
Exploring a Brink-of-Failure Memory Controller to Design an Approximate

Memory System∗

Meysam Taassori Niladrish Chatterjee† Ali Shafiee Rajeev Balasubramonian

University of Utah, † NVIDIA

Abstract

Nearly every synchronous digital circuit today is de-

signed with timing margins. These timing margins al-

low the circuit to behave correctly in spite of param-

eter variations, voltage noise, temperature fluctuations,

etc. Given that the memory system is a critical bottleneck

in several workloads, this paper attempts to safely push

memory performance to its limits by dynamically shav-

ing the timing margins inherent in memory devices. This

is implemented with an adaptive memory controller that

maintains timing parameters for every bank and gradu-

ally pushes the memory system towards the brink of fail-

ure. Each bank may be handled differently, depending on

the extent of parameter variation. Such an approach may

lead to occasional run-time errors. Additional support

for ECC or chipkill may help the memory system recover

from errors that are introduced by an overly aggressive

memory controller. This is a much stronger capability

than the limited form of memory over-clocking that can

be deployed today. We believe that such a brink-of-failure

memory controller can form the basis for an approximate

memory system. Memory timing parameters can be easily

adapted per memory region or per memory operation, en-

abling easy tuning of the performance-precision trade-off

for approximate computing workloads. The preliminary

analysis in this paper serves as a limit study to under-

stand the impact of memory timing parameters on appli-

cation throughput.

1 Introduction

Commercial computer systems are designed to pro-

vide reasonably high levels of reliability. The commer-

cial viability of a system that crashes every day is zero.
Hence, systems are over-provisioned in many regards so

they are not operating on the brink of failure. For ex-

ample, power supplies on a board or power delivery net-
works on a chip can handle a little more than the maxi-

mum expected power draw. In a similar vein, nearly ev-

ery synchronous digital circuit on a processor or memory
chip today is designed with timing margins. These tim-

ing margins allow the circuit to behave correctly in spite
of parameter variations, voltage noise, temperature fluc-

tuations, etc.

There is however one niche market segment that oper-
ates the system near the brink of failure to eke out very

high performance. Gaming enthusiasts frequently resort

to processor and memory “over-clocking” [20, 40, 52].
Processor and memory vendors expose a few parame-

ters that can be set at boot-up time in the BIOS to allow

∗This work was supported in parts by NSF grants CNS-1302663 and
CNS-1314709.

a system to operate at frequencies higher than those in
the specifications. For example, memory over-clocking

today allows a change to the memory bus frequency,

the DIMM voltage, and three DRAM timing parame-
ters (tRP, tRCD, tCL) [52]. This is an effective coarse-

grained approach to shrink timing margins and boost per-

formance, while trading off some reliability.

In this work, we attempt to bring the brink-of-failure

(BOF) approach to mainstream computer systems in a

safe and architecturally controlled manner, with a pri-
mary focus on the main memory system. We propose

an adaptive memory controller that can use more aggres-

sive timing parameters for various regions of memory or
for specific memory instructions. The memory system

can also be augmented with some form of error detec-

tion/correction support to track error rates and recover
from errors when possible. A more aggressive memory

controller yields higher performance while introducing a
few errors. The timing parameters are adjusted based on

observed error rates and application requirements. This

enables fine-grained control of the memory system and
the performance-precision trade-off.

The proposed BOF memory controller has two pri-

mary applications. It serves as an important component
in an approximate computing system [44]. It also helps

extract the highest performance possible from memory

systems that suffer from large parameter variations [29].

This project is at a very early stage. As a first step, this

paper quantifies the impact of various timing parameters
on application performance, thus showing the potential

room for improvement. We believe that this is an im-

portant area for future work, requiring support from the
hardware, operating system, programming models, and

applications to fully realize its potential.

2 Background

In modern server systems, a single processor socket

has up to four memory controllers. Each memory con-

troller drives a single DDR (double data rate) memory
channel that is connected to one or two DIMMs. DRAM

chips on a DIMM are organized into ranks; memory con-

troller commands are sent to all DRAM chips in one rank
and all the DRAM chips in a rank together provide the

requested data.

DRAM Timing Parameters

A DRAM chip has little logic or intelligence; for the

most part, it simply responds to the commands received
from the memory controller. The memory controller has

to keep track of DRAM state and issue commands at the

right times.

