially
better in latency-critical applications.

Finally, Figure 13(e) depicts the spatial variation in
the number of VCs used in the 8x8 MESH, while Figure
13(f) shows the temporal variation over simulation time.
The average number of VCs used varies continuously
according to network traffic. Figure 13(e) shows the
average number of VCs dispensed at each node of the
8x8 MESH network over the whole simulation time at an
injection rate of 0.25. As expected, the nodes situated at

the middle of the network exhibit higher congestion;
ViChaR successfully self-throttled its resources by
granting more VCs in these nodes in order to optimize
performance. In Figure 13(f), as the network fills up with
packets, the average number of VCs used over all nodes
increases accordingly to handle the traffic. These results
validate the effectiveness of our FCFS scheme employed
in the Token (VC) Dispenser (Section 3.2.2).

5. Conclusions

The continuing technology shrinkage into the deep
sub-micron era has magnified the delay mismatch
between gates and global wires. Wiring will significantly
affect design decisions in the forthcoming billion-
transistor chips, whether these are complex
heterogeneous SoCs, or Chip Multi-Processors (CMP).
Networks-on-Chip (NoC) have surfaced as a possible
solution to escalating wiring delays in future multi-core
chips. NoC performance is directly related to the routers'
buffer size and utilization. In this paper, we introduce a
centralized buffer architecture, called the Virtual
Channel Regulator (ViChaR), which dynamically
allocates virtual channels and buffer slots in real-time,
depending on traffic conditions. Unlike current
implementations, the ViChaR can dispense a variable
number of VCs at any given time to maximize network
throughput.

Simulation results using a cycle-accurate network
simulator indicate performance improvement of around
25% under various traffic patterns, as compared to a
conventional router with equal buffer size, with a modest
2% power increase. Most importantly, though, ViChaR
is shown to achieve performance similar to that of a
generic router, while using a 50% smaller buffer. This
attribute is a testament to ViChaR's efficient dynamic
buffer management scheme, and is a result of utmost

0

5

10

15

20

25

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate (flits/node/cycle)

T
h

ro
u

g
h

p
u

t
(f

li
ts

/c
y

c
le

) GEN-16
ViC-16

ViC-12
ViC-8

[Uniform Random]

Buffer Size

(flits/port)

(a) Throughput (UR Traffic)

0

5

10

15

20

25

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate (flits/node/cycle)

T
h

ro
u

g
h

p
u

t
(f

li
ts

/c
y

c
le

) GEN-16

ViC-16

ViC-12

ViC-8

[Self-Similar]

Buffer Size

(flits/port)

(b) Throughput (SS Traffic)

0

5

10

15

20

25

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate (flits/node/cycle)

T
h

ro
u

g
h

p
u

t
(f

li
ts

/c
y

c
le

)

GEN-12 (4x3)

GEN-12 (3x4)

ViC-12

[Uniform Random]

4 VCs,

3 flits/VC

(c) Experimenting with Different Buff.
Sizes

0

20

40

60

80

100

120

140

160

180

200

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Injection Rate (flits/node/cycle)

L
a
te

n
c
y
 (

c
y
c
le

s
)

ViC-16

DAMQ-16

FC-CB-16

[Uniform Random]

Buffer Size

(flits/port)

(d) ViChaR vs. DAMQ [23] vs. FC-CB [26]
0

1
2

3
4

5
6

7

7
6
5
4
3

2

1

0

0

2

4

6

8

10

A
v
g

.
#
 o

f
V

C
s

D
is

p
e
n

s
e
d

Node X

Coordinate Node Y

Coordinate

(e) ViChaR's Spatial Variation in # of
VCs

0

1

2

3

4

5

6

7

8

9

10

500 1000 1500 2000 2500 3000 3500 4000 4500

Simulation Time (cycles)

A
v

g
.
N

o
.
o

f
In

-U
s
e

 V
C

s

ViC-16

[Uniform Random]

Buffer Size

(flits/port)

(f) ViChaR's Temporal Variation in # of
VCs

Figure 13. Simulation Results Demonstrating ViChaR's Efficient Virtual Channel Management Scheme

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

significance in the NoC arena. Synthesized designs in 90
nm technology indicate that decreasing the ViChaR's
buffer size by 50% leads to area and power savings of
30% and 34%, respectively, with no degradation in
performance.

For future work, we intend to evaluate the
performance of ViChaR using workloads and traces
from existing System-on-Chip architectures.

6. References

[1] L. Benini and G. D. Micheli, "Networks on Chips: A New SoC
Paradigm," IEEE Computer, vol. 35, pp. 70-78, 2002.

[2] W. J. Dally and B. Towles, "Route Packets, Not Wires: On-
Chip Interconnection Networks," in Proceedings of the Design
Automation Conference (DAC), 2001.

[3] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M.
Millberg, and D. Lindqvist, "Network on chip: An architecture
for billion transistor era," in Proceedings of the IEEE NorChip
Conference, 2000.

[4] P. Guerrier and A. Greiner, "A generic architecture for on-chip
packet-switched interconnections," in Proceedings of the
Design, Automation and Test in Europe Conference and
Exhibition (DATE), pp. 250-256, 2000.

[5] S. Li, L. S. Peh, and N. K. Jha, "Dynamic voltage scaling with
links for power optimization of interconnection networks," in
Proceedings of the 9th International Symposium on High-
Performance Computer Architecture (HPCA), pp. 91-102,
2003.

[6] S. Heo and K. Asanovic, "Replacing global wires with an on-
chip network: a power analysis," in Proceedings of the 2005
International Symposium on Low Power Electronics and
Design (ISLPED), pp. 369-374, 2005.

