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As device dimensions shrink, con-
ventional global on-chip wires are not scaling
well.1 Reducing a wire’s cross-sectional area
and packing wires closely together can have a
detrimental effect on wire delay. Whereas
microprocessor chips in the 1990s sent a sig-
nal from one end of the chip to the other in a
single clock cycle, analysts project that this
delay will grow to 30 clock cycles by 2014.
Researchers also report that interconnect
power accounts for 50 percent of total chip
dynamic power in some Intel processors.2

Thus, any form of distant on-chip commu-
nication, which cost almost nothing in the
past, will be very expensive in the future.

There are three types of distant communi-
cation on chips:

• A single thread executes instructions on
functional units that are not in proximi-
ty, introducing wire delays between the
execution of dependent instructions.

• A parallel application executing on a
multicore chip frequently transfers data
between cores that are millimeters apart.

• Address and data signals must navigate
long wires when accessing a bank within
a multiple-megabyte on-chip L2 cache.

In this article, we apply our interconnect
design ideas primarily to the first two prob-
lem domains.

Our shift into an era of communication-
bound microprocessor chips has led to a flur-
ry of activity in the fields of VLSI, materials
science, and optics—all attempting to improve
the speed of communication fabrics. Recent
innovations in on-chip optical interconnects3

and transmission line technology4 have raised
hopes of circumventing the communication
problem. These technologies use the medium
as optical or electromagnetic waveguides, and
each achieves speeds equivalent to the speed
of light in that medium. Architects have a rea-
sonable idea of the performance improvement
possible if these low-latency interconnects
could make on-chip communication free of
cost again—they need only consult the litera-
ture of the 1990s, which assumed communi-
cation cost to be nearly zero. But that is now
an unrealistic scenario. The costs of low-laten-
cy interconnects are so high that future chips
will have to use them frugally. 

Consider the costs associated with a trans-
mission line: Each line must have great width,
thickness, horizontal spacing, and vertical
spacing. Each line also requires signal modu-
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lation and sensing circuits, reference planes
above and below the metal layer, and adjacent
shielding power and ground lines.4,5 Accord-
ing to a recent study, the delay and power cost
of optical modulators (transmitters), even
with optical interconnects, are so high that
they cannot compete with regular resistance-
capacitance (RC)-based wires, although these
costs will decrease as device dimensions scale
down.6 (It is also possible to make RC-based
wires operate at low latency, at a significant
metal area cost.)

Given the costs, it is unlikely that a single
metal layer can accommodate, say, 64 trans-
mission lines to transmit a word between mul-
tiple cores. In a more realistic scenario, a chip
will include a few low-latency wires, and it will
be up to microarchitects to find creative ways
to put these precious resources to good use.

To the best of our knowledge, only two other
efforts have attempted to exploit exotic inter-
connects at the microarchitecture level. Beck-
mann and Wood propose speeding up access
to large L2 caches by introducing transmission
lines between the cache controller and indi-
vidual banks.5 Nelson et al. propose using opti-
cal interconnects to reduce intercluster latencies
in a clustered architecture in which clusters are
widely spaced to alleviate power density.7

We propose designing a heterogeneous
interconnect layer composed of wires with dif-
fering characteristics. For an on-chip data
transfer, we have the option of using a few
low-latency wires or many higher-latency
wires. In addition to this basic latency-band-
width trade-off, we can leverage the latency-
power trade-off by introducing the option of
transferring data on slower, power-efficient
wires. To fully exploit the heterogeneous inter-
connect, we must design the microarchitec-
ture to be aware of not only the different wire
properties but also the needs of different data
transfers. Thus, the microarchitecture can
map data transfers to sets of wires in a manner
that optimizes performance and power.

Assuming that the costs of low-latency
interconnects remain high, what is the poten-
tial for performance and power improvement
with a limited number of such interconnects?
Currently missing from the architecture liter-
ature are any quantitative results to answer
this question. The results we present here take
only a first stab at an answer. We will contin-

ue to need creative ideas to leverage low-
latency interconnects.

