Lecture 16: Large Cache Design

Papers:

- An Adaptive, Non-Uniform Cache Structure for Wire-Dominated On-Chip Caches, Kim et al., ASPLOS'02
- Distance Associativity for High-Performance Energy-Efficient Non-Uniform Cache Architectures, Chishti et al., MICRO'03
- Managing Wire Delay in Large Chip-Multiprocessor Caches, Beckmann and Wood, MICRO'04
- Managing Distributed, Shared L2 Caches through OS-Level Page Allocation, Cho and Jin, MICRO'06

 Recall block, set, way, offset, index, tag, virtual/physical address, TLB, banking, word-/line- interleaving

Shared Vs. Private Caches in Multi-Core

- Advantages of a shared cache:
 - Space is dynamically allocated among cores
 - No wastage of space because of replication
 - Potentially faster cache coherence (and easier to locate data on a miss)
- Advantages of a private cache:
 - small L2 → faster access time
 - private bus to L2 \rightarrow less contention

Large NUCA

Kim et al. (ASPLOS'02)

- Search policies:
 - incremental: check each bank before propagating the search
 - multicast: search in parallel
 - smart search: cache controller maintains partial tags that guide search or quickly signal a cache miss
- Movement: Data gradually moves closer as it is accessed
- Placement policy:
 - bring data close or far
 - replaced data is evicted or moved to furthest bank

Average IPC values (16 MB, 50nm technology) :

• UCA cache:	0.26
 Multi-level UCA (L2/L3): 	0.64
• Static NUCA:	0.65
 D-NUCA (simple map, multicast, 	0.71
insert at tail, 1-hit/1-bank promotion)	
 D-NUCA with smart search 	0.75
 Upper bound (instant L2 miss 	0.89
detection and all hits in first bank)	

Chishti et al. (MICRO'03)

- Decouples the tag and data arrays
- Tag arrays are first examined (serial tag-data access is common and more power-efficient for large caches)
- Only the appropriate bank is then accessed
- Tags are organized conventionally, but within the data arrays, a set may have all its ways concentrated nearby
- The tags maintain forward pointers to data and data blocks maintain reverse pointers to tags

NuRAPID and **Distance-Associativity**

Beckmann and Wood, MICRO'04

Examples: Frequency of Accesses

Figure 10. oltp L2 Hit Distribution

Figure 11. ocean L2 Hit Distribution

Block Migration Results

Figure 12. Avg. L2 Hit Latency: No Prefetching

Alternative Layout

(a) CMP Substrate: 16 CPUs 8x8 Banks

From Huh et al., ICS'05

Cho and Jin, MICRO'06

- Page coloring to improve proximity of data and computation
- Flexible software policies
- Has the benefits of S-NUCA (each address has a unique location and no search is required)
- Has the benefits of D-NUCA (page re-mapping can help migrate data, although at a page granularity)
- Easily extends to multi-core and can easily mimic the behavior of private caches

Page Coloring Example

Static and Dynamic NUCA

- Static NUCA (S-NUCA)
 - The address index bits determine where the block is placed
 - Page coloring can help here as well to improve locality
- Dynamic NUCA (D-NUCA)
 - Blocks are allowed to move between banks
 - The block can be anywhere: need some search mechanism
 - Each core can maintain a partial tag structure so they have an idea of where the data might be (complex!)
 - Every possible bank is looked up and the search propagates (either in series or in parallel) (complex!)

Bullet