
Non-Uniform Power Access in Large Caches with Low-Swing Wires

Aniruddha N. Udipi

University of Utah

udipi@cs.utah.edu

Naveen Muralimanohar

HP Labs

naveen.muralimanohar@hp.com

Rajeev Balasubramonian

University of Utah

rajeev@cs.utah.edu

Abstract

Modern processors dedicate more than half their

chip area to large L2 and L3 caches and these

caches contribute significantly to the total processor

power. A large cache is typically split into multiple

banks and these banks are either connected through

a bus (uniform cache access – UCA) or an on-

chip network (non-uniform cache access – NUCA).

Irrespective of the cache model (NUCA or UCA), the

complex interconnects that must be navigated within

large caches are found to be the dominant part of

cache access power. While there have been a number

of proposals to minimize energy consumption in the

inter-bank network, very little attention has been paid

to the optimization of intra-bank network power that

contributes more than 50% of the total cache dynamic

power in large cache banks. In this work we study

various mechanisms that introduce low-swing wires

inside cache banks as energy saving measures. We pro-

pose a novel non-uniform power access design, which

when coupled with simple architectural mechanisms,

provides the best power-performance tradeoff. The

proposed mechanisms reduce cache bank energy by

42% while incurring a minor 1% drop in performance.

1. Introduction

To alleviate the growing gap between processors and

main memory, contemporary processors have begun

to provide large multi-megabyte last level caches,

often occupying upwards of half the total die area.

For example, the Montecito processor from Intel has

24 MB of L3 cache [1]. Intel’s consumer desktop

Nehalem processors have 8 MB of L3 cache [2]. With

the memory wall showing no signs of breaking down,

these trends are likely to continue, with future caches

only growing larger.

Large caches are likely to use a Non Uniform Cache

Access (NUCA) architecture, with the cache split into

multiple banks connected by an on-chip network [3].

This work was supported in parts by NSF grants CCF-0430063,

CCF-0811249, CCF-0916436, NSF CAREER award CCF-0545959,

Intel, SRC grant 1847.001, and the University of Utah.

The CACTI 6.0 tool computes the characteristics of

large NUCA caches and shows that optimal behavior

is exhibited when the cache is partitioned into large

banks, where each bank can accommodate a few mega-

bytes of data [4]. About 50% of the NUCA cache’s

dynamic power is dissipated within these large banks

(the rest is mostly within the inter-bank network).

Processors that do not employ NUCA will implement

monolithic multi-megabyte private or shared L2s or

L3s (the Nehalem and Montecito serving as examples).

In addition to consuming silicon area, these caches

will also contribute significantly to the energy con-

sumed by the processor. Large last-level shared caches

often serve as the cache coherence interface on multi-

core processors. Multi-threaded applications will likely

make frequent expensive look-ups into the L2 to access

shared data. There already appears to be a trend to sim-

plify the design and power efficiency of cores. Intel’s

shift from the Netburst to Core microarchitecture is a

sign of things to come. Sun’s Niagara and Rock proces-

sors are also designed for low energy-per-instruction

among other things. In the meantime, if SRAM cache

arrays remain stagnant in design, their contribution to

overall chip power will continue to grow. Hence, this

paper attempts to provide circuit/architecture innova-

tions to improve energy dissipation within large cache

banks.

We show that energy dissipation in a large cache

is dominated by the H-tree network within each bank.

To address this bottleneck, we propose various designs

that leverage low-swing wiring within the cache. Low-

swing wires are an attractive choice from the power

perspective but are inherently slow. Pipelining them is

inefficient and requires additional transceivers at inter-

mediate points along the bus. If employed judiciously,

however, their performance penalty can be mitigated

while exploiting their low-power characteristics. We

discuss these trade-offs in detail for a variety of

designs. We finally show that limited use of low-swing

wiring provides the best balance between performance

and power. This leads us to introduce the notion of

non-uniform power access, with certain regions of the



cache being accessible at low energy with low-swing

wires. Architectural mechanisms are required to exploit

the low-power region of a cache bank and we explore

novel block placement policies to maximize use of the

low-power region. Our results show significant cache

energy savings at a very modest performance penalty,

the penalty primarily arising from the non-pipelined

nature of our low-swing transfers.

The paper is organized as follows. Section 2 pro-

vides basics on cache bank organization. Section 3 dis-

cusses different novel designs that employ low-swing

wiring within a cache bank. Architectural innovations

that support non-uniform power access are described in

Section 4. Section 5 shows results. We discuss related

work in Section 6 and draw conclusions in Section 7.

2. Background

Large caches of the future are expected to experience

increasing disparity between access delays to different

parts of the cache depending on their proximity to the

processor core or cache controller. This mandates a

Non-Uniform Cache Access (NUCA) architecture [3],

with large caches being divided into multiple banks

connected by an on-chip network for data and address

transfer between banks. A recent study [5] has shown

that due to high power and latency overheads associ-

ated with on-chip network routers, NUCA caches will

implement a few banks, each of non-trivial size. The

bank count/size of each bank is determined by the

relative contributions of the banks and the network

to the total delay and energy consumption of the

cache, and associated design constraints. According to

CACTI 6.0 [4], a NUCA modeling tool that identifies

an optimal trade-off point between bank and network

components, a 64 MB NUCA cache will likely be

partitioned into large 2 MB or 4 MB banks. Up to

50% of cache dynamic power is dissipated within

these large banks. Some processors may also adopt

a tiled architecture where every core is associated

with a large L2 bank (either a private cache or a

slice of a large shared cache) [1]. Thus, regardless of

whether future processors adopt private/shared caches,

or UCA/NUCA architectures, or tiled/contiguous L2

caches, it is evident that several large cache banks

will be found on chip. This work focuses on reducing

the significant component of dynamic power within

these large cache banks. As per estimates from CACTI

5.3 [6], leakage in a 4 MB cache contributes about

20% to total power consumption. However, there are

well studied circuit ([7], [8], [9]) and microarchi-

tectural ([10], [11], [12], [13]) techniques in current

literature to tackle leakage in caches. We assume that

several of these can continue to be applied to the cache

orthogonal to our optimizations, and focus on dynamic

power for the rest of the paper.