Wire characteristics
The ultimate goal of this study is to under-

stand the potential benefits of exotic intercon-
nects such as transmission lines and optical
interconnects, but projecting parameters for
this nascent technology is difficult. Therefore,
for our initial detailed study, we rely on well-
understood RC-based wires to derive estimates
for the latency-bandwidth and latency-power
trade-offs. We also examine the effect of aggres-
sive latency assumptions that might reflect the
behavior of future transmission lines.

Delay equations
Consider traditional wires in CMOS metal

layers, where a wire’s delay is governed by its
RC time constant. The following equation
expresses the wire’s resistance per unit length:1

(1)

Thickness and width represent the geometrical
dimensions of the wire cross section, barrier
represents the thin barrier layer around the wire
that prevents copper from diffusing into sur-
rounding oxide, and p is material resistivity.

We model capacitance per unit length as
four parallel-plate capacitors for each side of
the wire and a constant for fringing capaci-
tance:1

(2)

Here, εhoriz and εvert represent the potentially
different relative dielectrics for the vertical and
horizontal capacitors, K accounts for Miller-
effect coupling capacitances, spacing represents
the gap between adjacent wires on the same
metal layer, and layer spacing represents the
gap between adjacent metal layers. Next we
examine techniques that enable wires with
varying properties.
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Wire width and spacing
As Equation 1 shows, increasing the wire

width can significantly decrease resistivity,
while also resulting in a modest increase in
capacitance per unit length (Equation 2). Sim-
ilarly, increasing the spacing between adjacent
wires results in a drop in Cwire. The overall
effect of allocating more metal area per wire
and increasing the wire width and spacing is
that the product of Rwire and Cwire decreases,
resulting in shorter wire delays. By modeling
such “fat” wires, we are introducing a laten-
cy-bandwidth trade-off very similar to that of
transmission lines, which require a large area
per wire while yielding low latencies.

In a comparison of different interconnect
strategies, Chang et al. confirm that the fat-wire
model is a reasonable representation of the
potential delay benefits of other exotic inter-
connects.4 Delay is only one of the metrics these
researchers use to compare interconnects—they
also consider power, signal integrity, manufac-
turability, and other metrics. They show that a
minimum-width global wire in 0.18-micron
technology takes 1,400 ps to traverse 20 mm.
A transmission line covers the same distance in
300 ps, an optical interconnect in 500 ps, and
a fat wire with the same area as the transmis-
sion line covers the distance in 400 ps. Such
quantitative data constantly changes with inno-
vations, so this is not a conclusive statement on
each technology’s relative merits. But this data
gives us confidence that fat-wire delay, which
we can reliably model, is an approximate indi-
cation of the potential delay benefits of other
interconnects.

Clearly, wide wires are more suitable for
low-bandwidth traffic such as clock and power
distribution. If global communication
involves transfer of 64-bit data between cores,

employing 64 wide wires can have an enor-
mous area overhead. For a given metal area,
the wider the wire, the fewer wires the area
can accommodate, which leads us to the laten-
cy-bandwidth trade-off.

Figure 1 depicts various wire widths. Wires
that make up a baseline interconnect with
minimum width and spacing are called B
wires, and those that make up an interconnect
with wide width and spacing are called L
wires. W wires make up an interconnect in a
lower (thinner) metal layer that can accom-
modate wires with even smaller width and
spacing than B wires.

Repeater size and spacing
Now let’s examine the latency-power trade-

off in wire design. A wire’s resistance and
capacitance are both linear functions of its
length. Hence, wire delay, which depends on
the product of wire resistance and capacitance,
is a quadratic function of wire length. A sim-
ple technique for overcoming this quadratic
dependence is to break the wire into multiple
smaller segments and connect them with
repeaters. As a result, wire delay becomes a lin-
ear function of wire length and depends on
the number of segments, the wire delay across
each segment, and the logic delay across each
repeater. Designers can minimize overall wire
delay by selecting optimal repeater sizes and
spaces between repeaters, a technique com-
monly used in today’s processors. 

