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SYNONYMS

Bus: shared interconnect, shared channel, shared-medium network
Crossbar: point-to-point switch, centralized switch, switched-medium network

DEFINITION

Bus: A bus is a shared interconnect used for connecting multiple components of a computer on a single
chip or across multiple chips. Connected entities either place signals on the bus or listen to signals
being transmitted on the bus, but signals from only one entity at a time can be transported by the bus
at any given time. Buses are popular communication media for broadcasts in computer systems.

Crossbar: A crossbar is a non-blocking switching element with N inputs and M outputs used for con-
necting multiple components of a computer where, typically, N = M. The crossbar can simultaneously
transport signals on any of the N inputs to any of the M outputs as long as multiple signals do not
compete for the same input or output port. Crossbars are commonly used as basic switching elements
in switched-media network routers.

DISCUSSION

Introduction

Every computer system is made up of numerous components such as processor chips, memory
chips, peripherals, etc. These components communicate with each other via interconnects. One of
the simplest interconnects used in computer systems is the bus. The bus is a shared medium (usually
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a collection of electrical wires) that allows one sender at a time to communicate with all sharers of
that medium. If the interconnect must support multiple simultaneous senders, more scalable designs
based on switched-media must be pursued. The crossbar represents a basic switched-media building
block for more complex but scalable networks.

In traditional multi-chip multiprocessor systems (circa 2000), buses were primarily used as off-chip
interconnects, e.g., front-side buses. Similarly, crossbar functionality was implemented on chips that
were used mainly for networking. However, the move to multi-core technology has necessitated the use
of networks even within a mainstream processor chip to connect its multiple cores and cache banks.
Therefore, buses and crossbars are now used within mainstream processor chips as well as chip sets.
The design constraints for on-chip buses are very different from those of off-chip buses. Much of
this discussion will focus on on-chip buses which continue to be the subject of much research and
development.

Basics of Bus Design

A bus comprises a shared medium with connections to multiple entities. An interface circuit allows
each of the entities either to place signals on the medium or sense (listen to) the signals already present
on the medium. In a typical communication, one of the entities acquires ownership of the bus (the
entity is now known as the bus master) and places signals on the bus. Every other entity senses these
signals and, depending on the content of the signals, may choose to accept or discard them. Most
buses today are synchronous, i.e., the start and end of a transmission are clearly defined by the edges
of a shared clock. An asynchronous bus would require an acknowledgment from the receiver so the
sender knows when the bus can be relinquished.

Buses often are collections of electrical wires,1 where each wire is typically organized as “data”,
“address”, or “control”. In most systems, networks are used to move messages among entities on
the data bus; the address bus specifies the entity that must receive the message; and the control

bus carries auxiliary signals such as arbitration requests and error correction codes. There is another
nomenclature that readers may also encounter. If the network is used to implement a cache coherence
protocol, the protocol itself has three types of messages: (i) DATA, which refers to blocks of memory,
(ii) ADDRESS, which refers to the memory block’s address, and (iii) CONTROL, which refers to
auxiliary messages in the protocol such as acknowledgments. Capitalized terms as above will be used
to distinguish message types in the coherence protocol from signal types on the bus. For now, it will
be assumed that all three protocol message types are transmitted on the data bus.

Arbitration Protocols

Since a bus is a shared medium that allows a single master at a time, an arbitration protocol
is required to identify this bus master. A simple arbitration protocol can allow every entity to have
ownership of the bus for a fixed time quantum, in a round-robin manner. Thus, every entity can make
a local decision on when to transmit. However, this wastes bus bandwidth when an entity has nothing
to transmit during its turn.

The most common arbitration protocol employs a central arbiter; entities must send their bus
requests to the arbiter and the arbiter sends explicit messages to grant the bus to requesters. If the
requesting entity is not aware of its data bus occupancy time beforehand, the entity must also send a
bus release message to the arbiter after it is done. The request, grant, and release signals are part of
the control network. The request signal is usually carried on a dedicated wire between an entity and
the arbiter. The grant signal can also be implemented similarly, or as a shared bus that carries the ID

1Alternatively, buses can be a collection of optical waveguides over which information is transmitted photonically [10].
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of the grantee. The arbiter has state to track data bus occupancy, buffers to store pending requests,
and policies to implement priority or fairness. The use of pipelining to hide arbitration delays will be
discussed shortly.