We now describe briefly the factors that influence

the organization, power, and delay of a cache bank. A

naive cache takes the form of a single array of mem-

ory cells and employs centralized decoder and logic

circuitry to store and retrieve data from cells. Such a

monolithic model, however, has serious scalability is-

sues. First, wordlines (due to a lack of available silicon

area) and bitlines (due to differential signaling) cannot

be repeated at regular intervals, causing their delay to

increase quadratically with the size of the cache. Sec-

ond, the bandwidth of the cache is a function of cycle

time1 and a single array cache’s bandwidth deteriorates

quickly as the array size grows. The performance of the

cache is thus limited by long bitlines and wordlines that

span the array. To reduce this quadratic delay impact,

the cache is divided into multiple segments referred to

as subarrays. These subarrays need to be connected

through an interconnect fabric to transfer addresses

and data within the cache. In order to reduce design

complexity, an interconnect with easily predictable

timing characteristics is essential. A balanced H-tree

network (Figure 1) provides uniform pipelined access

without complex switching circuits and proves to be an

ideal choice. The number of subarrays that the bank

is split into, the height/width of the grid of subarrays

(the aspect ratio of the bank) and the aspect ratio of the

subarrays themselves are defined by three fundamental

parameters of cache bank design:

• NDWL - Number of vertical partitions in the array

i.e., the number of segments that a single wordline

is partitioned into. This determines the number of

columns of subarrays.

• NDBL - Number of horizontal partitions in the

array i.e., the number of segments that a single

bitline is partitioned into. This determines the

number of rows of subarrays.

• NSPD - Number of sets stored in each row of a

subarray. For given Ndwl and Ndbl values, this

decides the aspect ratio of the subarray.

An example organization is illustrated in Figure 1. The

design space of bank design is defined by variations of

these parameters and the resultant complex interaction

of various internal power and delay components.

For example, a small subarray count would enable

tighter packing of cells leading to increased area

efficiency (cell area/total area), but would result in

increased delay due to longer wordlines and bitlines. A

large subarray count would give better delay character-

istics but result in increased silicon area consumption.

1. The cycle time of a cache is the sum of the wordline, bitline,
and senseamp delays.



CORE

CACHE

CORE

CACHE

CORE

CACHE

CORE

CACHE

NDWL = 4

N
D

B
L

 =
 4

SUBARRAY

H−TREE

Figure 1. An example cache bank organization

H tree
Decoder
WordlinesWordlines
Bitline mux & drivers
Senseamp mux & drivers
BitlinesBitlines
Sense amplifier
Sub array output drivers

Figure 2. Contributors to total cache access energy

The effect of this design space exploration on the

energy consumption of the cache is described in more

detail in the upcoming subsection.

A typical cache modeling tool like CACTI iterates

over a large range of NDBL, NDWL, NSPD etc.,

and determines the optimal configuration of the cache

for a given set of design constraints, specified by

weightage given to area/power/delay and the maximum

permissible deviation of these values from optimum.

Understanding Bank Energy Consumption: The

total energy spent on a cache access is the sum of

energies consumed by the decoder circuitry, bitlines,

sense-amps, multiplexers, and the H-tree network. For

various large bank CACTI layouts that optimize delay,

power, area, and their combinations, we consistently

observe a large dynamic power contribution from the

H-tree network. Figure 2 shows a representative dy-

namic energy breakdown across various cache compo-

nents for banks designed for low latencies, resulting

in a relatively larger number of small subarrays. The

work in this paper targets the dominant contributor in

this breakdown, the H-tree network.

3. Low-swing Wires in Cache Banks

The array of SRAM cells constituting a bank is

typically not one monolithic structure but is split into

multiple smaller units called subarrays. This helps keep

capacitances within the bank low, reducing delay and

allowing faster access. The subarrays in a bank are

typically connected using a balanced H-tree structure

that serves to provide uniform time access to every

subarray in the bank and keep complexity low. A

key insight of our proposal is that in the process,

all accesses also become uniform power, which is an

unnecessary constraint placed on the access. Combined

with the fact that the H-tree is a major contributor to

the total cache energy, this is clearly an area to target

for significant reductions in energy.

3.1. Low-Swing Signalling

One of the primary reasons for the high power dis-

sipation of global wires is the full swing requirement

imposed by repeaters. While this can be somewhat mit-

igated by reducing repeater size and increasing repeater

spacing, the overhead is still relatively high. Low volt-

age swing alternatives represent another mechanism

to vary the wire power/delay/area trade-off. There is

little silicon overhead to using low-swing wires since

there are no repeaters and the wires themselves occupy

zero silicon area. A low-swing pair does require special

transmitter and receiver circuits for signal generation

and amplification but these are easily amortized over

moderately long wires. Reducing the voltage swing on

global wires can result in a linear reduction in power

(we assume a voltage swing of 100 mV [14], [4]).