However, the repeaters incur high power
overheads. Banerjee and Mehrotra report that
sub-100-nm designs will include more than a
million repeaters, and that optimal-size
repeaters are approximately 450 times the min-
imum-size inverter at that technology point.8

Thus, long wires will impose not only delay
penalties but also significant power overheads.

Designers can reduce interconnect energy
by employing repeaters smaller than the opti-
mal size and increasing the spacing between
them. Of course, deviating from the delay-
optimal repeater configuration increases over-
all wire delay. Banerjee and Mehrotra
developed a methodology for estimating the
repeater size and spacing that minimizes
power consumption for a fixed wire delay.8

They show that in 50-nm technology, it is
possible to design a repeater configuration in
which the wire has twice the delay and one-
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Figure 1. Wire types: B wires (a), L wires (b), W wires (c),
and PW wires (d). B, L, and W wires differ in width and
spacing. PW wires are W wires with a reduced size and
number of repeaters.



fifth the energy of a delay-optimal wire. In
Figure 1, the first three sets of wires have
repeaters sized and spaced to optimize delay.
To exploit the latency-power trade-off, the
PW wires use small, widely spaced repeaters.
This design has been applied to wires with
dimensions similar to W wires, but it can be
applied to any interconnect.

Heterogeneous interconnects
Clearly, many different wire implementa-

tions are possible. Traditionally, if we were
attempting low-latency on-chip communica-
tion for a 64-bit word, we would implement
a homogeneous interconnect composed of 64
B wires. We propose a heterogeneous inter-
connect composed, for example, of 32 B wires
and 8 L wires. Assuming that each L wire has
four times the width and spacing of a B wire,
such a layout has the same area cost as the
homogeneous design. It is possible that the
heterogeneous interconnect will yield higher
performance because of its ability to transmit
eight (carefully selected) bits at low latency.

For our evaluations, we will assume a net-
work in which, on any link, the microarchi-
tecture has the option to transmit data on
either B, L, or PW wires. L wires represent the
low-latency, low-bandwidth option, and PW
wires represent the slow, high-bandwidth,
low-power option. Once assigned to a set of
wires, the message cannot switch to a differ-
ent set of wires at intermediate routers
between the sender and receiver. Additional
multiplexers and demultiplexers at the sender
and receiver provide the capability of routing
an entity over multiple sets of wires in a het-
erogeneous interconnect. These logic blocks
impose a minor delay and power overhead.

Wire management for clustered
architectures

Heterogeneous interconnects are applicable
to a variety of problem domains. We first exam-
ine their application to clustered architectures,
which boost instruction-level parallelism for a
single thread without compromising clock
speed. The biggest bottleneck to high perfor-
mance in a clustered architecture is the cost of
wire delays between clusters.

Baseline clustered architecture
A partitioned or clustered architecture con-

sists of many small, fast computational units
connected by an interconnect fabric. Each
computational unit, or cluster, typically con-
sists of a limited number of ALUs, local regis-
ter storage, and an instruction issue buffer.
Because a cluster has limited resources and
functionality, it enables fast clocks, low power,
and low design effort. Abundant transistor bud-
gets allow the incorporation of many clusters
on a chip. A single program’s instructions are
distributed across the clusters, thereby enabling
high parallelism. It is impossible to localize all
dependent instructions to a single cluster, so
data is frequently communicated between clus-
ters over the intercluster interconnect fabric.

For our experiments, we assume processor
models with either 4 or 16 clusters. Figure 2
shows a baseline 16-cluster system. In the
decode and rename stage, the centralized fetch
unit brings in instructions and assigns them
to one of many clusters. A state-of-the-art
instruction-steering heuristic attempts to dis-
tribute instructions in a manner that balances
load and minimizes intercluster communica-
tion.9 Results produced within a cluster are
bypassed to consumers in that cluster in the
same cycle; communicating the result to con-
sumers in other clusters takes additional
cycles. To transfer data between clusters, the
instruction decode and rename stage inserts a
copy instruction in the producing cluster,
which places the value on the intercluster net-
work as soon as the value is available.

