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Lecture 12: Hardware/Software Trade-Offs

• Topics: COMA, Software Virtual Memory
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Capacity Limitations

In a Sequent NUMA-Q design above,
• A remote access is involved if data cannot be found in the remote

access cache
• The remote access cache and local memory are both DRAM

Can we expand cache and reduce local memory?
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Cache-Only Memory Architectures

• COMA takes the extreme approach: no local memory and
a very large remote access cache

• The cache is now known as an “attraction memory”

• Overheads/issues that must be addressed:
� Need a much larger tag space
� More care while evicting a block
� Finding a clean copy of a block

• Easier to program – data need not be pre-allocated
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COMA Performance

• Attraction memories reduce the frequency of remote
accesses by reducing capacity/conflict misses

• Attraction memory access time is longer than local memory
access time in the CC-NUMA case (since the latter does
not involve tag comparison)

• COMA helps programs that have frequent capacity misses
to remotely allocated data
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COMA Implementation

• Even though the memory block has no fixed home, the
directory can continue to remain fixed – on a miss or on
a write, contact directory to identify valid cached copies

• In order to not evict the last block, one of the sharers has
the block in “master” state – while replacing the master
copy, a message must be sent to the directory – the
directory attempts to find another node that can
accommodate this block in master state

• For high performance, the physical memory allocated to
an application must be smaller than attraction memory
capacity, and attraction memory must be highly associative
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Reducing Cost

• Hardware cache coherence involves specialized
communication assists – cost can be reduced by using
commodity hardware and software cache coherence

• Software cache coherence: each processor translates the
application’s virtual address space into its own physical
memory – if the local physical memory does not exist
(page fault), a copy is made by contacting the home node
– a software layer is responsible for tracking updates and
propagating them to cached copies – also known as
shared virtual memory (SVM)
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Shared Virtual Memory Performance

• Every communication is expensive – involves OS,
message-passing over slower I/O interfaces, protocol
processing happens at the processor

• Since the implementation is based on the processor’s
virtual memory support, granularity of sharing is a page
� high degree of false sharing

• For a sequentially consistent execution, false sharing
leads to a high degree of expensive communication
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Relaxed Memory Models

• Relaxed models such as release consistency can reduce
frequency of communication (while increasing programming
effort)

• Writes are not immediately propagated, but have to wait
until the next synchronization point

• In hardware CC, messages are sent immediately and
relaxed models prevent the processor from stalling; in
software CC, relaxed models allow us to defer message
transfers to amortize their overheads
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Hardware and Software CC

• Relaxed memory models in hardware cache coherence hide latency
from processor 

�

false sharing can result in significant network traffic

• In software cache coherence, the relaxed memory model sends messages
only at synchronization points, reducing the traffic because of false sharing
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Eager Release Consistency

• When a processor issues a release operation, all writes
by that processor are propagated to other nodes (as
updates or invalidates)

• When other processors issue reads, they encounter a
cache miss (if we are using an invalidate protocol), and
get a clean copy of the block from the last writer

• Does the read really have to see the latest value?
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Eager Release Consistency

• Invalidates/Updates are sent out to the list of sharers
when a processor executes a release
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Lazy Release Consistency

• RCsc guarantees SC between special operations

• P2 must see updates by P1 only if P1 issued a release,
followed by an acquire by P2

• In LRC, updates/invalidates are visible to a processor only
after it does an acquire – it is possible that some processors
will never see the update (not true cache coherence)

• LRC reduces the amount of traffic, but increases the
latency and complexity of an acquire
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Lazy Release Consistency

• Invalidates/Updates are sought when a processor
executes an acquire – fewer messages, higher
implementation complexity
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Causality

• Acquires and releases pertain to specific lock variables

• When a process executes an acquire, it should receive all
updates that were seen before the corresponding release
by the releasing processor

• Therefore, each process must keep track of all write
notices (modifications to each shared page) that were
applied at every synchronization point
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Example
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LRC Vs. ERC Vs. Hardware-RC

P1                                                     P2

lock L1;
ptr  = non_null_value;
unlock L1;                                          while (ptr == null) { };

lock L1;
a = ptr;
unlock L1;
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Implementation

• Each pair of synch operations in a process defines an
interval

• A partial order is defined on intervals based on release-
acquire pairs

• For each interval, a process maintains a vector timestamp
of “preceding” intervals: the vector stores the last preceding
interval for each process

• On an acquire, the acquiring process sends its vector
timestamp to the releasing process – the releasing process
sends all write notices that have not been seen by acquirer
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LRC Performance

• LRC can reduce traffic by more than a factor of two for
many applications (compared to ERC)

• Programmers have to think harder (causality!)

• High memory overheads at each node (keep track of
vector timestamps, write notices) – garbage collection
helps significantly

• Memory overheads can be reduced by eagerly propagating
write notices to processors or a home node – will change
the memory model again!
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Multiple Writer Protocols

• It is important to support two concurrent writes to different
words within a page and to merge the writes at a later point

• Each process makes a twin copy of the page before it
starts writing – updates are sent as a diff between the old
and new copies – after an acquire, a process must get
diffs from all releasing processes and apply them to its
own copy of the page

• If twins are kept around for a long time, storage overhead
increases – it helps to have a home location of the page
that is periodically updated with diffs
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Simple COMA

• SVM takes advantage of virtual memory to provide easy
implementations of address translation, replication, and
replacement

• These can be applied to the COMA architecture

• Simple COMA: if virtual address translation fails, the OS
generates a local copy of the page; when the page is
replaced, the OS ensures that the data is not lost; if data
is not found in attraction memory, hardware is responsible
for fetching the relevant cache block from a remote node
(note that physical address must be translated back to
virtual address)
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