In addition, assuming a separate voltage source for

low-swing drivers will result in quadratic savings in

power (we assume a supply voltage of 0.4 V [14], [4]).

However, these power savings are accompanied by

some big caveats. Low swing wires suffer significantly

greater delays than repeated full-swing wires and thus

cannot be used over very long distances. There is also

a non-trivial cost associated with pipelining low-swing

wires. In spite of these problems, low-swing wiring is

appropriate in some settings and a few studies ([15],

[16], [17]) have considered them when connecting

cache banks to CPUs. This paper is the first to consider

the use of low-swing signalling within a cache bank to

address the power bottleneck posed by intra-bank wires

in large caches. We study several ways of utilizing

low-swing wires for this purpose (discussed next), and

consider their architectural ramifications in Sections 4

and 5.

3.2. Single Low-Swing Bus

A simple way to exploit differential low-swing sig-

naling would be to build the H-tree entirely with a

single low-swing bus covering the bank. This cache

model provides excellent energy savings, coming at the

cost of very significant drops in performance. Such a

cache is first of all slow due to the higher latency of the

long low-swing bus. Because the wire is not pipelined,

accesses are essentially serial in nature, with the cache

cycle time becoming equal to the access time, leading

to drastically increased contention to access the bank.

Such a scheme is not worth considering except in



C
O

N
T

R
O

L
L

E
R

SUBARRAY

LOW SWING

BUS

Figure 3. Multi low-swing interconnect structure

niche cases where power is a far more important

consideration than performance.

3.3. Multiple Low-Swing Buses

To address the contention in non-pipelined low-

swing buses, we consider an alternate scheme with

multiple low-swing pairs in the bank, as shown in

Figure 3. There is one low-swing bus per row of

subarrays, connected to the controller by a vertical

bus. This seeks to essentially spread the contention

around, by throwing more resources at the problem.

Despite this increased cost and complexity, however,

we find that there is still a non-trivial performance

hit. Aggressively throwing even more resources at

the problem would simply lead to tremendous design

complexity and is not considered a feasible option.

3.4. Fully Pipelined Low-Swing H-Tree

Pipelining low-swing wires requires usage of dif-

ferential transmitter and receiver circuitry at every

pipeline stage. These circuits consume non-trivial

amounts of energy; amortized over 1 mm of low-

swing wire, a single transmitter-receiver pair causes

a 58% energy overhead, calculated from values in

CACTI 6.0. Considering that the bus is likely to be

at least 128 bits wide, there is a significant energy

overhead to pipelining low-swing wires. Despite this,

we still see good energy savings due to the large

energy gap between full-swing and low-swing wires.

The bigger problem, however, is that the low-swing

bus is inherently slower than regular wires, and still

causes a significant IPC drop, especially in applications

sensitive to L2 latency.

3.5. Low-Swing H-Tree Trunk

As a novel alternative to the various schemes dis-

cussed so far, we propose a non-uniform power access

structure as shown in Figure 4. We overlay a low-swing

bus over the central trunk of the H-tree. The rows of

subarrays adjacent to this central low-swing bus are

connected to the low-swing bus and not the H-tree.

They can therefore be accessed with greatly reduced

LOW SWING

H−TREE 

HIGH POWER SUBARRAY

LOW POWER

SUBARRAY

TRUNK

BUS

Figure 4. Low-swing H-tree trunk

energy consumption. The remaining rows continue to

use the balanced H-tree network. The introduction of

this low-swing interconnect does not directly affect

the basic H-tree design in any significant way. A

simple switch connects either the low-swing or regular

interconnect to the cache controller depending on the

subarray being accessed. Limiting the low-swing pair

to just the central subarrays ensures that the access

delay of the low-power region is the same as that for

the high-power regions connected by the default H-

tree. For example, in a 4 MB bank, the H-tree delay

as computed by CACTI is approximately 0.32 ns. The

width of the bank (and thus the length of the low-swing

bus along the center) is 1.53 mm which corresponds to

a low-swing wire delay of approximately 0.26 ns. We

can thus maintain uniform time access and the scheme

can be kept transparent to the cache controller and

the processor. Our experiments show that delay and

contention are low enough at this point on the design

spectrum to see little drop in overall IPC. The energy

savings obtained are only proportional to the percent-

age of rows that are accessible by this low-swing bus,

which is typically quite small (1/16th in our case). We

believe, however, that the performance advantages of

this model make it worth considering very seriously.

We next propose simple architectural mechanisms to

increase the percentage of accesses hitting the low-

power region through dynamically reconfigurable data

placement in the cache.

4. Exploiting Non-Uniform Power Access

4.1. Smart Data Placement

Energy estimates from CACTI 6.0 show that an

access over the low-swing interconnect could be as

much as five to seven times cheaper (depending on

cache size and H-tree wire type) than an access over

the default H-tree. Despite this, however, since only a

small fraction of the total cache can be accessed via

the low-power wires, the total energy savings obtained

are marginal. It is clear that the default data placement

will not effectively exploit the low-power resources at



our disposal. We will need a smarter mechanism to

maximize the number of accesses occurring over the

low-swing pair.

