
1

A First-Order Analysis of Power Overheads of
Redundant Multi-Threading

Niti Madan and Rajeev Balasubramonian
School of Computing, University of Utah

Abstract— Redundant multi-threading (RMT) has been pro-
posed as an architectural approach that efficiently detects and
recovers from soft errors. RMT can impose non-trivial overheads
in terms of power consumption. In this paper, we characterize
some of the major factors that influence the power consumed by
RMT. We outline mechanisms that can reduce this power and
derive simple analytical estimates to identify the most promising
approach.

I. INTRODUCTION

Soft error rates in microprocessor logic have been projected
to increase at an alarming rate [10]. Soft errors can be handled
at the process level, circuit level, or at the architecture level.
Redundant multi-threading (RMT) has emerged as an efficient
mechanism to detect and recover from faults at the architecture
level. In RMT, two copies of a thread are executed and results
are periodically checked. A number of implementations have
been proposed over the last decade [1], [3], [5], [6], [7], [8],
[9], [11], [12], [13]. Many of these implementations rely on the
processor’s ability to support multiple thread contexts (such as
in an SMT or CMP processor). A few implementations [1],
[11] augment a conventional pipeline with an in-order-like
pipeline that redundantly executes every instruction.

Most studies have not focused on the power overheads
of RMT. Given that power consumption is already a major
design constraint, we expect that power-efficient implementa-
tions of RMT will receive much attention from the research
community. A first-order estimate of RMT power overheads
serves as a useful guideline for such research. In a recent
technical report [4], we have carried out a detailed analysis of
a number of strategies to reduce RMT power. This paper is an
attempt to distill the insight gathered from that study. While [4]
relies on detailed simulations, this paper deals exclusively with
analytical estimates. This allows us to present data for a wide
design space, while occasionally compromising on accuracy.

II. RMT TECHNIQUES

We restrict ourselves to RMT techniques that leverage the
processor’s ability to maintain multiple thread contexts. We
assume that the processor is a heterogeneous chip multi-
processor (CMP), where each core itself can execute one or
more threads in simultaneous multi-threaded (SMT) fashion.
For every primary thread, a redundant checker thread is
executed in a different thread context. We assume that the
checker thread trails the primary thread by a certain amount
of slack. The primary thread is also referred to as the leading
thread and the checker thread is also referred to as the trailing

thread. For most of this discussion we assume that a leading
thread and its trailing thread execute on different cores within
the CMP.

Processor

Primary

Branch Outcome Queue

Program Thread

Register Value Queue

Load Value Queue Processor

Checker

Br. Mpred Rate 0%
Cache Miss Rate 0%

Br. Mpred Rate 5%

IPC 1.0
Cache Miss Rate 5%

Throughput 5 BIPS
Power 100W

Frequency 2.5 GHz
Throughput 5 BIPS

Frequency 5 GHz
IPC 2.0

Power 60W

Fig. 1. An example of the effect of scaling the frequency of the checker
core.

A. Baseline RMT

In our baseline implementation (similar to that in [3],[6]),
the leading thread commits instructions just as a conventional
processor would, except that stores are written to a Store
Buffer (StB) instead of to the L1 data cache. As shown in
Figure 1, committed results are communicated to the trailing
thread through a Register Value Queue (RVQ). The results
of loads are also sent to the trailing thread (through a Load
Value Queue (LVQ)) so that the trailing thread never has to
access its data cache (this is necessary for correctness). The
trailing thread executes just as a conventional thread, except
that (i) instructions are committed only after confirming that
the result matches that produced by the leading thread, (ii)
store results are forwarded to the leading thread so that the
result in the StB can be checked and written to the leading
thread’s L1 data cache, (iii) load values are acquired from the
LVQ. If there is any mis-match in results, the state of the
trailing thread is used to initiate recovery. Branch outcomes
are also communicated by the leading thread to the trailing
thread (via the branch outcome queue (BOQ)), allowing the
latter to have perfect branch prediction. If multiple threads are
co-scheduled on an SMT core, fetch priorities are adjusted to
allow every set of leading and trailing threads to maintain a
roughly constant slack.

The fault model is assumed to be the same as in [3], [6].
Storage structures such as caches are ECC-protected. The LVQ
and the entire datapath from the cache to the LVQ to the
trailing core are also ECC-protected as the trailing thread
directly uses these values. The register file need not be ECC
protected as a copy exists in the other core. Based on this
model, the above RMT implementation is guaranteed to detect
and recover from a single event upset in either leading or
trailing cores.

