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Abstract

Modern processors are experiencing interleaved mem-

ory access streams from different threads/cores, reducing

the spatial locality that is seen at the memory controller,

making the combined stream appear increasingly random.

Traditional methods for exploiting locality at the DRAM

level, such as open-page and timer-based policies, become

less effective as the number of threads accessing memory

increases. Employing closed-page policies in such systems

can improve performance but it eliminates any possibility

of exploiting locality.

In this paper, we build upon the key insight that a

history-based predictor that tracks the number of accesses

to a given DRAM page is a much better indicator of DRAM

locality than timer based policies. We extend prior work to

propose a simple Access Based Predictor (ABP) that tracks

limited access history at the page level to determine page

closure decisions, and does so with much smaller storage

overhead than previously proposed policies. We show that

ABP, with additional optimizations, can improve system

throughput by 12.3% and 21.6% over open and closed-

page policies, respectively. The proposed ABP requires

20 KB of storage overhead and is outside the critical path

of memory access.
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I. Introduction

The memory system continues to be a key performance

bottleneck for modern multi-cores [1]. Each independent

thread or process produces a stream of references that

accesses a shared DRAM sub-system. While each of thee

streams may contain some spatio-temporal locality, they

are multiplexed into a single command stream at the

memory controller. This interleaving of memory streams

increases the randomness of accesses seen at DRAM.

The loss of locality due to intervening accesses defeats

several traditional DRAM performance and power opti-

mizations that were very effective in single-core systems,

e.g. open-page policy. When the CPU requests a cache

line, the DRAM chips read out a DRAM-page (typically

4 or 8 KB) into a row-buffer. If a subsequent request for

another cache line is to the same DRAM-page, then the
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access can be serviced by the low latency row-buffer. If a

request is made to a different DRAM-page (a row-buffer

conflict), the existing row-buffer contents must be written

back to the DRAM arrays before reading out the new

DRAM-page into the row-buffer. To avoid the write-back

latency, some systems adopt a closed-page policy where

the open DRAM-page is written back to the DRAM arrays

immediately after servicing a single access. Closed-page

works well for random accesses but incurs higher power

and delay overhead when some locality is present.

II. Motivation and Proposal

A number of hybrid row-buffer management mecha-

nisms covering the wide spectrum of possibilities between

open-page and closed-page policies have been studied

previously. So far, all the hybrid row-buffer schemes pro-

posed [2–5], have mostly used time as the underlying

mechanism to determine when to close a row-buffer. The

policies differ in terms of (i) the granularity at which the

timer data is maintained – per-bank or global, and (ii)

the mechanism adopted to learn from past history. For

the majority of proposals, the timer values are changed

by a fixed amount depending on whether or not correct

decisions were made by the previous timer values. Correct

decisions which increase locality/row-buffer utilization are

rewarded by keeping the row-buffer open longer, while

damage control for wrong decisions is done by decreasing

timer values.

The other approach to row-buffer management has

been via prediction based policies. A number of previous

studies [6] have explored predicting the length of time for

which a row-buffer should be kept open [7]. Others have

proposed using number of accesses to a row-buffer as the

deciding mechanism for the duration of time that a row-

buffer should be kept open.

The most relevant study in this regard was done by Xu

et al. [8]. They propose using a two-level access based

predictor, similar to a branch predictor [9]. They propose

a large family of predictors each differentiated by the

granularity at which prediction meta-data is tracked – per-

page, per-bank or global. The authors acknowledge that

maintaining information at per-page level, although is the

best organization, has very high overheads for practical

implementations.

Some other studies have also used predictor based

policies [6, 7], but except for [8], no one has on a per



DRAM-page granularity. This has been done to avoid the

excessive hardware overheads associated with maintaining

meta-data at a fine scale. Furthermore, no prior work has

evaluated the efficacy of proposed policies in a multi-core

setting.We believe that in a multi-core setting, access based

methods will prove to be more effective.

The intuition behind using access based prediction is

that perfect predictions have performance equivalent to an

oracular closure policy. Closing the DRAM-page imme-

diately after a correct prediction results in the minimal

possible performance conflicts. Contrast this to a timer

based policy, where we must predict a timer value N

exactly across hundreds or thousands of cycles to obtain

the same oracular performance.

As mentioned before, tracking histories at a per DRAM-

page granularity incurs a high overhead for two-level pre-

dictor implementation proposed in [8]. We propose ABP,

which is a one-level, low cost implementation of a Xu et

al. [8] like predictor scheme. The ABP-based row-buffer

closure policy is implemented as follows: On first access to

a DRAM-page, the predicted number of accesses is looked

up in the history table. If no entry exists, the row-buffer

is left open until a page-conflict occurs. Upon closure,

the number of accesses in the history table that occurred

for this DRAM-page are recorded. If an entry exists in

the table, the DRAM-page is closed after the specified

number of accesses or when a page-conflict occurs. If a

page-conflict occurs, the number of accesses in the history

table is decremented by 1, which hopefully will lead to a

perfect prediction next time that DRAM-page is accessed.

If we close the DRAM-page and a different DRAM-page

is opened on the next access, our prediction was perfect

and the value need not be updated. If we bring the same

DRAM-page back into the row-buffer, it is allowed to

remain open until a page-conflict happens. At this point

the history table is updated with the aggregate number of

accesses so that pre-mature closure is unlikely to happen

again.

The history overhead is kept tolerable by simply caching

the most recent predictions instead of maintaining an

exhaustive list. The predictor is organized as a 2048-set/4-

way cache, with each of the 32 DRAM banks having a

64-set 4-way predictor.

The Xu09 predictor collects row-hit and row-miss his-

tory in a n-bit shift register called the history register

(HR). This history then indexes into a history table (HT)

which keeps a saturating counter for all of possible 2
n

combinations. The saturating counter value decides the

row-buffer management policy for the next accesses. Based

on the organization of choice, both the HR and the HT can

be maintained at either global, per-bank, or per-page level.

We model per-bank HRs and a global HT.

Look-ups to the predictor history table are not on the

critical path as the prediction is required only after the

DRAM-page has been opened (via a RAS) and read (via

a CAS). This predictor table, co-located with the memory

Figure 1. Access based prediction policies vs

Open and Closed page

controller has an average hit rate of 92.6%. Aside from

the prediction history table, these hardware requirements

are the same as those required by per-bank timers.

III. Conclusions

We evaluate previous work on access-based predic-

tors (Xu09 in Figure 1, [8]) and compare them to ABP,

open- and closed-page policies. In a multi-core setting,

access-based predictor mechanisms perform better than

open- or closed-page policies. ABP can achieve the same

performance as Xu09, with significantly smaller storage

overhead, even though it operates on a page granularity.

This is in contrast to Xu09. which has to maintain global

information to reduce overheads. Given the strong per-

formance gains, low variability across workloads, and a

fraction of the overheads of similar performing access-

based policies, we believe that ABP is a good candidate to

replace the open-row policy in future many-core systems.
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