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Lecture 12: Interconnection Networks

• Topics: dimension/arity, routing, deadlock, flow control
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Interconnection Networks

• Recall: fully connected network, arrays/rings, meshes/tori,
trees, butterflies, hypercubes

• Consider a k-ary d-cube: a d-dimension array with k
elements in each dimension, there are links between
elements that differ in one dimension by 1 (mod k)

• Number of nodes N = kd

Number of switches :
Switch degree          :
Number of links        :
Pins per node           :

Avg. routing distance:
Diameter                   :
Bisection bandwidth  :
Switch complexity     :

N
2d + 1
Nd
2wd

d(k-1)/2
d(k-1)
2wkd-1

Should we minimize or maximize dimension?
(2d + 1)2

(with no wraparound)
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Bisection Bandwidth

Break the kd nodes into two groups such that all elements
in group-1 are of the form:  [0 - k/2-1] [*][*]...[*]
in group-2 are of the form:  [k/2 – k]   [*][*]...[*]

• Each node has an edge to other nodes that differ in only one
dimension by one

• Any node in group-1 differs from any node in group-2 in at
least the first dimension – hence, any edge from group-1 to
group-2 is an edge that connects nodes that are identical in
d-1 dimensions and differ in the first dimension by 1

• If we fix the co-ordinates of the d-1 dimensions, we can
identify two edges: [0, i1,…,id-1] – [k-1, i1,…,id-1] and 
[k/2-1, i1,…,id-1] – [k/2, i1,…,id-1] : there are totally 2kd-1 edges
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Dimension

• For a fixed machine size N, low-dimension networks have
significantly higher latencies for a packet – scalable
machines should employ high dimensionality (high cost!)

• For a fixed number of pins, message latency decreases at
first, then increases (as we increase dimensionality)

• What if we keep constant bisection bandwidth?

Number of switches :
Switch degree          :
Number of links        :
Pins per node           :

Avg. routing distance:
Diameter                   :
Bisection bandwidth  :
Switch complexity     :
N = kd

N
2d+1
Nd
2wd

d(k-1)/2
d(k-1)
2wkd-1

(2d + 1)2
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Routing

• Deterministic routing: given the source and destination,
there exists a unique route

• Adaptive routing: a switch may alter the route in order to
deal with unexpected events (faults, congestion) – more
complexity in the router vs. potentially better performance

• Example of deterministic routing: dimension order routing:
send packet along first dimension until destination co-ord
(in that dimension) is reached, then next dimension, etc.



6

Deadlock

• Deadlock happens when there is a cycle of resource
dependencies – a process holds on to a resource (A) and
attempts to acquire another resource (B) – A is not
relinquished until B is acquired
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Deadlock Example

Packets of message 1

Packets of message 2

Packets of message 3

Packets of message 4

4-way switch
Output ports

Each message is attempting to make a left turn – it must acquire an
output port, while still holding on to a series of input and output ports

Input ports
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Deadlock-Free Proofs

• Number edges and show that all routes will traverse edges in increasing (or
decreasing) order – therefore, it will be impossible to have cyclic dependencies

• Example: k-ary 2-d array with dimension routing: first route along x-dimension,
then along y

1 2 3
2 1 0

1 2 3
2 1 0

1 2 3
2 1 0

1 2 3
2 1 0

17

18

19

18

17

16
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Breaking Deadlock I

• The earlier proof does not apply to tori because of
wraparound edges

• Partition resources across multiple virtual channels

• If a wraparound edge must be used in a torus, travel on
virtual channel 1, else travel on virtual channel 0
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Breaking Deadlock II

• Consider the eight possible turns in a 2-d array (note that
turns lead to cycles)

• By preventing just two turns, cycles can be eliminated

• Dimension-order routing disallows four turns

• Helps avoid deadlock even in adaptive routing

West-First North-Last Negative-First Can allow
deadlocks
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Packets/Flits

• A message is broken into multiple packets (each packet
has header information that allows the receiver to
re-construct the original message)

• A packet may itself be broken into flits – flits do not
contain additional headers

• Two packets can follow different paths to the destination
Flits are always ordered and follow the same path

• Such an architecture allows the use of a large packet
size (low header overhead) and yet allows fine-grained
resource allocation on a per-flit basis
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Flow Control

• The routing of a message requires allocation of various
resources: the channel (or link), buffers, control state

• Bufferless: flits are dropped if there is contention for a
link, NACKs are sent back, and the original sender has
to re-transmit the packet

• Circuit switching: a request is first sent to reserve the
channels, the request may be held at an intermediate
router until the channel is available (hence, not truly
bufferless), ACKs are sent back, and subsequent
packets/flits are routed with little effort (good for bulk
transfers)
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Buffered Flow Control

• A buffer between two channels decouples the resource
allocation for each channel – buffer storage is not as
precious a resource as the channel  (perhaps, not so
true for on-chip networks)

• Packet-buffer flow control: channels and buffers are
allocated per packet

Store-and-forward

Cut-through

Time-Space diagrams
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Flit-Buffer Flow Control (Wormhole)

• Wormhole Flow Control: just like cut-through, but with
buffers allocated per flit (not channel)

• A head flit must acquire three resources at the next
switch before being forwarded:

channel control state (virtual channel, one per input port)
one flit buffer
one flit of channel bandwidth

The other flits adopt the same virtual channel as the head
and only compete for the buffer and physical channel

Consumes much less buffer space than cut-through
routing – does not improve channel utilization as another
packet cannot cut in (only one VC per input port)
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Virtual Channel Flow Control

• Each switch has multiple virtual channels per phys. channel

• Each virtual channel keeps track of the output channel
assigned to the head, and pointers to buffered packets

• A head flit must allocate the same three resources in the
next switch before being forwarded

• By having multiple virtual channels per physical channel,
two different packets are allowed to utilize the channel and
not waste the resource when one packet is idle
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Example

• Wormhole:

• Virtual channel:

A
B

B

A is going from Node-1 to Node-4; B is going from Node-0 to Node-5

Node-1

Node-0

Node-5
(blocked, no free VCs/buffers)

Node-2 Node-3 Node-4

idleidle

A
B

ANode-1

Node-0

Node-5
(blocked, no free VCs/buffers)

Node-2 Node-3 Node-4

B
A

Traffic Analogy:
B is trying to make
a left turn; A is trying
to go straight; there
is no left-only lane
with wormhole, but
there is one with VC
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Title

• Bullet
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