Arbitration can also be done in a distributed manner [5], but such methods often incur latency or
bandwidth penalties. In one example, a shared arbitration bus is implemented with wired-OR signals.
Multiple entities can place a signal on the bus; if any entity places a “one” on the bus, the bus carries
“one”, thus using wires to implement the logic of an OR gate. To arbitrate, all entities place their IDs
on the arbitration bus; the resulting signal is the OR of all requesting IDs. The bus is granted to the
entity with the largest ID and this is determined by having each entity sequentially drop out if it can
determine that it is not the largest ID in the competition.

Pipelined Bus

Before a bus transaction can begin, an entity must arbitrate for the bus, typically by contacting a
centralized arbiter. The latency of request and grant signals can be hidden with pipelining. In essence,
the arbitration process (that is handled on the control bus) is overlapped with the data transmission
of an earlier message. An entity can send a bus request to the arbiter at any time. The arbiter buffers
this request, keeps track of occupancy on the data bus, and sends the grant signal one cycle before
the data bus will be free. In a heavily loaded network, the data bus will therefore rarely be idle and
the arbitration delay is completely hidden by the wait for the data bus. In a lightly loaded network,
pipelining will not hide the arbitration delay, which is typically at least three cycles: one cycle for the
request signal, one cycle for logic at the arbiter, and one cycle for the grant signal.

Case Study: Snooping-Based Cache Coherence Protocols

As stated earlier, the bus is a vehicle for transmission of messages within a higher level protocol
such as a cache coherence protocol. A single transaction within the higher level protocol may require
multiple messages on the bus. Very often, the higher-level protocol and the bus are co-designed
to improve efficiency. Therefore, as a case study, a snooping bus-based coherence protocol will be
discussed.

Consider a single-chip multiprocessor where each processor core has a private L1 cache, and a large
L2 cache is shared by all the cores. The multiple L1 caches and the multiple banks of the L2 cache
are the entities connected to a shared bus (Figure 1). The higher-level coherence protcol ensures that
data in the L1 and L2 caches is kept coherent, i.e., a data modification is eventually seen by all caches
and multiple updates to one block are seen by all caches in exactly the same order.

A number of coherence protocol operations will now be discussed. When a core does not find its
data in its local L1 cache, it must send a request for the data block to other L1 caches and the L2
cache. The core’s L1 cache first sends an arbitration request for the bus to the arbiter. The arbiter
eventually sends the grant signal to the requesting L1. The arbitration is done on the control portion
of the bus. The L1 then places the ADDRESS of the requested data block on the data bus. On a
synchronous bus, we are guaranteed that every other entity has seen the request within one bus cycle.
Each such “snooping” entity now checks its L1 cache or L2 bank to see if it has a copy of the requested
block. Since every look-up may take a different amount of time, a wired-AND signal is provided within
the control bus so everyone knows that the snoop is completed. This is an example of bus and protocol
co-design (a protocol CONTROL message being implemented on the bus’ control bus). The protocol
requires that an L1 cache respond with data if it has the block in “modified” state, else, the L2 cache
responds with data. This is determined with a wired-OR signal; all L1 caches place the outcome of
their snoop on this wired-OR signal and the L2 cache accordingly determines if it must respond. The
responding entity then fetches data from its arrays and places it on the data bus. Since the bus is
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Figure 1: Cores and L2 cache banks connected with a bus. The bus is composed of wires that handle
data, address, and control.

not released until the end of the entire coherence protocol transaction, the responder knows that the
data bus is idle and need not engage in arbitration (another example of protocol and bus co-design).
Control signals let the requester know that the data is available and the requester reads the cache
block off the bus.

The use of a bus greatly simplifies the coherence protocol. It serves as a serialization point for
all coherence transactions. The timing of when an operation is visible to everyone is well known.
The broadcast of operations allows every cache on the bus to be self-managing. Snooping bus-based
protocols are therefore much simpler than directory-based protocols on more scalable networks.