Memory is designed to be an upgradeable commodity.

When a DIMM fails or when more memory capacity is



required, the user can pull out a DIMM from the moth-

erboard and replace it with another new DIMM. A single
memory controller must work correctly with all possible

DIMMs. JEDEC is an industry consortium that specifies

a number of standard timing parameters (e.g., tRC, tRP,
tRFC) that govern every memory device. These specifi-

cations are referred to as the JEDEC standard. Proces-

sor companies then design memory controllers that man-
age each of these timing parameters. When a DIMM is

plugged in, the memory controller reads in the values
for each timing parameter from the DIMM. These val-

ues are then used to appropriately schedule commands to

the DIMM. For example, the JEDEC standard specifies
that tRFC is the time taken to perform one refresh oper-

ation. After issuing a refresh operation, a memory con-

troller is designed to leave that memory device alone for
an amount of time equaling tRFC. Some DIMMs have a

tRFC of 160 ns, some have a tRFC of 300 ns; this is de-

termined by reading a register on the DIMM at boot-up
time. There are more than 20 such timing parameters.

The JEDEC standard has been defined to facilitate

easy adoption by all memory and processor vendors. It

therefore errs on the side of being simple, while poten-
tially sacrificing some performance. For the refresh ex-

ample above, in reality, the memory controller can safely

schedule some memory operations as the refresh opera-
tion is winding down, i.e., the memory controller can re-

sume limited operation before the end of tRFC. JEDEC
could have specified a number of additional timing pa-

rameters to capture this phenomenon and boost perfor-

mance. But putting this in the JEDEC standard could
complicate every memory controller, even the simplest

ones on embedded devices.

DRAM Commands and Microarchitecture

The memory system offers a high degree of paral-

lelism. Each channel can perform a cache line transfer in
parallel. Each DRAM chip is itself partitioned into eight

independent banks. Therefore, the collection of DRAM

chips that form a rank can concurrently handle eight dif-
ferent operations. To fetch data from a bank, the memory

controller first issues an Activate operation – this fetches

an entire row of data into the bank’s row buffer (a col-
lection of sense-amps). The memory controller then is-

sues a Column-Read command to fetch a 64-byte cache

line from the row buffer. The memory controller can also
fetch other cache lines in the row buffer with additional

Column-Read commands; these low-latency operations
are referred to as row buffer hits. Before accessing a dif-

ferent row of data in the same bank, the memory con-

troller has to first issue a Precharge command that clears
the row buffer and readies the bitlines for the next Acti-

vate command.

Memory Controllers

When there’s a miss in the processor’s last level cache,

memory transactions are queued at the memory con-
troller. The memory controller maintains separate read

and write queues. Reads are given higher priority. Writes

are drained when the write queue size exceeds a high

water mark. The memory controller has a sophisticated
scheduler that re-orders the transactions in the queue

to improve response times and throughput. The sched-

uler attempts to maximize row buffer hits and bank uti-
lizations, hide refreshes and writes, and prioritize high-

throughput threads while maintaining fairness. Once

a request is selected, it is decomposed into the neces-
sary Precharge, Activate, Column-Read sequence and the

commands are issued as long as no timing parameter is
violated.

Memory Reliability

Most server memory systems include support to detect
and recover from hard and soft errors in memory. Such

servers typically use ECC-DIMMs, where the DIMM is
provisioned with additional DRAM chips that store er-

ror correction codes. The most common error correc-

tion code is SEC-DED (single error correct, double er-
ror detect). SEC-DED adds an eight bit code to every

64-bit data word that enables recovery from a single bit

failure in that word. To handle failure of multiple bits
in a 64-bit data word, stronger codes are required. One

example is chipkill, that allows recovery from complete

failure in one DRAM chip. Early chipkill implementa-
tions [1, 15, 37] incurred high overheads. More recently,

new chipkill algorithms and data layouts have been devel-

oped that greatly reduce these overheads [24, 25, 53, 56].

Parameter Variation

It is well-known that parameter variation grows as
device dimensions shrink [39]. Over the last decade,

a number of papers have proposed techniques to cope

with parameter variations in the processor and SRAM
caches (e.g., [4, 7, 13, 17, 32, 34, 51]). Various schemes

have been used to detect at run-time that timing margins
in processors have shrunk and that voltage/frequency ad-

justments are required. For example, Razor [17] uses a

delayed latch, Lefurgy et al. [32] monitor critical paths,
and Bacha and Teodorescu [7] use functional unit ECCs

to detect timing violations. Few papers have examined

parameter variation in DRAM even though it has been
identified as a significant problem [6, 16, 21, 27, 29, 33,

36, 57].

