
1

Lecture 22: Fault Tolerance

Papers:
• Token Coherence: Decoupling Performance and

Correctness, ISCA’03, Wisconsin
• A Low Overhead Fault Tolerant Coherence Protocol
for CMP Architectures, HPCA’07, Spain

• Error Detection Via Online Checking of Cache
Coherence with Token Coherence Signatures,
HPCA’07, Duke

2

Faults

• Faults can be permanent or transient

• Transient faults are typically caused by high-energy
particles and noise in voltage levels

• Faults lead to two main errors: silent data corruption,
detected unrecoverable error

• A coherence protocol can yield errors in many ways:
The delivered message contains corrupted data
A message is never delivered
The coherence controller computes incorrectly
Corrupted state/data in caches
Human design error

3

Token Coherence

• Each memory block has N tokens

• A cache may read the contents of a block if it has at least one token

• A cache may write to a block only if it has all N tokens

• Simplifies the design of a correct protocol: the above abstraction
makes it easier to reason about correctness; much easier than
reasoning about every corner case as we did for various
conventional protocols

• Some inefficiencies: can’t silently evict the block – must send the
token to the memory controller first

• Need mechanisms to handle starvation

• One token is flagged as owner and is accompanied by valid data

4

• Assumes an underlying token coherence protocol

• Fault model: only handles faults in the interconnection
network; the faults manifest as dropped messages
(either the message never arrives or it is discarded
because CRC indicates corrupted data)

Fault Tolerant Protocol (Paper #1)

5

Potential Problems

• Loss of a token-less message (invalidation) will
eventually cause a timeout and the invocation of a
persistent request

• Loss of a message with a token will eventually cause a
deadlock when the next writer attempts to collect all
tokens

• Loss of a message that contains the owner token and data
will end up deadlocking and causing loss of valid data

6

Timeouts

• The token coherence protocol includes a timeout for
retry and persistent requests – these will be invoked
in case an invalidation message is lost

• If the above fail, another timeout signals a deadlock
(potential loss of token) and invokes a token recreation
process

• It is possible that a token was never lost, so the token
recreation process must be careful to not increase the
number of tokens

7

Token Recreation Process

• The memory controller ensures that the requesting cache
ends up with a valid copy of data with all tokens – slow,
but correct

• Since tokens may be stuck in traffic (deadlock false
positive), the token-count invariant must not be violated
when this token is eventually delivered – hence, tokens
have serial numbers and a new serial number is used by
the token recreation process

• The memory controller first cancels all existing tokens,
informs every node of the new serial number, and
collects valid copies of data; then creates the new serial
number and tokens, and passes data+tokens to requestor

8

Backup Data

• If a message carrying ownertoken+data is lost, the only
valid copy of data may be lost

• The block is not evicted from the sender’s cache until it
receives an ack for the above message (the block may
be placed in a small backup victim cache)

• The OAck and BDAck need not
hold up the write, but they will
hold up the transfer of the owner
token to the next writer – the
system avoids multiple backup
copies to simplify recovery

9

Summary

10

Results

• No injected faults in experiments below
• Potential performance loss: less cache space because of backup
copies; can’t service the next write request until the backup is deleted

11

Results with Message Loss

12

Token Coherence Signatures

Errors can be detected by checking each invariant in token coherence:

• Each block has T tokens, of which one is the owner token
there are initially T tokens for a block in the system
a node can never hold <0 and >T tokens for a block
if a node sends Nt tokens for a block at time t, another node
must receive Nt tokens for that block at time t (transfers are
not instantaneous, but we will assume that the receiver
owned the tokens since time t)

• A processor can write only if it has all T tokens

• A processor can read a block only if it has at least one
token and valid data

• If a coherence message contains the owner token, it also
contains valid data

13

Distributed Logical Time

• Each node has a time that is incremented on a message
send (or receive) – the message carries the sender’s
timestamp with it

• If the receiver’s time is less than the timestamp, the
receiver updates its clock to timestamp + 1

14

Token Coherence Signature Checker

• Confirm that the {tokens received, timestamp} at the
sender matches that at the receiver

• Over a given time interval, maintain a signature to
represent all received/sent tokens/timestamps and
confirm that they are consistent (allow a grace period as
a message with an old timestamp may not have been
delivered by the end of the interval – if the message is
stuck for a really long time, treat it as a fault)

• If not, rely on previously proposed checkpoint mechanisms
to rollback to valid state and re-execute

15

Signature

• Positive for a receive, negative for a send; the sum of
signatures should total to zero

•

• I is the time interval; t is every logical time step in I; Nt is
the number of tokens received at time t; T is the total
number of tokens for a block; can limit the size of the
signature by making every computation modulo n

• Errors can also happen if the token is assigned to the
wrong block; an address signature helps detect such errors:

16

Example

Results summary: bandwidth overhead (timestamps and signature
collection) of less than 7% (negligible performance impact)

17

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

