Parallel Algorithms II

- Topics: matrix and graph algorithms

Solving Systems of Equations

- Given an $\mathrm{N} x \mathrm{~N}$ lower triangular matrix A and an N -vector b, solve for x, where $A x=b$ (assume solution exists)

$$
\begin{aligned}
& a_{11} x_{1}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}, \text { and so on } \ldots
\end{aligned}
$$

Define $t_{1}={ }_{\text {def }} b_{1}, t_{i}={ }_{\operatorname{def}} b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}, 2 \leq$ $i \leq N$. Then $x_{i}=t_{i} / a_{i i}$.

Equation Solver

Define $t_{1}={ }_{\operatorname{def}} b_{1}, t_{i}={ }_{\operatorname{def}} b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}, 2 \leq$ $i \leq N$. Then $x_{i}=t_{i} / a_{i i}$.

Equation Solver Example

- When an x, b, and a meet at a cell, $a x$ is subtracted from b - When b and a meet at cell $1, b$ is divided by a to become x

Complexity

- Time steps = 2N-1
- Speedup $=\mathrm{O}(\mathrm{N})$, efficiency $=\mathrm{O}(1)$
- Note that half the processors are idle every time step can improve efficiency by solving two interleaved equation systems simultaneously

Inverting Triangular Matrices

- Finding X, such that $A X=I$, where A is a lower triangular matrix
- For each row $j, A x_{j}=e_{j}$, where e_{j} is the jth unit vector $(0, \ldots, 0,1,0, \ldots, 0)$ and x_{j} is the jth row of matrix X
- Simple extension of the earlier algorithm - it can be applied to compute each row individually

Inverting Triangular Matrices

Solving Tridiagonal Matrices

Tridiagonal matrix : for all i, j, the (i, j)-th entry is 0 if $|i-j|>1$

$$
A=\left(\begin{array}{cccccc}
d_{1} & u_{1} & & & & \\
l_{2} & d_{2} & u_{2} & & 0 & \\
& & \ddots & & & \\
& 0 & & l_{N-1} & d_{N-1} & u_{N-1} \\
& & & & l_{N} & d_{N}
\end{array}\right)
$$

Solve $A x=b$ for a vector b.

- Can be solved recursively with odd-even reduction

Odd-Even Reduction

- For each odd i, the corresponding equation E_{i} is represented as:

$$
x_{i}=\frac{1}{d_{i}}\left(b_{i}-l_{i} x_{i-1}-u_{i} x_{i+1}\right)
$$

- This equation is substituted in equations $\mathrm{E}_{\mathrm{i}-1}$ and $\mathrm{E}_{\mathrm{i}+1}$
- Therefore, equation $\mathrm{E}_{\mathrm{i}-1}$ now has the following unknowns: $x_{i-1}, x_{i+1}, x_{i-3}$, (note that i is odd)
- We now have $\mathrm{N} / 2$ equations involving only even unknowns - repeat this process until there is only 1 equation with 1 unknown - after computing this unknown, back-substitute to get other unknowns

X-Tree Implementation

The Algorithm

- The $i^{\text {th }}$ leaf receives the inputs $u_{i j}, d_{i}, l_{i}$, and b_{i}
- Each leaf sends its values to both neighboring processors (purple sideways arrows) and every even leaf computes the u, d, l, and b values for the second level of equations
- These values are sent to the next higher level (upward purple arrows)
- After the root computes the value of x_{N}, it is propagated down and to the sides until all x_{i} are computed (green arrows)

Gaussian Elimination

- Solving for x, where $A x=b$ and A is a nonsingular matrix
- Note that $A^{-1} A x=A^{-1} b=x$; keep applying transformations to A such that A becomes I ; the same transformations applied to b will result in the solution for x
- Sequential algorithm steps:
- Pick a row where the first (ith) element is non-zero and normalize the row so that the first ($\mathrm{ith}^{\text {th }}$) element is 1
- Subtract a multiple of this row from all other rows so that their first (ith) element is zero
- Repeat for all i

Sequential Example

2	4	-7	$x 1$	3
3	6	-10	$x 2$	4
-1	3	-4	$x 3$	6

3 \& 6 \& -10 \& x 2 \& =

-1 \& 3 \& -4 \& x 3 \& 6

-43

\hline\end{array}\right|\)| 1 | 2 | $-7 / 2$ | $x 1$ | $3 / 2$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | $1 / 2$ | $x 2$ | $-1 / 2$ |
| -1 | 3 | -4 | $x 3$ | 6 |