As described, each coherence transaction is handled atomically, i.e., one transaction is handled
completely before the bus is released for use by other transactions. This means that the data bus is
often idle while caches perform their snoops and array reads. Bus utilization can be improved with
a split transaction bus. Once the requester has placed its request on the data bus, the data bus is
released for use by other transactions. Other transactions can now use the data bus for their requests
or responses. When a transaction’s response is ready, the data bus must be arbitrated for. Every
request and response must now carry a small tag so responses can be matched up to their requests.
Additional tags may also be required to match the wired-OR signals to the request.

The split transaction bus design can be taken one step further. Separate buses can be implemented
for ADDRESS and DATA messages. All requests (ADDRESS messages) and corresponding wired-OR
CONTROL signals are carried on one bus. This bus acts as the serialization point for the coherence
protocol. Responders always use a separate bus to return DATA messages. Each bus has its own
separate arbiter and corresponding control signals.

Bus Scalability

A primary concern with any bus is its lack of scalability. First, if many entities are connected
to a bus, the bus speed reduces because it must drive a heavier load over a longer distance. In an
electrical bus, the higher capacitive load from multiple entities increases the RC-delay; in an optical
bus, the reduced photons received at photodetectors from dividing the optical power budget among
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Figure 2: A hierarchical bus structure that localizes broadcasts to relevant clusters.

multiple entities likewise increases the time to detect bus signals. Second, with many entities competing
for the shared bus, the wait-time to access the bus increases with the number of entities. Therefore,
conventional wisdom states that more scalable switched-media networks are preferred when connecting
much more than 8 or 16 entities [4]. However, the simplicity of bus-based protocols (such as the
snooping-based cache coherence protocol) make it attractive for small- or medium-scale symmetric
multiprocessing (SMP) systems. For example, the IBM POWER7TM processor chip supports 8 cores
on its SMP bus [8]. Buses are also attractive because, unlike switched-media networks, they do not
require energy-hungry structures such as buffers and crossbars. Researchers have considered multiple
innovations to extend the scalability of buses, some of which are discussed next.

One way to scale the number of entities connected using buses is, simply, to provide multiple
buses, e.g., dual-independent buses or quad-independent buses. This mitigates the second problem
listed above regarding the high rate of contention on a single bus, but steps must still be taken to
maintain cache coherency via snooping on the buses. The Sun Starfire multiprocessor [3], for example,
uses four parallel buses for ADDRESS requests wherein each bus handles a different range of addresses.
Tens of dedicated buses are used to connect up to 32 IBM POWER7TM processor chips in a coherent
SMP system [8]. While this option has high cost for off-chip buses because of pin and wiring limitations,
a multi-bus for an on-chip network is not as onerous because of plentiful metal area budgets.

Some recent works have highlighted the potential of bus-based on-chip networks. Das et al., [6]
argue that buses should be used within a relatively small cluster of cores because of their superior
latency, power, and simplicity. The buses are connected with a routed mesh network that is employed
for communication beyond the cluster. The mesh network is exercised infrequently because most
applications exhibit locality. Udipi et al., [14] take this hierarchical network approach one step further.
As shown in Figure 2, the intra-cluster buses are themselves connected with an inter-cluster bus. Bloom
filters are used to track the buses that have previously handled a given address. When coherence
transactions are initiated for that address, the Bloom filters ensure that the transaction is broadcasted
only to the buses that may find the address relevant. Locality optimizations such as page coloring help
ensure that bus broadcasts do not travel far, on average. Udipi et al., also employ multiple buses and
low-swing wiring to further extend bus scalability in terms of performance and energy.
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Figure 3: (a) A “dance-hall” configuration of processors and memory. (b) The circuit for a 4x4 crossbar.

Crossbars

Buses are used as a shared fabric for communication among multiple entities. Communication
on a bus is always broadcast-style, i.e., even though a message is going from entity-A to entity-B,
all entities see the message and no other message can be simultaneously in transit. However, if the
entities form a “dance hall” configuration (Figure 3(a)) with processors on one side and memory on
the other side, and most communication is between processors and memory, a crossbar interconnect
becomes a compelling choice. Although crossbars incur a higher wiring overhead than buses, they allow
multiple messages simultaneously to be in transit, thus increasing the network bandwidth. Given this,
crossbars serve as the basic switching element within switched-media network routers.