Loads and stores that execute in the clusters
must communicate addresses and data to and
from a centralized load/store queue and data
cache over the intercluster network. A central-
ized LSQ and cache organization entails far less
complexity than a decentralized organization
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and achieves similar performance. The inter-
cluster network has a hierarchical topology—
four-cluster sets connect through a crossbar,
and a ring connects the four crossbars. As Fig-
ure 2 shows, each link on the network is het-
erogeneous, consisting of some combination
of B, L, and PW wires. For this discussion, we
assume 72 B wires, 18 L wires, and 144 PW
wires occupy equivalent metal areas.

Accelerating cache access
Now let’s examine how to improve perfor-

mance by exploiting low-latency, low-band-
width L wires. L wires are designed as either
fat RC-based wires, transmission lines, or opti-
cal waveguides.

Consider the behavior of the cache pipeline
in the baseline processor. Figure 3a shows an
example. When a cluster executes a load
instruction, it computes the effective address
and communicates it to the centralized LSQ
and cache. In the baseline example, this trans-
fer takes eight cycles on conventional B wires.
The LSQ waits until it receives addresses of
stores before the load in program order, guar-
antees that there are no memory dependen-
cies, and then initiates the cache access (this
takes three cycles in the example). The com-
munication to the cache influences load laten-
cy in two ways: It delays the arrival of load
addresses at the LSQ, and it delays the arrival
of store addresses at the LSQ, thereby delay-
ing the resolution of memory dependencies.
After the load accesses the L1D cache (four
cycles), data goes to the requesting cluster
(eight cycles). The entire operation consumes

23 cycles in the Figure 3a example.
To accelerate cache access, we propose a

new technique: As Figure 3b shows, we trans-
mit a subset of the address bits on low-laten-
cy L wires to prefetch data from the L1D
cache and hide the high communication cost
of transmitting the entire address. After the
cluster computes the effective address, the
cluster transmits the least-significant (LS) bits
of the address on L wires and the most-sig-
nificant (MS) bits on B wires. In the example
in Figure 3b, the former transfer consumes
four cycles, and the latter, eight cycles. The
same happens for store addresses. Thus, the
LSQ quickly receives the LS bits for loads and
stores. The early arrival of partial addresses
allows the following optimizations.

The LSQ can effect a partial comparison of
load and store addresses with the available LS
bits. If the load’s LS bits don’t match any ear-
lier store’s LS bits, the load is guaranteed not
to have any memory dependence conflicts and
it can begin cache access. In the example,
cache access begins one cycle after the arrival
of the load’s LS bits. If the load’s LS bits match
an earlier store’s LS bits, the load must wait
for the MS bits to arrive before the LSQ deter-
mines whether there is a true dependence.

For an L1 data cache access, the cache uses
the LS bits of the effective address to index
into the data, tag RAM arrays, and read out a
relevant set of cache blocks. The MS bits of
the effective address index into the translation
look-aside buffer (TLB), and the comparator
logic then compares the resulting translation
with the tags to select the appropriate data
block and forward it to the cluster. Because
accesses to the cache RAM arrays don’t require
the MS bits, the accesses can start as soon as
the LS bits of the address arrive on L wires
(provided the L wires transmit enough bits to
determine the set index).

Similarly, the transfer on the L wires can
include a few bits of the virtual page number.
This allows TLB access to proceed in paral-
lel with RAM array lookup. When the rest of
the effective address arrives, the tag compar-
ison selects the correct translation from a
small subset of candidate translations. A high-
ly associative TLB design might be more
amenable to this modified pipeline than a
fully associative one. Eighteen L wires are
enough to accommodate 8 bits of cache
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Figure 3. How heterogeneous interconnects reduce L1 cache
access latencies: baseline processor without heterogeneity
(a) and processor with heterogeneous interconnect (b).



index, 4 bits of TLB index, and 6 bits to iden-
tify the entry in the LSQ.