The bank is split into ‘NDBL’ rows of subarrays,

only two central ones of which are accessible via

the low-power interconnect structure, thus typically

representing only a small fraction of the total cache

capacity. We propose assigning a fraction of the ways

of the cache to the low-power region and the remaining

ways form the high power region. Since this is the

last level cache, we assume a sequential tag and data

lookup scheme, as is the norm. It must be stressed

that in the interest of maintaining low-complexity,

we do not alter the design or access mechanism of

the tag array. On every access, the tags in all ways

are looked up in parallel to determine the location

of the required block. This would not affect energy

consumption significantly since the tag arrays typically

contribute less than a tenth of the total access energy

in a cache bank. The real savings are to be had by

optimizing data array accesses. A hit in a low-power

way is a “low-power access” with immediate energy

savings. A miss in the low-power way results in the

block being brought into the low-power region from

the high-power region or main memory. Assuming

good temporal reuse of data, the next time that block

is requested, it would hit in the low-power region,

saving energy. Having set up the above basics for low-

power cache access, we now describe two policies for

managing blocks in low and high power regions.

In the first policy, Swap, blocks are brought into

the low-power region on touch (either from the high-

power region or main memory), and the blocks they

replace are swapped out into the high power region,

evicting the LRU way there. The low-power ways

thus always represent the MRU ways for that set. On

a high-power hit, the block is moved into the low-

power region, and the block in the low-power region

is moved into the high-power region, thus earning the

Swap moniker. The most recently used ways (say, W)

of every set in the cache are in the low-power region.In

our experiments, W is 1, out of 16 ways. As already

stated, there is no change to the UCA latency, so any

change in performance is because of greater contention

for the single unpipelined low-swing bus. Cache miss

rates should also be the same as the baseline because

replacement continues to be governed by LRU.

The more a block is touched (re-used) per fetch into

the low-power region, the greater the energy savings.

To estimate the level of re-use to make this fetch worth-

while, consider the following analytical estimates. For

now, we will assume that the energy of a high-power

access H is 7 times the energy of a low-power access L

(actual numbers are presented in Table 1). If a block

is touched N times before slipping out of the MRU

position, the conventional cache would have incurred

the energy cost of N high-powered accesses. With the

proposed scheme, there would have been N −1 hits in

the low-power way and one swap at the start, resulting

in N + 1 low-power hits and 2 high-power hits. For

the proposed model to consume less energy than the

baseline,

N × H > 2 × H + (N + 1) × L

N > 2.5

While this policy is effective, it is expensive in that

every low-power miss incurs a swap that requires two

low-power and two high-power accesses.

Now consider an alternative policy, referred to as

Duplicate. On an L2 miss, the block is fetched from

memory and placed in the low- and high-power region

(thus allowing duplicate copies of a block in L2). When

a block in the low-power region is evicted, it writes

into its copy in the high-power region if the block

is dirty. If the block is clean, it is simply dropped.

On a high-power hit, the block is copied into the

low-power region and the previously resident block is

evicted following the rules above. Thus, if the block

that is brought into the low-power region is written

to, its eviction results in a swap and therefore incurs

the cost of two high-power accesses and two low-

power accesses (just as in the Swap policy). On an

L2 miss, the block also incurs one additional high-

power access than the Swap policy. However, if the

block fetched into the low-power cache is typically

only read, on its eviction, it incurs one less high-

power and one less low-power access as the block

is quietly discarded. Even though this policy seems

initially wasteful because it maintains a duplicate copy

of the block, it ends up being more efficient than the

Swap policy because blocks are frequently read-only

and having the duplicate copy means that a new block

is simply fetched instead of a swap being required. Our

results show that the Duplicate policy consumes less

power than the Swap policy.

Forming equations similar to those developed for

Swap, the first fetch that brings the block into the low-

power way consumes H (reading from the high-power

region) plus L (writing into the low-power region). The

subsequent low-power hits consume L. A copy back

into the high-power region again costs one L (reading

from the low-power region) plus one H (writing into

the high-power region).

If the block is evicted clean at the end of the reuse

run,

Nclean × H > H + L + (Nclean − 1) × L



If the block is dirty and has to be written back to the

high-power region on eviction,

Ndirty × H = H + L + (Ndirty − 1) × L + H + L

Nclean > 1.16; Ndirty > 2.6

If writes are not very frequent, Duplicate is clearly

better than Swap even though it initially appears space-

inefficient.

4.2. Dynamic Reconfiguration

The block placement scheme described in the previ-

ous subsection gives excellent energy savings, provided

a modestly high number of accesses can be satisfied by

the low power way. Below a certain threshold hit rate,

we begin to see negative effects by bringing in blocks

to the low-power way on every touch. The extra energy

required to move blocks to the low-power region starts

to overshadow the energy savings obtained through the

low-swing pair when there is insufficient reuse before

eviction. It may be the case that certain phases of

the application show very poor data reuse in the low-

power region, leading to negative energy savings. To

handle application phases with low resue, we propose

a dynamic reconfiguration scheme where the cache, if

necessary, is able to switch off the placement scheme

described above. In this mode, the L2 cache simply

behaves like a conventional cache, and blocks are not

brought in to the low-power way(s) on access. To facil-

itate such a mechanism, we would need to accurately

characterize the local behavior of the application at

any point in time. We simply maintain a saturating

counter that increments every time an access hits in

the low-power way and decrements on a miss. When

the counter value falls below a certain threshold, the

L2 starts to operate in the conventional manner. While

in this mode, the counter increments on a hit in the

most recently used (MRU) way and decrements on a

miss. When the counter value goes above a threshold,

the cache moves back into smart placement mode. We

empirically found that a skewed 5 bit counter going

between -15 and +15, with increments in steps of 2

and decrements in steps of 1, with the threshold value

being 0, effectively captured various reuse scenarios.

Note that there is a single global counter, not one per

cache line.

