
1

Lecture 24: Parallel Algorithms I

• Topics: sort and matrix algorithms

2

Processor Model

• High communication latencies pursue coarse-grain
parallelism (the focus of the course so far)

• For upcoming lectures, focus on fine-grain parallelism

• VLSI improvements enough transistors to accommodate
numerous processing units on a chip and (relatively) low
communication latencies

• Consider a special-purpose processor with thousands of
processing units, each with small-bit ALUs and limited
register storage

3

Sorting on a Linear Array

• Each processor has bidirectional links to its neighbors

• All processors share a single clock (asynchronous designs
will require minor modifications)

• At each clock, processors receive inputs from neighbors,
perform computations, generate output for neighbors, and
update local storage

input

output

4

Control at Each Processor

• Each processor stores the minimum number it has seen

• Initial value in storage and on network is “∗”, which is
bigger than any input and also means “no signal”

• On receiving number Y from left neighbor, the processor
keeps the smaller of Y and current storage Z, and passes
the larger to the right neighbor

5

Sorting Example

6

Result Output

• The output process begins when a processor receives
a non-∗, followed by a “∗”

• Each processor forwards its storage to its left neighbor
and subsequent data it receives from right neighbors

• How many steps does it take to sort N numbers?

• What is the speedup and efficiency?

7

Output Example

8

Bit Model

• The bit model affords a more precise measure of
complexity – we will now assume that each processor
can only operate on a bit at a time

• To compare N k-bit words, you may now need an N x k
2-d array of bit processors

9

Comparison Strategies

• Strategy 1: Bits travel horizontally, keep/swap signals
travel vertically – after at most 2k steps, each processor
knows which number must be moved to the right – 2kN
steps in the worst case

• Strategy 2: Use a tree to communicate information on
which number is greater – after 2logk steps, each processor
knows which number must be moved to the right – 2Nlogk
steps

• Can we do better?

10

Strategy 2: Column of Trees

11

Pipelined Comparison

Input numbers: 3 4 2
0 1 0
1 0 1
1 0 0

12

Complexity

• How long does it take to sort N k-bit numbers?
(2N – 1) + (k – 1) + N (for output)

• (With a 2d array of processors) Can we do even better?

• How do we prove optimality?

13

Lower Bounds

• Input/Output bandwidth: Nk bits are being input/output
with k pins – requires Ω(N) time

• Diameter: the comparison at processor (1,1) influences
the value of the bit stored at processor (N,k) – for
example, N-1 numbers are 011..1 and the last number is
either 00…0 or 10…0 – it takes at least N+k-2 steps for
information to travel across the diameter

• Bisection width: if processors in one half require the
results computed by the other half, the bisection bandwidth
imposes a minimum completion time

14

Counter Example

• N 1-bit numbers that need to be sorted with a binary tree

• Since bisection bandwidth is 2 and each number may be
in the wrong half, will any algorithm take at least N/2 steps?

15

Counting Algorithm

• It takes O(logN) time for each intermediate node to add
the contents in the subtree and forward the result to the
parent, one bit at a time

• After the root has computed the number of 1’s, this
number is communicated to the leaves – the leaves
accordingly set their output to 0 or 1

• Each half only needs to know the number of 1’s in the
other half (logN-1 bits) – therefore, the algorithm takes
Ω(logN) time

• Careful when estimating lower bounds!

16

Matrix Algorithms

• Consider matrix-vector multiplication:

yi = Σj aijxj

• The sequential algorithm takes 2N2 – N operations

• With an N-cell linear array, can we implement
matrix-vector multiplication in O(N) time?

17

Matrix Vector Multiplication

Number of steps = ?

18

Matrix Vector Multiplication

Number of steps = 2N – 1

19

Matrix-Matrix Multiplication

Number of time steps = ?

20

Matrix-Matrix Multiplication

Number of time steps = 3N – 2

21

Complexity

• The algorithm implementations on the linear arrays have
speedups that are linear in the number of processors – an
efficiency of O(1)

• It is possible to improve these algorithms by a constant
factor, for example, by inputting values directly to each
processor in the first step and providing wraparound edges
(N time steps)

22

Solving Systems of Equations

• Given an N x N lower triangular matrix A and an N-vector
b, solve for x, where Ax = b (assume solution exists)

a11x1 = b1
a21x1 + a22x2 = b2 , and so on…

23

Equation Solver

24

Equation Solver Example

• When an x, b, and a meet at a cell, ax is subtracted from b
• When b and a meet at cell 1, b is divided by a to become x

25

Complexity

• Time steps = 2N – 1

• Speedup = O(N), efficiency = O(1)

• Note that half the processors are idle every time step –
can improve efficiency by solving two interleaved
equation systems simultaneously

26

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