Thus, transferring partial address bits on L
wires enables the cluster to prefetch data from
L1 cache and TLB banks and hides RAM
access latency, which is the biggest component
of cache access time. If the cache RAM access
has completed by the time the entire address
arrives, the processor spends only an addi-
tional cycle to detect the correct TLB trans-
lation and make the tag comparison before
returning data to the cluster. This overlap of
effective address transfer with cache RAM and
TLB access can result in a reduction in effec-
tive load latency if the latency difference
between L and B wires is significant. In the
example with heterogeneity (Figure 3b), L1D
cache access begins five cycles after the ALU
computes the effective address. By the time
blocks are fetched from the L1D, the entire
address has arrived on slower wires. One cycle
later (after the correct block has been selected),
data goes back to the requesting ALU. The
entire process takes 18 cycles (4 + 1 + 4 + 1 +
8), five fewer than the baseline example.

Narrow-bit-width operands
An interconnect composed of L wires can

also transfer results that can be encoded in a
few bits. Eighteen L wires can accommodate
8 bits of register tag and 10 bits of data. We
use the simplest form of data compaction
here—integer results between 0 and 1,023 are
eligible for transfer on L wires. The hardware
required to detect narrow-bit-width data is
easy to implement—the PowerPC 603, for
example, has hardware for detecting the num-
ber of leading zeros; it then uses this value to
determine latency for integer multiply. A spe-
cial case of transferring narrow-bit-width data
is the communication of a branch mispredic-
tion back to the front end. This involves only
the branch ID, which L wires easily accom-
modate, thereby reducing the branch mispre-
diction penalty.

Exploiting PW wires
PW wires can reduce not only contention

in other wires but also energy consumption.
Our objectives are to identify data transfers
that can tolerate the higher latency of PW
wires, and situations in which the cost of con-
tention on B wires offsets their wire latency

advantage. If a data transfer has the option of
using either B or PW wires, three criteria dic-
tate when it should use high-bandwidth, low-
energy, high-latency PW wires:

• We always assign store data to PW wires
because stores are usually off the pro-
gram’s critical path.

• If an instruction’s input operands are
ready in a remote cluster’s register file at
the time the instruction is dispatched, we
transfer the operands to the instruction’s
cluster on PW wires. The rationale is that
there is usually a long gap between
instruction dispatch and issue, and the
long communication latency for the
ready input operand can be tolerated.

• We keep track of the amount of traffic
injected into both interconnects (B wires
and PW wires) in the past N cycles (N =
5 in our simulations). If the difference
between the traffic in the two intercon-
nects exceeds a certain prespecified
threshold (10 in our simulations), we
steer subsequent data transfers to the less
congested interconnect.

Thus, by steering noncritical data to the high-
bandwidth, energy-efficient interconnect, we
are likely to see little performance degradation,
and by steering data away from the congested
interconnect, we can potentially see perfor-
mance improvement. Our simulations revealed
that congestion control had a negligible effect
on performance and power. Its implementation
cost, on the other hand, is nontrivial. We list
this optimization here because it might be
applicable to other domains.

Applications to CMP cache coherence
The second relevant problem area to which

we can apply heterogeneous interconnects is
multicore chips, or chip multiprocessors.
Most major chip manufacturers have
announced CMPs; Sun’s is Niagara, and
IBM’s are Power5 and Cell. In CMPs, an
intercore network maintains coherence
between each core’s L1 data cache, an impor-
tant requirement for executing multithread-
ed or parallel applications. Coherence traffic
has varying latency and bandwidth needs, and
a heterogeneous interconnect can meet the
specific needs of each individual message. For
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this discussion, we assume that each process-
ing core has a private L1 data cache, and that
all the cores share the L2 data cache. We
assume that, as in industrial implementations,
the CMP maintains coherence among L1s
through a directory-based protocol, with
directory state maintained at the L2 cache.

The following novel mechanisms map
coherence traffic to sets of wires for improved
performance and power. Many other applica-
tions of heterogeneous interconnects within
a cache coherence protocol (including snoop-
ing-based protocols) are possible.10

Hop imbalance
Figure 4 shows an example of hop imbal-

ance in a directory-based cache coherence pro-
tocol. When a processor’s write request goes
to the directory, the directory takes the fol-
lowing steps, depending on the state of the
block in other caches: Typically, the directo-
ry sends a speculative data block back to the
requesting processor and contacts other caches
that share or own that data block to invalidate
their copies. These caches must then send

acknowledgments or the latest cache copy to
the requesting processor. Thus, part of the
directory’s response (the data block) reaches
the requesting processor in a single hop,
whereas the remaining responses take two
hops because they must go through other
sharers. The requesting processor must wait
for all acknowledgments before it can proceed.