4.3. Discussion

We now discuss some of the finer points of our

proposals and a few associated overheads. Since our

Duplicate scheme deviates slightly from the LRU

replacement policy, a minor fluctuation in miss rates is

observed. The duplicate entries also mean that capacity

is slightly lowered. In most cases, the cache behaves

like a 15-way cache (for our 16-way cache with 1 way

in the low-power region). This is, however, not always

true because the LRU policy may evict a high-power

cache line while its copy is still resident in the low-

power cache. This does not violate correctness as a

duplicate copy is not a requirement.

The look-up for this scheme is also complicated

slightly compared to baseline. If we are looking for

block A, the tag search may reveal that block A is in

way-6. This block must now be brought into the MRU

way-1. This means that block B which is currently

resident in way-1 and dirty has to be written back

into its high-power copy. The tags must again be

searched to locate the way that houses B’s duplicate

copy. Additional look-ups of the tags are not expensive,

considering that high-power accesses are the bottleneck

and this policy minimizes high-power accesses. The

presence of duplicate copies also does not lead to

coherence issues. If there are duplicate copies, there

will be a hit in way-1 and this automatically causes the

copy in the high-power way to be dis-regarded. When

the low-power block is evicted, it will over-write the

copy in the high-power way.

Also, under the smart line placement scheme, every

access to a non-MRU way forces a swap in L2. This

swap requires an access to a low and high power way,

unlike the baseline that would have simply required

one high power way access. However, we show with

our analytical models that the energy savings obtained

on every cache hit in the low-power way easily amor-

tize this swap cost over as few as three accesses.

Our data placement and mapping schemes bear re-

semblance to an L2/L3 hierarchy or a filter cache [18]

based hierarchy. However, we believe our approach is

orthogonal to the actual hierarchy and can continue to

be used for the largest last level cache structure. Fur-

ther, we eliminate the need for interconnects between

multiple physical cache structures. Our experiments

show that our non-uniform scheme provides on average

25% more energy savings than a filter cache model

with similar capacities, i.e., it is more efficient to

access a portion of a large cache with low-swing wires

than it is to access a small cache with conventional

full-swing wiring.

The dynamic reconfiguration scheme is simply a

decision between bringing the most recently touched

block into the low-power way or not. It suffers prac-

tically no additional performance or energy overheads

over the smart placement scheme. There is also little

hardware overhead since we only use a single five bit

saturating counter for the entire cache.



Model Latency Access Energy IPC
(cycles) (nJ)

Baseline 5 0.185 1.456

Single Low-swing 12 0.016 1.181

Pipelined Low-swing 12 0.040 1.376

Multi Low-swing 8 0.015 1.337

Non-uniform model 5 0.014(LP) 1.430

Table 1. Access characteristics for a 4MB bank

5. Results

5.1. Methodology

All of our architectural analysis was carried out

using the SimpleScalar-3.0 [19] out-of-order simulator

for an 8-issue Alpha AXP with an ROB size of 80

and an LSQ size of 40. The baseline processor is

assumed to have separate 2-way, 1-cycle 32 KB I-

and D- L1 caches with a unified 16-way 4 MB L2

cache. The L1 and L2 have cache line sizes of 32

and 64 bytes respectively. Main memory latency is

assumed to be 300 cycles. The L2 cache is organized

as a 32x32 grid of equally sized subarrays, based

on Ndwl and Ndbl values obtained from CACTI 6.0.

The two central rows are accessible via the low-

swing pair, allowing 64 of the 1024 subarrays to be

low-power. The low-power region is therefore one-

sixteenth of the cache, i.e., one way. As a workload,

we employ the SPEC2k programs executed for a 100

million instruction window identified by the Simpoint

toolkit [20]. The caches are warmed up for 25 million

cycles before making measurements.

All delay and power calculations are for a 32nm

process technology and a clock frequency of 5 GHz,

as computed by CACTI 6.0. The baseline wiring

is assumed to be 10% delay penalty2 repeated full-

swing wires. We also show a sensitivity analysis for

other baseline wiring assumptions. We measure in

detail the cache access statistics in the low-power and

high-power ways, including hit rates and writebacks.

Bank access characteristics and IPC values for the

various models are shown in Table 1. Every high-

power access consumes the energy of one default H-

tree access plus the remaining components (bitlines,

wordlines, senseamps etc.). Every low-power access

consumes a reduced H-tree access energy with all other

components assumed to be identical to the default case.

A hit in the low-power way simply consumes one

low-power access energy. A hit in the high-power way

requires a swap, thus incurring the energy for two low-

power accesses and two high-power accesses. A cache

2. There are inherent tradeoffs between delay and power in the
design of repeated full-swing wires. Smaller and fewer repeaters
result in slow wires but decreased power consumption. More heav-
ily repeated wires are fast but burn more power. A “10% wire”
would incur a 10% delay penalty from optimal for reduced power
consumption [21].

miss requires the block to be placed in the low-power

way; the current resident in the low-power way is

copied to a high-power way; the LRU block is written

back to memory if dirty. Thus, up to two memory

accesses, two low-power accesses, and up to two high-

power accesses are performed.