[7] R. Kumar, V. Zyuban, and D. M. Tullsen, "Interconnections in
multi-core architectures: understanding mechanisms, overheads
and scaling," in Proceedings of the 32nd International
Symposium on Computer Architecture (ISCA), pp. 408-419,
2005.

[8] W. Hangsheng, L. S. Peh, and S. Malik, "Power-driven design
of router microarchitectures in on-chip networks," in
Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 105-116,
2003.

[9] R. Mullins, A. West, and S. Moore, "Low-latency virtual-
channel routers for on-chip networks," in Proceedings of the
International Symposium on Computer Architecture (ISCA),
pp. 188-197, 2004.

[10] L. Shang, L. S. Peh, A. Kumar, and N. K. Jha, "Thermal
Modeling, Characterization and Management of On-Chip
Networks," in Proceedings of the International Symposium on
Microarchitecture (MICRO), pp. 67-78, 2004.

[11] R. Marculescu, "Networks-on-chip: the quest for on-chip fault-
tolerant communication," in Proceedings of the IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pp. 8-
12, 2003.

[12] C. Xuning and L. S. Peh, "Leakage power modeling and
optimization in interconnection networks," in Proceedings of
the International Symposium on Low Power Electronics and
Design (ISLPED), pp. 90-95, 2003.

[13] T. T. Ye, L. Benini, and G. De Micheli, "Analysis of power
consumption on switch fabrics in network routers," in
Proceedings of the 39th Design Automation Conference
(DAC), pp. 524-529, 2002.

[14] G. Varatkar and R. Marculescu, "Traffic analysis for on-chip
networks design of multimedia applications," in Proceedings of
the 39th Design Automation Conference (DAC), pp. 795-800,
2002.

[15] H. Jingcao and R. Marculescu, "Application-specific buffer
space allocation for networks-on-chip router design," in

Proceedings of the IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 354-361, 2004.

[16] L. S. Peh and W. J. Dally, "A delay model for router
microarchitectures," IEEE Micro, vol. 21, pp. 26-34, 2001.

[17] W. J. Dally and C. L. Seitz, "The torus routing chip," Journal of
Distributed Computing, vol. 1(3), pp. 187-196, 1986.

[18] P. Kermani and L. Kleinrock, "Virtual cut-through: a new
computer communication switching technique," Computer
Networks, vol. 3(4), pp. 267-286, 1979.

[19] W. J. Dally, "Virtual-channel flow control," in Proceedings of
the 17th Annual International Symposium on Computer
Architecture (ISCA), pp. 60-68, 1990.

[20] W. J. Dally and C. L. Seitz, "Deadlock-free message routing in
multiprocessor interconnection networks," IEEE Transactions
on Computers, vol. C-36(5), pp. 547-553, 1987.

[21] Y. M. Boura and C. R. Das, "Performance analysis of buffering
schemes in wormhole routers," IEEE Transactions on
Computers, vol. 46, pp. 687-694, 1997.

[22] M. Rezazad and H. Sarbazi-azad, "The effect of virtual channel
organization on the performance of interconnection networks,"
in Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium, 2005.

[23] Y. Tamir and G. L. Frazier, "High-performance multiqueue
buffers for VLSI communication switches," in Proceedings of
the 15th Annual International Symposium on Computer
Architecture (ISCA), pp. 343-354, 1988.

[24] G. L. Frazier and Y. Tamir, "The design and implementation of
a multiqueue buffer for VLSI communication switches," in
Proceedings of the IEEE International Conference on
Computer Design (ICCD), pp. 466-471, 1989.

[25] J. Park, B. W. O'Krafka, S. Vassiliadis, and J. Delgado-Frias,
"Design and evaluation of a DAMQ multiprocessor network
with self-compacting buffers," in Proceedings of
Supercomputing, pp. 713-722, 1994.

[26] N. Ni, M. Pirvu, and L. Bhuyan, "Circular buffered switch
design with wormhole routing and virtual channels," in
Proceedings of the International Conference on Computer
Design (ICCD), pp. 466-473, 1998.

[27] Y. Choi and T. M. Pinkston, "Evaluation of queue designs for
true fully adaptive routers," in Journal of Parallel and
Distributed Computing, vol. 64(5), pp. 606-616, 2004.

[28] S. Konstantinidou and L. Snyder, "The Chaos router," IEEE
Transactions on Computers, vol. 43, pp. 1386-1397, 1994.

[29] M. Thottethodi, A. R. Lebeck, and S. S. Mukherjee, "BLAM: a
high-performance routing algorithm for virtual cut-through
networks," in Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS), pp. 10 pp., 2003.

[30] L. S. Peh and W. J. Dally, "A delay model and speculative
architecture for pipelined routers," in Proceedings of the 7th
International Symposium on High Performance Computer
Architecture (HPCA), pp. 255-266, 2001.

[31] A. V. Yakovlev, A. M. Koelmans, and L. Lavagno, "High-level
modeling and design of asynchronous interface logic," IEEE
Design & Test of Computers, vol. 12, pp. 32-40, 1995.

[32] H. Jingcao and R. Marculescu, "Energy- and performance-
aware mapping for regular NoC architectures," IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 24, pp. 551-562, 2005.

[33] W. Hangsheng, L. S. Peh, and S. Malik, "A technology-aware
and energy-oriented topology exploration for on-chip
networks," in Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition (DATE), pp. 1238-1243
Vol. 2, 2005.

[34] J. Duato, "A new theory of deadlock-free adaptive routing in
wormhole networks," IEEE Transactions on Parallel and
Distributed Systems, vol. 4, pp. 1320-1331, 1993.

[35] S. Arjun, W. J. Dally, A. K. Gupta, and B. Towles, "GOAL: a
load-balanced adaptive routing algorithm for torus networks,"
in Proceedings of the International Symposium on Computer
Architecture (ISCA), pp. 194-205, 2003.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