Because of the hop imbalance, the data
block’s one-hop transfer is usually not on the
critical path, while the two-hop transfers usu-
ally are. This provides the opportunity to trans-
mit one-hop messages on slower on-chip wires
optimized for power and bandwidth (PW
wires), without degrading system performance.

Narrow-width messages
Many messages within a coherence proto-

col don’t involve address or data transfers. For
example, if the directory is busy, it sends back
a negative acknowledgment (NACK) message
to the requestor and identifies the relevant
cache block by the entry within the requestor’s
miss-status-holding registers. Similarly, mes-
sages such as acknowledgments or replies for
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Table 1. Area, delay, and power characteristics of different wire implementations used in 

CMP architecture evaluation.

Relative Relative area Dynamic Static 
Wire type latency (wire width + spacing) power (W/m)* power (W/m)
B (8X plane) 1 1 2.65α 1.0246
W (4X plane) 1.6 0.5 2.9α 1.1578
L (8X plane) 0.5 4 1.46α 0.5670
PW (4X plane) 3.2 0.5 0.87α 0.3074

* α = switching factor

L2 cache and directory

1 2
3

4

Processor 1

Cache 1

Processor 2

Cache 2

1 Processor 1 attempts write.
Sends read-exclusive to directory.

3 Directory sends invalidate
message to cache 2.

2

Directory finds block in
shared state in cache 2.
Sends clean copy of cache
block to cache 1.

4
Cache 2 sends invalidate
acknowledgment back to
cache 1.

Figure 4. Example of hop imbalance in a directory-based cache coherence protocol.



an upgrade request don’t contain addresses or
data and therefore consist of fewer than 20
bits. All these messages can be transmitted on
low-bandwidth wires optimized for low laten-
cy (L wires), potentially yielding performance
improvements.

Writeback messages
Writebacks arising from cache evictions are

almost always off the critical path and can tol-
erate longer latencies. Such messages are ideal
candidates for transfer on bandwidth- and
power-optimized PW wires.

Evaluation
We evaluated the proposed heterogeneous

interconnect in a clustered architecture and a
CMP. Detailed methodologies for the two
evaluations appear elsewhere.9,10 Here, we
describe only the salient properties of our sim-
ulation platform.

Simulation methodology
We computed the relative characteristics of

B, L, and PW wires using International Tech-
nology Roadmap for Semiconductors projec-
tions and analytical equations from other
researchers.1,8 We assumed that B wires were
minimum-width wires on the 8X metal plane,
a commonly used global-wire configuration,
and W wires were minimum-width wires on
the 4X metal plane. For L wires, we quadru-
pled the metal area of B wires. For PW wires,
we adopted a repeater configuration for min-
imum-width 4X wires (W wires) that mini-
mizes power for a given delay penalty.8 (The
delay penalties for the intercluster and cache
coherence networks are 20 percent and 100
percent, respectively.) Table 1 shows the set of
parameters for 65-nm technology that we
used in evaluating the CMP architecture.

The clustered architecture has the same net-
work topology as that in Figure 2. For the
CMP evaluation, we connected the L1 caches
and the L2 cache controller with a crossbar-
based hierarchical interconnect similar to
SGI’s NUMAlink4 interconnect. Every net-
work link is fully pipelined. Our interconnect
power models take into account the effect of
additional latches for links with long laten-
cies. We also modeled power consumption
within routers, including separate buffers for
each set of wires.11 For a network using virtu-

al-channel flow control, we treat each set of
wires in the heterogeneous network link as a
separate physical channel and maintain the
same number of virtual channels per physical
channel, as in the baseline. Therefore, the het-
erogeneous network has a larger total number
of virtual channels, and the routers require
more state fields to keep track of these addi-
tional virtual channels than a baseline homo-
geneous network. Data transfers in the
clustered architecture are not wider than a
(64-bit) word and are not broken into pack-
ets. Data transfers on the coherence network
are packet switched.