5.2. Analysis of Low-Swing Design Points

Figures 5 and 6 show the energy savings obtainable

and performance degradation suffered by the various

models that introduce low-swing wiring inside cache

banks. Building the H-tree entirely out of low-swing

wires provides more than 90% savings in energy

compared to the baseline full-swing bus case. However,

we see that this is accompanied by a 17% drop in

IPC due to the increased delay and contention of the

low-swing bus. By pipelining the low-swing bus with

additional transmitters and receivers, an energy penalty

of 12% is incurred, but IPC degradation is greatly

reduced. Though the average IPC drop relative to the

baseline in this case is just over 5%, there is a subset

of benchmarks (not shown separately due to space

constraints) that are sensitive to L2 latency and suffer

as much as 17% decrease in IPC due to increased

delay of the low-swing wires. The multiple low-swing

model gives mediocre energy savings with moderate

IPC degradation and does not represent an appealing

design point. The non-uniform power access model

displays IPC drops that are within error margins (just

over 1% on average, with 3% in the worst case) and

is the best from the performance view point. We note

that not all SPEC2k benchmarks have large enough

working set sizes to be significantly impacted by the

capacity reduction of roughly 1/16 in our scheme.

However, since even the largest program in SPEC2k

is impacted by just 3%, we expect performance trends

to be similar even for other larger benchmark suites.

The energy savings of our scheme by itself are very

marginal, typically less than 5%. When supported

by simple architectural schemes, however, we see a

considerable 42% energy saving, proving to be an

attractive choice if both energy and performance are

considered important. When we consider the overall

processor ED2 metric, the non-uniform access model

provides a 5% improvement on average over the base-

line, with a best case improvement of up to 25% (this

assumes that the L2 cache contributes 20% of total

chip power). The pipelined low-swing model has the

next best ED2, yielding an average 3% improvement

over the baseline. Clearly, these two models represent

the most compelling design points, with the proposed

non-uniform power model having the best performance

and ED2 while incurring the cost of block movements.



0

20

40

60

80

100

E
n
e
rg
y
S
a
v
in
g
s
(%

)

PROPOSED SCHEME

WITHOUT ARCH

SUPPORT

SINGLE LOW

SWING

MULTI

LOWSWING

PIPELINED

LOW SWING

PROPOSED SCHEME

WITH ARCH

SUPPORT

Figure 5. Average Energy savings for different design

points

20

15

10

5

0

IP
C
D
ro
p
(%

)

PROPOSED

SCHEME

SINGLE LOW

SWING

MULTI

LOWSWING

PIPELINED

LOW SWING

Figure 6. Average IPC degradation for different design

points

Details of the block swap/duplication mechanisms are

discussed next.

5.3. Architectural Mechanisms

Copying the most recently used block of every

set into the low-power way is an effective way of

maximizing the number of accesses hitting the low-

power region. As shown earlier, the Duplicate scheme

is more energy efficient and we pick this for all of

our analysis. We also see only marginal fluctuations in

miss rates and IPC when moving between Duplicate

and Swap. Figure 7 shows the energy savings obtained

by doing this kind of smart block placement. There

is a 42% saving on average, with the best benchmark

showing an 88% energy advantage. Table 2 details the

access statistics for all applications in the L2 cache.

We see that even with the moderate hit rates seen

in the low power way, energy savings are substantial.

This is explained simply by the huge energy difference

20

0

20

40

60

80

100

a
m
m
p

a
p
p
lu

a
p
si

a
rt

b
zi
p

cr
a
ft
y

e
o
n

e
q
u
a
ke

fm
a
3
d

g
a
lg
e
l

g
a
p

g
cc

g
zi
p

lu
ca
s

m
cf

m
e
sa

m
g
ri
d

p
a
rs
e
r

sw
im

tw
o
lf

v
o
rt
e
x

v
p
r

w
u
p
w
is
e

E
n
e
rg
y
S
a
v
in
g
s
(%

)

Benchmark

Figure 7. Energy savings with smart data placement but

no dynamic reconfiguration

0

20

40

60

80

100

a
m
m
p

a
p
p
lu

a
p
si

a
rt

b
zi
p

cr
a
ft
y

e
o
n

e
q
u
a
ke

fm
a
3
d

g
a
lg
e
l

g
a
p

g
cc

g
zi
p

lu
ca
s

m
cf

m
e
sa

m
g
ri
d

p
a
rs
e
r

sw
im

tw
o
lf

v
o
rt
e
x

v
p
r

w
u
p
w
is
e

E
n
e
rg
y
S
a
v
in
g
s
(%

)

Benchmark

Figure 8. Energy savings with dynamic reconfiguration

between low-power and high-power accesses (7x-10x).

The energy savings achieved are also proportional to

the reuse count per fetch N , since the copy cost is

amortized over multiple accesses and we begin to see

additional savings. For example, eon and gcc have

reuse counts greater than 35, and show energy savings

of over 80%.

There are a couple of applications that show an

increase in energy consumed when data is copied on

first-touch. These are programs that have poor hit rates

in the low-power way of the cache, typically under

40%, due to low reuse counts (lucas and art). Data

is repeatedly copied into the low-power way, only

to be thrown out without being reused sufficiently to

amortize the cost of the copy. For example, lucas and

art have reuse counts less than 0.5, which means that

more often than not, blocks are brought into the low-

power way and evicted without reuse. Such blocks are

best left in the high-power way and accessed directly

from there.

Our dynamic reconfiguration scheme keeps track

of the application’s access patterns at run-time and

turns off block copying when required. Figure 8 shows

energy savings obtained in this case. We see that

the energy savings of applications that were already

benefiting from the smart placement scheme remain

practically untouched, while the previously negative

numbers are now positive, though relatively small. Our

experiments show that applications in the former class

remain in “copy-on-touch” mode upwards of 95% of

the time, whereas the latter are in this mode less than

30% of the time. This indicates that our simple counter

is effectively capturing the behavior of the application

in a small time window.