1	2	$-7 / 2$	$x 1$	$3 / 2$							
0	0	$1 / 2$	$x 2$	$=$							
0	5	$-15 / 2$	$x 3$	$15 / 2$	$	$	1	2	$-7 / 2$	$x 1$	$3 / 2$
:---:	:---:	:---:	:---:	---:							
0	5	$-15 / 2$	$x 2$	$=15 / 2$							
0	0	$1 / 2$	$x 3$	$-1 / 2$							

1	2	$-7 / 2$	$x 1$	$3 / 2$						
0	1	$-3 / 2$	$x 2$	$=3 / 2$						
0	0	$1 / 2$	$x 3$	$-1 / 2$		1	0	$-1 / 2$	$x 1$	$-3 / 2$
:---	:---	:---	:---	---:						
0	1	$-3 / 2$	$x 2$	$=$						
0	0	$1 / 2$	$x 3$	$-1 / 2$						

1	0	$-1 / 2$	x 1	$-3 / 2$						
0	1	$-3 / 2$	x 2	$=$						
0	$3 / 2$									
0	0	1	x 3	-1	\quad	1	0	0	x 1	-2
:---	:---	:---	:---	:---						
0	1	0	x 2	$=$						
0	0	1	x 3	-1						

Algorithm Implementation

- The inverse ρ of the non-zero element is now sent rightward
- ρ arrives at each cell at the same time as the corresponding element of the pivot row
- The matrix is input in staggered form
- The first cell discards inputs until it finds a non-zero element (the pivot row)

Algorithm Implementation

- Each cell stores $\delta_{i}=\rho a_{k, 1}$ - the value for the normalized pivot row
- This value is used when subtracting a multiple of the pivot row from other rows
-What is the multiple? It is $a_{j, 1}$
- How does each cell receive $\mathrm{a}_{\mathrm{j}, 1}$? It is passed rightward by the first cell
- Each cell now outputs the new values for each row
- The first cell only outputs zeroes and these outputs are no longer needed

Algorithm Implementation

- The outputs of all but the first cell must now go through the remaining algorithm steps
- A triangular matrix of processors efficiently implements the flow of data
- Number of time steps?
- Can be extended to compute the inverse of a matrix

Graph Algorithms

$G=(V, E)$: a directed graph, $V=\{1, \ldots, N\}$
The adjacency matrix $A=\left(a_{i j}\right)$ of G is

$$
a_{i j}= \begin{cases}1 & \text { if either }(i, j) \in E \text { or } i=j \\ 0 & \text { otherwise }\end{cases}
$$

The transitive closure of G is $G^{*}=\left(V, E^{*}\right)$,

$$
E^{*}=\{(i, j) \mid j \text { is reachable from } i \text { in } G\}
$$

Floyd Warshall Algorithm

$A^{(k)}=_{\text {def }}\left(a_{i j}^{(k)}\right)$, where for each $k, 0 \leq k \leq$
$N, a_{i j}^{(k)}=1$ if j is reachable from i passing through only nodes $\leq k$ and 0 otherwise.

Then $A^{(N)}=A^{*}, A^{(0)}=A$, and for all $k \geq 1$,

$$
a_{i j}^{(k)}=a_{i j}^{(k-1)} \vee\left(a_{i k}^{(k-1)} \wedge a_{k j}^{(k-1)}\right) .
$$

Implementation on 2d Processor Array

Algorithm Implementation

- Diagonal elements of the processor array can broadcast to the entire row in one time step (if this assumption is not made, inputs will have to be staggered)
- A row sifts down until it finds an empty row - it sifts down again after all other rows have passed over it
- When a row passes over the $1^{\text {st }}$ row, the value of $a_{i 1}$ is broadcast to the entire row $-a_{i j}$ is set to 1 if $a_{i 1}=a_{1 j}=1$
- in other words, the row is now the $\mathrm{i}^{\text {th }}$ row of $\mathrm{A}^{(1)}$
- By the time the $\mathrm{k}^{\text {th }}$ row finds its empty slot, it has already become the $k^{\text {th }}$ row of $A^{(k-1)}$

Algorithm Implementation

- When the $\mathrm{i}^{\text {th }}$ row starts moving again, it travels over rows $a_{k}(k>i)$ and gets updated depending on whether there is a path from i to j via vertices $<k$ (and including k)

Title

- Bullet