Uncontended latency for intercluster com-
munication ranges from two to six cycles on
B wires, one to three cycles on L wires, and
three to nine cycles on PW wires. Uncon-
tended latency for each hop on the coherence
network is four cycles on B wires, two cycles
on L wires, and 13 cycles on PW wires.

We modeled the clustered architecture in
SimpleScalar and evaluated it on SPEC-
cpu2000 benchmarks. We simulated the 16-
core CMP on the functional simulator Simics,
augmented with the General Execution-Dri-
ven Multiprocessor Simulator (GEMS) tim-
ing model.12 We modeled the CMP cores as
in-order processors and used a one-level
MOESI (modified, owned exclusive, shared,
invalid) directory-based protocol to maintain
coherence among the L1s. We report simula-
tion results for the parallel phases of all pro-
grams in the Splash-2 suite.

Clustered architecture results
Let’s look first at how L wires enable the

optimizations we described earlier. Figure 5
shows throughput in instructions per cycle
(IPC) for SPEC2000 programs for two 16-
cluster systems. The first is our baseline orga-
nization, which has only one interconnect
layer composed entirely of B wires. Each link
can transfer 64 data bits and 8 tag bits in each
direction. In the second 16-cluster system, the
baseline interconnect is augmented with
another metal layer composed entirely of L
wires. Each link on this layer can transfer 18
data bits in each direction.

For this experiment, we aggressively assumed
that the latency for each hop on an L wire was
only one cycle. The processor used L wires to
send the LS bits of a load or store effective
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address and to transfer narrow-bit-width data.
We found that overall performance improved
by 10 percent, when averaging all of the pro-
grams. For each component modeled individ-
ually, the performance improvements were

• 5 percent for the novel cache pipeline,
• 4 percent for narrow-width operands,

and
• less than 1 percent for branch mispredict

signals.

Of the 21 programs we studied, 12 yielded
performance improvements of 10 to 15 per-
cent. This is not surprising considering that
access to the data cache is a key operation in
most programs and has a significant impact
on overall performance. Instruction set archi-
tectures such as the x86, which have fewer reg-
isters and more loads and stores, are likely to
exhibit higher overall performance improve-
ments from speeding up the cache pipeline
(our benchmark executables are in the Alpha
AXP ISA). Improvements will be greater in

future technology levels that are even more
wire constrained. Furthermore, we have bare-
ly scratched the surface in terms of creative
techniques for leveraging L wires.

For the rest of our analysis, we assume L
wires implemented as fat wires, with each hop
on the ring network consuming two cycles.
This allows us to make credible quantitative
assessments of IPC and power with today’s
mature technology. Doubling the latency on
the ring network reduces the benefit of L wires
to 8 percent. The improvement decreases to 4
percent for a four-cluster system. Wire laten-
cies are less a bottleneck in four-cluster sys-
tems, and in keeping with Amdahl’s law,
interconnect optimizations yield lower
improvements for such systems.

The preceding evaluation shows perfor-
mance improvements from the addition of a
metal layer composed entirely of L wires.
Although this helps gauge L wires’ potential to
reduce the cost of long wire latencies, it is not
a fair comparison because of the systems’ dif-
ference in number of metal layers. Let’s turn
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now to comparisons that help determine the
best use of available metal area.

We’ll start by evaluating a processor model
(similar to the baseline in Figure 5) that has
only enough metal area per link to accommo-
date either 144 B wires (72 in each direction),
288 PW wires, or 36 L wires. Then we’ll exam-
ine processors that have twice and thrice as
much metal area, allowing more interesting
combinations of heterogeneous wires. In some
cases, high-bandwidth interconnects enable
the transfer of multiple words in a single cycle.