2

B. Power-Efficient RMT

When executing leading and trailing threads, it is desireable
that a constant gap (slack) be maintained between both threads.
The trailing thread experiences no branch mispredicts or cache
misses because of the LVQ and BOQ. The results in the RVQ
can also be exploited to implement a perfect value predictor.
The trailing thread is therefore capable of high IPC. It may
be able to match the throughput of the leading thread even
if it throttled back its clock speed or IPC. This provides an
opportunity to reduce the power consumed by the trailing
thread. We consider three major techniques to exploit the
power-performance trade-off.
Dynamic Frequency Scaling (DFS)

Frequency scaling can reduce the dynamic power consumed
by the core, but has no effect on leakage power. We will
assume that a mechanism exists to select the effective fre-
quency for the trailing thread such that leading and trailing
throughputs are matched. Dynamic frequency scaling can also
be accompanied by dynamic voltage scaling (DVS). DVS has
much higher overheads for every voltage change, but can
significantly reduce dynamic and leakage power. Dynamic
power is a quadratic function of the voltage and leakage power
is roughly linearly proportional to supply voltage.
In-Order Execution

An inherently simple microarchitecture can also exploit the
power-performance trade-off. For example, the in-order Alpha
EV5 consumes half the power of the out-of-order Alpha EV6
(when operating at the same frequency), while trading off a
significant degree of IPC. If the trailing thread leverages the
RVQ for perfect value prediction, in-order execution does not
degrade IPC as instructions are never stalled at dispatch. The
trailing thread continues to achieve high IPCs and we can
further apply DFS and DVS to the trailing core.
Workload Parallelization

The trailing thread can be decomposed into a number
of parallel threads [7]. Such a workload is embarrassingly
parallel as the contents of the RVQ can be used to eliminate
all dependences between trailing threads. Such parallelization
boosts IPC and therefore affords further opportunities for DFS
and DVS. In the next section, we will provide analytical
estimates of power overheads when the above three techniques
are incrementally employed.

III. ANALYTICAL POWER ESTIMATES

After a close analysis of detailed architectural power sim-
ulators (based on Wattch [2]), we have identified the factors
that have the greatest influence on RMT power consumption.
It is possible to improve the accuracy of our analytical model
by taking more factors into account. For example, dynamic
power is considered to be linearly proportional to instruction
count. The model can be improved by considering the mix of
instruction types.

Firstly, the power consumed by the core executing a single
leading thread is the sum of its leakage and dynamic power.

Leading power = leakageleading + dynamicleading

The power consumed by the baseline RMT mechanism that
executes the trailing thread on a neighboring identical core at
the same frequency is given by the following equation.

Trailing power = leakageleading+

dynamicleading/wrongpath factor + queue power

In the above equation, wrongpath factor takes into ac-
count the fact that perfect branch prediction allows the trail-
ing thread to never execute instructions that are eventually
squashed. The term queue power includes additional power
consumed within the LVQ, RVQ, BOQ, and StB. The dynamic
power saved by not accessing the data caches and branch
predictor of the trailing core is factored into the queue power

term.
Since the IPC of the trailing thread is typically much

higher than that of the leading thread, we will assume that
its frequency can be scaled by a factor eff freq. The power
of the trailing core is now given by the following equation.

Trailing power = leakageleading+

dynamicleading × eff freq/wrongpath factor

+queue power

If scaling the frequency by a factor eff freq allows us to
scale voltage by a factor eff freq × v factor (in practice,
v factor is greater than 1), the trailing core’s power is as
shown below.

Trailing power = leakageleading × eff freq × v factor

+dynamicleading × eff freq3
× v factor2/wrongpath factor

+queue power

Next, we will consider the effect of employing an in-
order core. Note that eff freq will be a function of the
in-order core’s IPC, which in turn, depends on whether we
use value prediction or not. If value prediction is employed,
queue power will change as there will be more accesses to
the RVQ. The trailing core’s power is given by the following
equation (when only employing DFS). The terms lkg ratio

and dyn ratio (typically greater than 1) account for the power
difference between an out-of-order and in-order core.