Parameter variations in logic and DRAM processes

are typically attributed to changes in the effective gate
length that are caused by systematic lithographic aberra-

tions, and changes in threshold voltage that are caused by

random doping fluctuations [6, 39, 57]. Most prior works
on DRAM parameter variation have focused on how it

impacts cell retention time [21, 27, 33, 36]. Correspond-
ingly, techniques have been proposed to refresh differ-

ent rows at different rates [35, 36]. Wilkerson et al. [55]

lower the refresh rate in eDRAM caches and overcome
errors in weak cells with strong error correction codes.

The work of Zhao et al. [57] develops a parameter vari-

ation model for 3D-stacked DRAM chips and quantifies
the expected variation in leakage and latency in differ-

ent banks. They show that parameter variation can cause

2



most banks to have data read latencies that fall in the

range of 12-26 cycles. The authors then propose a non-
uniform latency 3D-stacked DRAM cache. With the vari-

ation profile described above, a commodity DRAM chip

today would have to specify a conservative uniform la-
tency of 30 cycles even though several requests can be

serviced in half the time. Another study with an older

DRAM process shows that latencies in different banks
can vary by 18 ns because of parameter variation [30]. A

more recent paper from Hynix shows that for 450 DRAM
samples, the delay variation for circuits within a single

wafer is almost 30% [29]. The delay variation grows

as voltages shrink, implying that future technologies will
likely see more variations.

The above data points argue for more intelligent mem-

ory controllers that can automatically detect and exploit

variations in DRAM timing parameters. In addition to
the manufacturing variations described above, there are

other sources of predictable and unpredictable variations
at runtime because of the operating environment. Timing

parameters vary predictably as temperature changes. The

timing for some operations may vary unpredictably be-
cause of voltage supply noise. Some voltage fluctuations

are predictable, either caused by static IR-drop [48] or

dynamic LdI/dt [26]. The timing for every operation can
also vary based on other simultaneous activities on the

DRAM chip because some critical resources are shared

(most notably, charge pumps and the power delivery net-
work [48]).

Approximate Computing

In recent years, multiple papers [8–10, 14, 18, 31, 38,

42–45, 49, 50, 54] have made the argument that applica-
tions in certain domains like media/image processing,

computer vision, machine learning, etc. can tolerate a

small degree of imprecision. Typically, imprecision can
be tolerated in some data structures, but not in the con-

trol logic [8, 18, 44]. The underlying hardware exploits

the energy/precision or performance/precision trade-off,
although, most prior work has exploited the former. A

recent example, Truffle [18], splits the processor into an
instruction control plane and a data movement/processing

plane. The former has to be precise, while the latter

can be selectively imprecise depending on the instruction
type. A compiler (e.g., EnerJ [44]) is expected to desig-

nate instructions as being approximate or not. The pro-

cessor operates at a single frequency, but the data move-
ment/processing plane can operate at a high or low volt-

age. At low voltage, the pipeline consumes significantly

lower energy, but may yield occasional errors because the
circuits are slower and may not meet the cycle time dead-

lines.

While prior work has examined the microarchitec-
ture for approximate processing and SRAM caches [18],

support for approximate memory is more limited.

Flikker [50] relies on the application to identify mem-
ory pages that can tolerate imprecision; such pages are

refreshed less frequently to save energy. A more recent

paper by Sampson et al. [45] assumes an MLC PCM main

memory and selectively uses a less precise write process
or allocates approximate data to rows that are riddled

with hard errors. It thus trades off precision for faster

writes and better endurance. Apart from Flikker [50], no
prior work has examined an approximate DRAM mem-

ory system by varying DRAM timing parameters.

3 Proposal

The previous section provides background on memory

systems, parameter variation, and approximate comput-

ing. For many reasons, we believe that the time is right to
develop sophisticated memory controllers that can shave

timing margins in an architecturally controlled manner:

1. Parameter variations will increase as process tech-

nologies and voltages shrink [29, 39]. While tra-

ditional over-clocking is limited by the slowest cir-
cuit on the chip, architectural support can exploit the

higher speeds for several circuits on the chip.

