
1

Parallel Algorithms II

• Topics: matrix and graph algorithms

2

Solving Systems of Equations

• Given an N x N lower triangular matrix A and an N-vector
b, solve for x, where Ax = b (assume solution exists)

a11x1 = b1
a21x1 + a22x2 = b2 , and so on…

3

Equation Solver

4

Equation Solver Example

• When an x, b, and a meet at a cell, ax is subtracted from b
• When b and a meet at cell 1, b is divided by a to become x

5

Complexity

• Time steps = 2N – 1

• Speedup = O(N), efficiency = O(1)

• Note that half the processors are idle every time step –
can improve efficiency by solving two interleaved
equation systems simultaneously

6

Inverting Triangular Matrices

• Finding X, such that AX = I, where A is a lower triangular
matrix

• For each row j, A xj = ej , where ej is the jth unit vector
(0,…, 0, 1, 0,…, 0) and xj is the jth row of matrix X

• Simple extension of the earlier algorithm – it can be
applied to compute each row individually

7

Inverting Triangular Matrices

8

Solving Tridiagonal Matrices

• Can be solved recursively with odd-even reduction

9

Odd-Even Reduction

• For each odd i, the corresponding equation Ei is
represented as:

• This equation is substituted in equations Ei-1 and Ei+1

• Therefore, equation Ei-1 now has the following unknowns:
xi-1, xi+1, xi-3, (note that i is odd)

• We now have N/2 equations involving only even unknowns
– repeat this process until there is only 1 equation with 1
unknown – after computing this unknown, back-substitute
to get other unknowns

10

X-Tree Implementation

11

The Algorithm

• The ith leaf receives the inputs ui, di, li, and bi

• Each leaf sends its values to both neighboring processors
(purple sideways arrows) and every even leaf computes
the u, d, l, and b values for the second level of equations

• These values are sent to the next higher level (upward
purple arrows)

• After the root computes the value of xN, it is propagated
down and to the sides until all xi are computed (green
arrows)

12

Gaussian Elimination

• Solving for x, where Ax=b and A is a nonsingular matrix

• Note that A-1Ax = A-1b = x ; keep applying transformations
to A such that A becomes I ; the same transformations
applied to b will result in the solution for x

• Sequential algorithm steps:
� Pick a row where the first (ith) element is non-zero and

normalize the row so that the first (ith) element is 1
� Subtract a multiple of this row from all other rows so

that their first (ith) element is zero
� Repeat for all i

13

Sequential Example

2 4 -7 x1 3
3 6 -10 x2 = 4
-1 3 -4 x3 6

1 2 -7/2 x1 3/2
3 6 -10 x2 = 4
-1 3 -4 x3 6

1 2 -7/2 x1 3/2
0 0 1/2 x2 = -1/2
-1 3 -4 x3 6

1 2 -7/2 x1 3/2
0 0 1/2 x2 = -1/2
0 5 -15/2 x3 15/2

1 2 -7/2 x1 3/2
0 5 -15/2 x2 = 15/2
0 0 1/2 x3 -1/2

1 2 -7/2 x1 3/2
0 1 -3/2 x2 = 3/2
0 0 1/2 x3 -1/2

1 0 -1/2 x1 -3/2
0 1 -3/2 x2 = 3/2
0 0 1/2 x3 -1/2

1 0 -1/2 x1 -3/2
0 1 -3/2 x2 = 3/2
0 0 1 x3 -1

1 0 0 x1 -2
0 1 0 x2 = 0
0 0 1 x3 -1

14

Algorithm Implementation

• The matrix is input in staggered form
• The first cell discards inputs until it finds

a non-zero element (the pivot row)

• The inverse ρ of the non-zero
element is now sent rightward

• ρ arrives at each cell at the same
time as the corresponding
element of the pivot row

15

Algorithm Implementation

• Each cell stores δi = ρ ak,I – the value for the normalized pivot row
• This value is used when subtracting a multiple of the pivot row from other rows
• What is the multiple? It is aj,1
• How does each cell receive aj,1 ? It is passed rightward by the first cell
• Each cell now outputs the new values for each row
• The first cell only outputs zeroes and these outputs are no longer needed

16

Algorithm Implementation

• The outputs of all but the first cell must now go through the remaining
algorithm steps

• A triangular matrix of processors efficiently implements the flow of data
• Number of time steps?
• Can be extended to compute the inverse of a matrix

17

Graph Algorithms

18

Floyd Warshall Algorithm

19

Implementation on 2d Processor Array

Row 3
Row 2
Row 1

Row 1

Row 3
Row 2

Row 1/2

Row 3

Row 1/3

Row 2

Row 1

Row 2/3

Row 2/1

Row 3

Row 2

Row 3/1 Row 3/2

Row 1

Row 3

Row 2
Row 1

Row 3
Row 2
Row 1

20

Algorithm Implementation

• Diagonal elements of the processor array can broadcast
to the entire row in one time step (if this assumption is not
made, inputs will have to be staggered)

• A row sifts down until it finds an empty row – it sifts down
again after all other rows have passed over it

• When a row passes over the 1st row, the value of ai1 is
broadcast to the entire row – aij is set to 1 if ai1 = a1j = 1
– in other words, the row is now the ith row of A(1)

• By the time the kth row finds its empty slot, it has already
become the kth row of A(k-1)

21

• When the ith row starts moving again, it travels over
rows ak (k > i) and gets updated depending on
whether there is a path from i to j via vertices < k (and
including k)

Algorithm Implementation

22

Title

• Bullet