Trailing power = leakageleading/lkg ratio+

dynamicleading × eff freq/(wrongpath factor × dyn ratio)

+queue power (1)

Finally, we will consider the effect of parallelizing the ver-
ification workload across N in-order trailing cores. Assuming
that we only employ DFS for each in-order core, trailing thread
power is given by:

Trailing power = N × leakageleading/lkg ratio+

N × dynamicleading × eff freq/(wrongpath factor × dyn ratio)

+queue power

Note that the dynamic power remains the same as in
Equation (1) – eff freq goes down by a factor N , but that
amount is now expended at N different cores. In other words,
the same amount of work is being done in either case. Leakage

3

power increases because leakage is a function of the number of
transistors being employed. Parallelization has a benefit only
if we are also scaling voltage. Power is then expressed as
follows:

Trailing power = v factor × leakageleading/lkg ratio+

N × v factor2
× dynamicleading × eff freq

/(wrongpath factor × dyn ratio × N2) + queue power

Voltage cannot be arbitrarily scaled down as N is increased.
Hence, v factor in such a scenario is likely to be much
higher than in the scenarios examined earlier. While the above
estimates only consider a single-thread workload, they can be
easily extended to deal with multi-threaded workloads as well.

We validated our analytical models by comparing their re-
sults with detailed simulation results obtained from Wattch [2].
A baseline out-of-order processor simulation was used to com-
pute parameters such as the contribution of leakage, wrong-
path instructions, etc. An implementation of trailing cores with
frequency scaling was modeled in detail on Wattch (for out-
of-order and in-order trailing cores) and the outputs of the
analytical model closely matched those of Wattch. Results
were also verified after modifying major parameters such as
wrongpath factor, eff freq, and contribution of leakage
for out-of-order and in-order trailers. In all cases, the accuracy
of the analytical model was within 10%.

IV. OBSERVATIONS

The previous section attempts to capture the first-order
effects of a number of factors on power consumption. These
factors include the following:

• Contribution of leakage in a given baseline technology
• Number of wrong-path instructions executed by a thread
• Power overhead of inter-core buffers
• Effective frequency, which quantifies the IPC benefit of

a perfect cache, branch predictor, and value predictor
• Ratio of voltage and frequency scaling (v factor)
• Ratio of power consumed by in-order and out-of-order

microarchitectures
• Degree of parallelization for verification workload

A designer can plug in various assumptions for the above
factors to determine early estimates of the power efficiency of
each approach. As examples, we plot the effects of the major
parameters in Figures 2-7.

We make the following assumptions for each of these
figures, unless otherwise specified. In-order cores consume
half the leakage and dynamic power of the out-of-order
leading core. Wrongpath factor is assumed to be 1.25 and
queue power is always assumed to be 10% of the leading
core’s power. For a single trailing thread, the eff freq is
assumed to be 0.5. When the trailing thread is parallelized
across two in-order cores, eff freq drops to 0.25 and voltage
is scaled such that v factor is 1.5. Leakage power is assumed
to be 10% of the baseline core’s total power.

Figure 2 shows the power overhead of the trailing thread
executing on in-order and OoO cores with DFS for different
effective frequency assumptions. While lower frequencies do

0.3
0.5

0.7
0.9

in-order

OoO0

10

20

30

40

50

60

70

80

90

Power consumed
by trailing core,
normalized to

power consumed
by leading core

Effective frequency of trailer

Power Overhead of RMT

Fig. 2. Power overhead of the trailing core, relative to the leading core, as
a function of effective frequency, for in-order and OoO trailing cores.

Power Overhead of RMT

0

10

20

30

40

50

60

1 2 5 7 10

Ratio of in-order and OoO processor power

Power consumed
by trailing core,
normalized to

power consumed
by leading core

Fig. 3. Power overhead of the in-order trailing core, relative to the leading
core, for different relative OoO and in-order power ratios.

reduce the power overheads of an out-of-order trailer, the
power overhead of redundancy continues to be very high. This
is partially because DFS does not reduce leakage power. An
in-order core, even at high frequencies, can match the power
overhead of a highly frequency-scaled out-of-order core. In our
simulations with a 4-wide in-order trailer, we observed that
perfect value prediction can help reduce effective frequency
by a factor of two. Based on Figure 2, we can calculate that
this approach is worthwhile provided value prediction does
not increase the power of the inter-core buffers by an amount
that is approximately 15% of leading core power. In Figure 3,
we show the power overhead of the trailing in-order core
for different relative power ratios of in-order and out-of-order
cores. Because of the power overhead of the inter-core buffers,
there is little power benefit to employing an in-order core that
consumes less than 20% of the leading core’s power.

Figure 4 shows the power overhead of the trailing cores for
various wrongpath factor assumptions. If the leading core
suffers from a high branch misprediction rate, then the corre-
sponding trailing core would have lower power overhead due
to perfect branch prediction. This effect is more pronounced
for the out-of-order model as it wastes more dynamic power
executing wrong-path instructions. In Figure 5, we show the
power overhead of the trailing cores for different contributions
of leakage power to the baseline power. As the contribution
of leakage power increases, DFS has a marginal effect on
reducing the trailing core’s power overheads, especially for an
aggressive out-of-order processor. DVS is required to reduce

4

10%
20%

30%
40%

In-order

OoO0

10

20

30

40

50

60

70

Power consumed
by trailing core,
normalized to

power consumed
by leading core

Total percentage of instructions on wrongpath

Power Overhead of RMT

Fig. 4. Power overhead of the trailing cores relative to the leading core for
different wrongpath factor values.