The energy savings obtained are clearly a function

of the capacity of the cache, since this determines the

baseline access energy and the percentage of accesses

that can be satisfied by the low-power way for a

given workload. As shown in Figure 9, the larger

the cache, the better the savings are, making this

scheme even more attractive as cache sizes increase.

We see that beyond a point, simply employing smart

data placement actually increases energy consumption

due to insufficient reuse. The dynamic reconfiguration



Benchmark L2 Accesses* LP Hits* LP Misses* LP to HP WrtBk* LP Hit Rate (%) % Dirty Misses Avg Reuse Count

ammp 33.2 19.3 13.9 3.6 58.1 26.1 1.4
applu 24.0 12.8 11.2 0.5 53.4 4.9 1.2
apsi 18.7 13.4 5.3 2.1 71.8 40.6 2.5
art 172.2 54.7 117.5 31.2 31.7 26.6 0.5

bzip 23.3 12.0 11.2 2.3 51.7 20.8 1.1
crafty 13.4 12.2 1.3 0.1 90.7 10.5 9.7
eon 5.9 5.7 0.1 0.0 97.5 14.0 39.7

equake 83.8 55.1 28.7 3.8 65.7 13.2 1.9
fma3d 34.1 17.9 16.2 6.2 52.5 38.4 1.1
galgel 39.6 27.0 12.6 4.0 68.2 31.6 2.2
gap 5.7 4.1 1.6 1.4 71.7 84.9 2.5
gcc 57.7 46.4 11.3 9.0 80.5 80.1 4.1
gzip 31.2 30.4 0.8 0.4 97.4 49.4 36.7
lucas 70.8 19.5 51.4 20.1 27.5 39.1 0.4
mcf 212.6 86.5 126.1 28.5 40.7 22.6 0.7

mesa 4.1 3.2 0.9 0.7 78.8 81.9 3.7
mgrid 28.4 16.8 11.7 2.7 59.0 22.9 1.4
parser 22.1 15.6 6.5 2.3 70.6 35.1 2.4
swim 74.4 51.5 22.8 9.6 69.3 42.1 2.3
twolf 40.8 24.8 16.0 5.7 60.7 35.6 1.6
vortex 11.6 9.2 2.4 0.3 79.3 11.1 3.8

vpr 36.3 18.2 18.2 6.5 50.0 35.7 1.0
wupwise 7.5 3.8 3.8 0.6 49.9 15.6 1.0

Table 2. Cache access statistics (LP - Low Power Way, HP - High Power Way, *Access Counts x100,000)

20

30

40

50

60

S
a
v
in
g
s
(%

)

Smart data

placement

20

10

0

10

6425610244096

A
v
g
.
E
n
e
rg
y

Cache Capacity (kB)

p

Dynamic

reconfiguration

Figure 9. Sensitivity of energy savings to bank capacity

0

0.5

1

1.5

a
m
m
p

a
p
p
lu

a
p
si

a
rt

b
zi
p

cr
a
ft
y

e
o
n

e
q
u
a
ke

fm
a
3
d

g
a
lg
e
l

g
a
p

g
cc

g
zi
p

lu
ca
s

m
cf

m
e
sa

m
g
ri
d

p
a
rs
e
r

sw
im

tw
o
lf

v
o
rt
e
x

v
p
r

w
u
p
w
is
e

N
o
rm

a
li
ze
d
E
n
e
rg
y

S
a
v
in
g
s

Benchmark

Global

10%

20%

30%

Figure 10. Sensitivity of energy savings to baseline wire

type

scheme detects such situations and reverts to default

behavior in program phases with poor locality.

The savings are also a function of the kind of wiring

assumed for the default H-tree network. As the wires

pay more delay penalty, they are themselves cheaper

to operate in terms of energy, and the room for energy

improvement reduces. Figure 10 shows the results of

this sensitivity analysis, normalized to the 10% case.

6. Related Work

Low-swing wires are gaining popularity as energy

consumption becomes a major issue in electronics

design. The Smart Memories project ([15], [16], [17])

explored using a low-swing crossbar to connect pro-

cessing elements and cache subarrays in a reconfig-

urable environment. CACTI 6.0 [4], the latest version

of the popular cache modeling tool now incorporates

support for low-swing wiring inside the cache. Ho et

al. recently proposed a capacitively driven low-swing

wire design for high-speed and low-energy [22]. There

have been numerous other proposals to reduce energy

consumption in caches. Flautner et al. [11] proposed

putting a subset of cache lines into a state-preserving

low-power drowsy mode based on cache activity. Agar-

wal et al. [23] utilize the concept of Gated-Ground

(NMOS transistor inserted between Ground line and

SRAM cell) to achieve reduction in leakage energy.

Yang et al. [24] propose an L0 instruction cache

before the L1 to achieve lower capacitance and thus

lower energy without affecting performance. Ishihara

et al. [25] advocate using non-uniformity in the number

of ways per set to achieve energy advantages. All of

the above schemes do little to reduce energy in the H-

tree, a major contributor to cache energy. Our H-tree

optimizations can work in tandem with all of these

schemes to reduce the power consumed in the wiring

connecting the cells.

7. Conclusions

Future processors will accommodate large multi-

megabyte caches. The energy consumed by large cache

banks will continue to be a growing problem, es-

pecially as CPU cores become more power-efficient.