A crossbar circuit takes N inputs and connects each input to any of the M possible outputs. As
shown in Figure 3(b), the circuit is organized as a grid of wires, with inputs on the left, and outputs
on the bottom. Each wire can be thought of as a bus with a unique master, i.e., the associated
input port. At every intersection of wires, a pass transistor serves as a crosspoint connector to short
the two wires, if enabled, connecting the input to the output. Small buffers can also be located at
the crosspoints in buffered crossbar implementations to store messages temporarily in the event of
contention for the intended output port. A crossbar is usually controlled by a centralized arbiter that
takes output port requests from incoming messages and computes a viable assignment of input port
to output port connections. This, for example, can be done in a crossbar switch allocation stage prior
to a crossbar switch traversal stage for message transport. Multiple messages can be simultaneously
in transit as long as each message is headed to a unique output and each emanates from a unique
input. Thus, the crossbar is non-blocking. Some implementations allow a single input message to be
routed to multiple output ports.

A crossbar circuit has a cost that is proportional to N ×M. The circuit is replicated W times,
where W represents the width of the link at one of the input ports. It is therefore not a very scalable
circuit. In fact, larger centralized switches such as Butterfly and Benes switch fabrics are constructed
hierarchically from smaller crossbars to form multistage indirect networks or MINs. Such networks
have a cost that is proportional to Nlog(M) but have a more restrictive set of messages that can be
routed simultaneously without blocking.
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A well-known example of a large-scale on-chip crossbar is the Sun Niagara processor [11]. The
crossbar connects eight processors to four L2 cache banks in a “dance hall” configuration. A recent
example of using a crossbar to interconnect processor cores in other switched point-to-point configu-
rations is the Intel QuickPath Interconnect [7]. More generally, crossbars find extensive use in network
routers. Meshes and tori, for example, implement a 5x5 crossbar in router switches where the five
input and output ports correspond to the North, South, East, West neighbors and the node connected
to each router. The mesh-connected Tilera Tile-GxTM 100-core processor is a recent example [13].

RELATED ENTRIES

Broadcast
Cache Coherency
Communication in Parallel Computing
Direct Networks
Interconnection Networks
Multistage Networks
Network Interface
PCI-Express
Routing
Switch Architecture
Switching Techniques

BIBLIOGRAPHIC NOTES AND FURTHER READING

For more details on bus design and other networks, readers are referred to the excellent textbook
by Dally and Towles [5]. Recent papers in the architecture community that focus on bus design include
those by Udipi et al. [14], Das et al. [6], and Kumar et al. [12]. Kumar et al. [12] articulate some
of the costs of implementing buses and crossbars in multi-core processors and argue that the network
must be co-designed with the core and caches for optimal performance and power. A few years back,
S. Borkar made a compelling argument for the widespread use of buses within multi-core chips that is
highly thought-provoking [1, 2]. The paper by Charlesworth [3] on Sun’s Starfire, while more than a
decade old, is an excellent reference that describes considerations when designing a high-performance
bus for a multi-chip multiprocessor. Future many-core processors may adopt photonic interconnects
to satisfy the high memory bandwidth demands of the many cores. A single photonic waveguide can
carry many wavelengths of light, each carrying a stream of data. Many receiver “rings” can listen to
the data transmission, each ring contributing to some loss in optical energy. The Corona paper by
Vantrease et al. [15] and the paper by Kirman et al. [10] are excellent references for more details on
silicon photonics, optical buses, and optical crossbars.

The basic crossbar circuit has undergone little change over the last several years. However, given
the recent interest in high-radix routers which increase the input/output-port degree of the crossbar
used as the internal router switch, Kim et al. [9] proposed hierarchical crossbar and buffered crossbar
organizations to facilitate scalability. Also, given the relatively recent shift in focus to energy-efficient
on-chip networks, Wang et al. [16] proposed techniques to reduce the energy usage within crossbar
circuits. They introduced a cut-through crossbar that is optimized for traffic that travels in a straight
line through a mesh network’s router. The design places some restrictions on the types of message
turns that can be simultaneously handled. Wang et al. also introduce a segmented crossbar that
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prevents switching across the entire length of wires when possible.
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