10%
20%

30%
40%

In-order

OoO0

10

20

30

40

50

60

70

80

Power consumed
by trailing core,
normalized to

power consumed
by leading core

Contribution of leakage to baseline power

Power Overhead of RMT

Fig. 5. Power overhead of the trailing cores relative to the leading core for
different contributions of leakage power.

leakage power overheads and this effect is shown in Figure 6.
Based on these results, we conclude that (for the assumed
parameters) a trailer core can impose a power overhead of as
little as 20% (half of it attributed to the inter-core queues), but
this will require employing a power-efficient in-order core that
can be voltage or frequency scaled. We also note that value
prediction may be required in the in-order core to allow it to
operate at low frequencies, while still matching leading thread
throughputs.

Finally, we examine the effect of parallelizing the veri-
fication workload. Figure 7 shows the power overhead of
the trailing thread with and without parallelization for dif-
ferent assumptions on the contribution of leakage power.

1
1.25

1.5
1.75

In-order

OoO0

5

10

15

20

25

30

35

40

45

50

Power consumed
by trailing core,
normalized to

power consumed
by leading core

Impact of voltage scaling factor

Power Overhead of RMT

Fig. 6. Power overhead of the trailing cores relative to the leading core for
different v factor values.

10%
20%

30%
40%

2

10

5

10

15

20

25

30

35

40

45

50

Power consumed
by trailing core,
normalized to

power consumed
by leading core

Contribution of leakage to baseline power

Degree of
Parallelization

Power Overhead of RMT

Fig. 7. Power overhead of the trailing core, relative to the leading core, with
and without parallelizing the verification workload.

Recall that parallelization helps reduce dynamic power, but
increases leakage power (even if DVS is assumed). If the
contribution of leakage is high, parallelization actually causes
an increase in total power. If the contribution of leakage is
low, parallelization reduces overall chip power by less than
5%. Voltage scaling also entails a non-trivial cost and future
technologies will afford smaller voltage margins. Such an
early rough estimate leads us to the conclusion that workload
parallelization yields little benefit for many design points.

REFERENCES

[1] T. Austin. DIVA: A Reliable Substrate for Deep Submicron Microar-
chitecture Design. In Proceedings of MICRO-32, November 1999.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In Proceedings
of ISCA-27, pages 83–94, June 2000.

[3] M. Gomaa, C. Scarbrough, and T. Vijaykumar. Transient-Fault Recovery
for Chip Multiprocessors. In Proceedings of ISCA-30, June 2003.

[4] N. Madan and R. Balasubramonian. Power-Efficient Approaches to Re-
liability. Technical Report UUCS-05-010, University of Utah, December
2005.

[5] A. Mendelson and N. Suri. Designing High-Performance and Reliable
Superscalar Architectures: The Out-of-Order Reliable Superscalar O3RS
Approach. In Proceedings of the International Conference on Depend-
able Systems and Networks, June 2000.

[6] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed Design and Imple-
mentation of Redundant Multithreading Alternatives. In Proceedings of
ISCA-29, May 2002.

[7] M. Rashid, E. Tan, M. Huang, and D. Albonesi. Exploiting Coarse-
Grain Verification Parallelism for Power-Efficient Fault Tolerance. In
Proceedings of PACT-14, 2005.

[8] J. Ray, J. Hoe, and B. Falsafi. Dual Use of Superscalar Datapath for
Transient-Fault Detection and Recovery. In Proceedings of MICRO-34,
December 2001.

[9] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors. In Proceedings of 29th International
Symposium on Fault-Tolerant Computing, June 1999.

[10] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi.
Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinatorial Logic. In Proceedings of DSN, June 2002.

[11] J. Smolens, J. Kim, J. Hoe, and B. Falsafi. Efficient Resource Shar-
ing in Concurrent Error Detecting Superscalar Microarchitectures. In
Proceedings of MICRO-37, December 2004.

[12] T. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-Fault Recovery via
Simultaneous Multithreading. In Proceedings of ISCA-29, May 2002.

[13] N. Wang, J. Quek, T. Rafacz, and S. Patel. Characterizing the Effects
of Transient Faults on a High-Performance Processor Pipeline. In
Proceedings of DSN, June 2004.