This paper isolates the H-tree within a bank as the

major energy bottleneck within a large cache. We study

various ways of introducing low-swing wires within

the cache to address this bottleneck. Using a pipelined



low-swing bus for the entire H-tree provides the best

energy savings but can lead to as much as 17% drops

in IPC. We show that the use of a single low-swing

bus, providing low-power access to a small part of the

cache, gives the best energy-performance tradeoff. We

thus introduce the notion of non-uniform power access

within a cache bank. Since the low-power region is

a very small fraction of the total cache, architectural

mechanisms are required to boost its access frequency.

We advocate a policy that is based on MRU access and

block duplication within the L2. We see overall cache

energy reductions of 42% on average with just over

1% drop in IPC.

We believe that non-uniform power access (NUPA)

has much potential, just as non-uniform cache access

(NUCA) has opened up several opportunities in recent

years.

References

[1] C. McNairy and R. Bhatia, “Montecito: A Dual-Core,
Dual-Thread Itanium Processor,” IEEE Micro, vol.
25(2), March/April 2005.

[2] “First the Tick, Now the Tock: Next Generation Intel
Microarchitecture (Nehalem),” Intel Whitepaper, Tech.
Rep., 2008.

[3] C. Kim, D. Burger, and S. Keckler, “An Adaptive, Non-
Uniform Cache Structure for Wire-Dominated On-Chip
Caches,” in Proceedings of ASPLOS, 2002.

[4] N. Muralimanohar, R. Balasubramonian, and N. Jouppi,
“Optimizing NUCA Organizations and Wiring Alterna-
tives for Large Caches with CACTI 6.0,” in Proceed-
ings of MICRO, 2007.

[5] N. Muralimanohar and R. Balasubramonian, “Intercon-
nect Design Considerations for Large NUCA Caches,”
in Proceedings of ISCA, 2007.

[6] “CACTI: An Integrated Cache and Memory Access
Time, Cycle Time, Area, Leakage, and Dynamic Power
Model,” http://www.hpl.hp.com/research/cacti/.

[7] “High-k and Metal Gate Research,”
http://www.intel.com/technology/silicon/high-k.htm.

[8] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang,
B. Cherkauer, J. Stinson, J. Benoit, R. Varada, J. Leung,
R. Lim, and S. Vora, “A 65-nm Dual-Core Multi-
threaded Xeon Processor With 16-MB L3 Cache,” IEEE
Journal of Solid State Circuits, vol. 42, no. 1, pp. 17–
25, January 2007.

[9] K. Zhang, U. Bhattacharya, Z. Chen, D. Murray,
N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, “A
SRAM Design on 65nm CMOS Technology with Inte-
grated Leakage Reduction Scheme,” in Proceedings of
VLSI, 2004.

[10] S. Heo, K. Barr, M. Hampton, and K. Asanovic, “Dy-
namic Fine-Grain Leakage Reduction Using Leakage-
Biased Bitlines,” in Proceedings of ISCA, 2002.

[11] K. Flautner, N. Kim, S. Martin, D. Blaauw, and
T. Mudge, “Drowsy Caches: Simple Techniques for
Reducing Leakage Power,” in Proceedings of ISCA,
2002.

[12] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay:
Exploiting Generational Behavior to Reduce Cache
Leakage Power,” in Proceedings of ISCA, 2001.

[13] S. Yang, M. Powell, B. Falsafi, K. Roy, and T. Vi-
jaykumar, “An Integrated Circuit/Architecture Ap-
proach to Reducing Leakage in Deep Submicron High-
Performance I-Caches,” in Proceedings of HPCA, 2001.

[14] R. Ho, “On-Chip Wires: Scaling and Efficiency,” Ph.D.
dissertation, Stanford University, August 2003.

[15] R. Ho, K. Mai, and M. Horowitz, “Efficient On-Chip
Global Interconnects,” in Proceedings of VLSI, 2003.

[16] K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and
M. Horowitz, “Architecture and Circuit Techniques for
a Reconfigurable Memory Block,” in Proceedings of
ISSCC, 2004.

[17] K. Mai, T. Paaske, N. Jaysena, R. Ho, W. J. Dally, and
M. Horowitz, “Smart Memories: A Modular Reconfig-
urable Architecture,” in Proceedings of ISCA, 2000.

[18] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The
Filter Cache: An Energy Efficient Memory Structure,”
in Proceedings of MICRO, 1997.

[19] D. Burger and T. Austin, “The Simplescalar Toolset,
Version 2.0,” University of Wisconsin-Madison, Tech.
Rep. TR-97-1342, June 1997.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program
Behavior,” in Proceedings of ASPLOS, 2002.

[21] K. Banerjee and A. Mehrotra, “A Power-optimal Re-
peater Insertion Methodology for Global Interconnects
in Nanometer Designs,” IEEE Transactions on Electron
Devices, vol. 49, no. 11, pp. 2001–2007, November
2002.

[22] R. Ho, T. Ono, F. Liu, R. Hopkins, A. Chow, J. Schauer,
and R. Drost, “High-speed and low-energy capacitively-
driven on-chip wires,” in Proceedings of ISSCC, 2007.

[23] A. Agarwal, H. Li, and K.Roy, “DRG-Cache: A Data
Retention Gated-Ground Cache for Low Power,” in
Proceedings of the 39th Conference on Design Automa-
tion, June 2002.

[24] C.-L. Yang and C.-H. Lee, “HotSpot Cache: Joint
Temporal and Spatial Location Exploitation for I-cache
Energy Reduction,” in Proceedings of ISLPED, 2004.

[25] T. Ishihara and F. Fallah, “A Non-Uniform Cache
Architecture for Low Power System Design,” in Pro-
ceedings of ISLPED, 2005.


