
1

Lecture 12: Hardware/Software Trade-Offs

• Topics: COMA, Software Virtual Memory

2

Capacity Limitations

In a Sequent NUMA-Q design above,
• A remote access is involved if data cannot be found in the remote

access cache
• The remote access cache and local memory are both DRAM

Can we expand cache and reduce local memory?

P

C

P

C

Coherence
Monitor

Mem

P

C

P

C

Coherence
Monitor

Mem

B1 B1

B2

3

Cache-Only Memory Architectures

• COMA takes the extreme approach: no local memory and
a very large remote access cache

• The cache is now known as an “attraction memory”

• Overheads/issues that must be addressed:
� Need a much larger tag space
� More care while evicting a block
� Finding a clean copy of a block

• Easier to program – data need not be pre-allocated

4

COMA Performance

• Attraction memories reduce the frequency of remote
accesses by reducing capacity/conflict misses

• Attraction memory access time is longer than local memory
access time in the CC-NUMA case (since the latter does
not involve tag comparison)

• COMA helps programs that have frequent capacity misses
to remotely allocated data

5

COMA Implementation

• Even though the memory block has no fixed home, the
directory can continue to remain fixed – on a miss or on
a write, contact directory to identify valid cached copies

• In order to not evict the last block, one of the sharers has
the block in “master” state – while replacing the master
copy, a message must be sent to the directory – the
directory attempts to find another node that can
accommodate this block in master state

• For high performance, the physical memory allocated to
an application must be smaller than attraction memory
capacity, and attraction memory must be highly associative

6

Reducing Cost

• Hardware cache coherence involves specialized
communication assists – cost can be reduced by using
commodity hardware and software cache coherence

• Software cache coherence: each processor translates the
application’s virtual address space into its own physical
memory – if the local physical memory does not exist
(page fault), a copy is made by contacting the home node
– a software layer is responsible for tracking updates and
propagating them to cached copies – also known as
shared virtual memory (SVM)

7

Shared Virtual Memory Performance

• Every communication is expensive – involves OS,
message-passing over slower I/O interfaces, protocol
processing happens at the processor

• Since the implementation is based on the processor’s
virtual memory support, granularity of sharing is a page
� high degree of false sharing

• For a sequentially consistent execution, false sharing
leads to a high degree of expensive communication

8

Relaxed Memory Models

• Relaxed models such as release consistency can reduce
frequency of communication (while increasing programming
effort)

• Writes are not immediately propagated, but have to wait
until the next synchronization point

• In hardware CC, messages are sent immediately and
relaxed models prevent the processor from stalling; in
software CC, relaxed models allow us to defer message
transfers to amortize their overheads

9

Hardware and Software CC

• Relaxed memory models in hardware cache coherence hide latency
from processor

�

false sharing can result in significant network traffic

• In software cache coherence, the relaxed memory model sends messages
only at synchronization points, reducing the traffic because of false sharing

Rd y Rd y

Wr x Wr x

Rd y synch

synch

Traffic with hardware CC

Traffic with software CC

10

Eager Release Consistency

• When a processor issues a release operation, all writes
by that processor are propagated to other nodes (as
updates or invalidates)

• When other processors issue reads, they encounter a
cache miss (if we are using an invalidate protocol), and
get a clean copy of the block from the last writer

• Does the read really have to see the latest value?

11

Eager Release Consistency

• Invalidates/Updates are sent out to the list of sharers
when a processor executes a release

acq wr x rel

wr x rel

acq wr x rel

12

Lazy Release Consistency

• RCsc guarantees SC between special operations

• P2 must see updates by P1 only if P1 issued a release,
followed by an acquire by P2

• In LRC, updates/invalidates are visible to a processor only
after it does an acquire – it is possible that some processors
will never see the update (not true cache coherence)

• LRC reduces the amount of traffic, but increases the
latency and complexity of an acquire

13

Lazy Release Consistency

• Invalidates/Updates are sought when a processor
executes an acquire – fewer messages, higher
implementation complexity

acq wr x rel

wr x rel

acq wr x rel

14

Causality

• Acquires and releases pertain to specific lock variables

• When a process executes an acquire, it should receive all
updates that were seen before the corresponding release
by the releasing processor

• Therefore, each process must keep track of all write
notices (modifications to each shared page) that were
applied at every synchronization point

15

Example

P1 P2 P3 P4
A1

A4
R1

R4
A1

A2
A3

R1
R3

R2
A3

A5
R3

R5
A1
R1

A1

16

Example

P1 P2 P3 P4
A1

A4
R1

R4
A1

A2
A3

R1
R3

R2
A3

A5
R3

R5
A1
R1

A1

17

LRC Vs. ERC Vs. Hardware-RC

P1 P2

lock L1;
ptr = non_null_value;
unlock L1; while (ptr == null) { };

lock L1;
a = ptr;
unlock L1;

18

Implementation

• Each pair of synch operations in a process defines an
interval

• A partial order is defined on intervals based on release-
acquire pairs

• For each interval, a process maintains a vector timestamp
of “preceding” intervals: the vector stores the last preceding
interval for each process

• On an acquire, the acquiring process sends its vector
timestamp to the releasing process – the releasing process
sends all write notices that have not been seen by acquirer

19

LRC Performance

• LRC can reduce traffic by more than a factor of two for
many applications (compared to ERC)

• Programmers have to think harder (causality!)

• High memory overheads at each node (keep track of
vector timestamps, write notices) – garbage collection
helps significantly

• Memory overheads can be reduced by eagerly propagating
write notices to processors or a home node – will change
the memory model again!

20

Multiple Writer Protocols

• It is important to support two concurrent writes to different
words within a page and to merge the writes at a later point

• Each process makes a twin copy of the page before it
starts writing – updates are sent as a diff between the old
and new copies – after an acquire, a process must get
diffs from all releasing processes and apply them to its
own copy of the page

• If twins are kept around for a long time, storage overhead
increases – it helps to have a home location of the page
that is periodically updated with diffs

21

Simple COMA

• SVM takes advantage of virtual memory to provide easy
implementations of address translation, replication, and
replacement

• These can be applied to the COMA architecture

• Simple COMA: if virtual address translation fails, the OS
generates a local copy of the page; when the page is
replaced, the OS ensures that the data is not lost; if data
is not found in attraction memory, hardware is responsible
for fetching the relevant cache block from a remote node
(note that physical address must be translated back to
virtual address)

22

Title

• Bullet