Table 2 summarizes performance and ener-
gy characteristics of interesting heterogeneous
interconnect organizations for the 16-cluster
system. All energy and energy-delay values are
normalized with respect to the values for
Model 1, which contains 144 B wires per link.
We compute energy-delay by multiplying total
processor energy with the number of cycles
used to execute 100 million instructions. Total
processor energy assumes that interconnect
energy accounts for 36 percent of total chip
energy in Model 1 (similar to estimates derived
for the RAW partitioned architecture11) and
that leakage and dynamic energy are in the
ratio 3:10 for Model 1. Additional data—
including metrics such as energy × delay2, dif-
ferent assumptions on the contribution of
interconnect energy, and results for four-clus-
ter systems—is available elsewhere.9

Our results indicate that for various metal
area budgets, heterogeneous wires potentially

can significantly improve performance and
energy characteristics, compared with a base-
line approach that employs homogeneous wires.
For Model 10, for example, the percentage of
messages on B, L, and PW wires are 33, 29, and
38, respectively. We found overall processor
energy-delay reductions of 14 to 21 percent
from employing energy-efficient and low-laten-
cy wires. We have also seen similar improve-
ments for other metrics such as energy × delay2.

CMP results
Figure 6a shows performance speedups for

the CMP model with a heterogeneous inter-
connect. Each unidirectional link in the base-
line model is 75 bytes wide (64 data bytes, 8
address bytes, and 3 bytes of control infor-
mation) and composed entirely of B wires on
the 8X metal layer. The heterogeneous inter-
connect has an identical metal area cost and
consists of 24 L wires, 256 B wires, and 512
PW wires. The assignment of messages to
each set of wires follows the criteria given ear-
lier. We observed an average performance
improvement of 11 percent. Most of this
improvement is attributable to the transfer of
control messages on L wires. Approximately
one-third of these messages are ACK and
NACK messages, and two-thirds are messages
that place a block in and out of transient states
in the directory. Hop imbalances in coherence
transactions (caused by read-exclusive requests
for a block in shared state) are uncommon in
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Table 2. Heterogeneous interconnect energy and performance for a 16-cluster system. 

Relative Relative Relative
Link Relative dynamic leakage  energy- 

Model description metal area IPC energy* energy* delay* Comments
1 144 B wires 1.0 0.91 100 100 100 High performance
2 288 PW wires 1.0 0.83 39 81 89
3 144 PW wires, 36 L wires 1.5 0.90 36 47 79 Low energy-delay
4 288 B wires 2.0 0.96 99 190 102
5 144 B wires, 288 PW wires 2.0 0.93 84 169 98
6 288 PW wires, 36 L wires 2.0 0.93 36 81 79 Low energy-delay
7 144 B wires, 36 L wires 2.0 1.00 89 99 88 High performance
8 432 B wires 3.0 0.99 98 275 105
9 288 B wires, 36 L wires 3.0 1.02 88 187 93 High performance

10 144 B wires, 288 PW wires, 3.0 0.98 61 170 88 Low energy-delay
36 L wires

* All energy and energy-delay values are normalized with respect to Model 1. Energy-delay is computed by multiplying total processor

energy by number of executed cycles.



Splash-2 programs and contribute negligibly
to the performance improvement.

Figure 6b shows the percentage of messages
sent on each set of wires. Message transfers on
L wires and PW wires are more power-effi-

cient, leading to a 22 percent savings in net-
work energy.

Many efforts are being made to improve
the speed of on-chip interconnects.
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While high speed appears to be a tangible goal
in the future, it is unlikely that the cost will be
low. Evaluations of our heterogeneous inter-
connect indicate performance improvements
on the order of 10 percent and network ener-
gy savings up to 60 percent. Interconnects also
form a significant part of the L2 cache, espe-
cially recently proposed nonuniform cache
architectures (NUCAs). In future work, we
will consider the application of heterogeneous
interconnects to NUCA organizations. L wires
can speed the search of data blocks in a NUCA
cache, and PW wires can lower the power cost
of noncritical operations, such as data block
writeback and migration. For future work, we
will also derive cache access models that para-
meterize latency and power as a function of
interconnect choices. Such tools can abstract
interconnect properties in a manner that
enables architects to derive performance- or
power-optimal cache organizations. MICRO
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