2. Timing variations in the memory system can be ex-
ploited with relatively simple updates to timing pa-

rameters in the memory controller.

3. Recent advancements in chipkill algorithms [24, 25,
53, 56] have lowered their overheads and made them

a viable addition to a brink-of-failure system.

4. Most recent papers in approximate computing have
focused on approximate processors. The work in

this project will help define the missing piece – the

approximate main memory subsystem.

5. The memory wall continues to escalate – proces-

sor pin counts are not increasing [22] and work-

loads are accessing growing in-memory datasets [2,
41, 46, 47].

We next define a few essential pieces that will together
form the BOF memory system.

Organizing a Rank. Every DRAM chip on a DIMM is

expected to have similar worst-case timing parameters.
However, a number of banks within each DRAM chip

may be able to operate faster. The latency to fetch a cache

line from bank-3 is determined by the latency of the slow-
est bank-3 among the DRAM chips that form a rank. This

requires that ranks be created in a manner that is aware

of parameter variations on each chip. A chip with a fast
bank-3 should be ganged with other DRAM chips with

fast bank-3 to form a rank. Building a rank with few
DRAM chips helps reduce the negative impact of a slow

chip. This argues for using wider-IO DRAM chips or

mini-ranks [5, 58]. Run-time re-organization of DRAM
chips into ranks may also be possible with a smart buffer

chip on the DIMM. The above techniques will help cre-

ate a memory system that exhibits high non-uniformity –
some banks that operate at the typical specified speed and

many other banks that can operate at faster speeds.

3



BOF Memory Controller. The next step is to design

a memory controller that can track many sets of timing
parameters. A memory controller maintains transaction

queues for pending read and write operations. A complex

scheduling algorithm is used to select operations from
these read and write transaction queues (e.g., TCM [28]).

The selected transaction is then expanded into smaller

commands (e.g., Precharge, Activate, Column-Read) that
are placed in per-bank command queues. The command

at the head of the command queue is issued when it fulfils
a number of timing constraints. The primary change in

the BOF memory controller is that it maintains a separate

set of timing parameters for each bank. At run time, error
rates are tracked for every execution epoch (say, 100 mil-

lion cycles). If the error rate for a given bank is lower than

some threshold, the timing parameters are made more ag-
gressive for the next epoch. If the error rate exceeds the

threshold, the timing parameters are made less aggres-

sive. Some hysteresis can also be provided to avoid os-
cillations.

Programming Models. Different thresholds can be used

for each bank, allowing each memory region to provide

a different point on the performance-precision trade-off
curve. These thresholds are exposed to the OS so that the

OS can map pages appropriately. For example, OS pages

are mapped to the most precise memory regions, while
pages designated as being approximate by the applica-

tion are mapped to the less precise regions. The applica-

tion is also given the ability to set thresholds for mem-
ory regions used by the application. Further, when an

approximate load instruction is being issued by the mem-
ory controller, it can choose to be even more aggressive

than the parameters listed in its table. The error rates for

a bank are exposed to the application so that it can choose
to throttle the bank up/down or move a page to a better

home. As part of future work, we will explore program-

ming models that can exploit such hardware capabilities
and such feedback from the hardware.

Error Correction Support. Every DRAM chip is differ-

ent because of parameter variations. As the memory sys-

tem is pushed closer to the brink of failure, one DRAM
chip in the rank is likely to yield errors before the rest.

Therefore, chipkill support can help recover from a large

fraction of BOF-induced errors [53]. Udipi et al. [53]
show that the LOT-ECC chipkill mechanism introduces

relatively low overheads in terms of performance and

power (under 5%, relative to a memory system with basic
SEC-DED support). Chipkill support is only required if

the memory system is trying to provide high performance
and high precision. For an approximate memory system

or the approximate regions of memory, even basic SEC-

DED support is enough to detect most errors and pro-
vide feedback to the application or OS. SEC-DED codes

pose no performance overhead (since code words are read

in parallel with data words), but introduce a storage and
power overhead of 12.5% in the common case. In several

domains, SEC-DED support is a requirement, so this may

not represent a new overhead. When uncorrectable errors

are encountered, the approximate application is allowed
to proceed even though a subset of data bits are corrupted.

Applications must therefore be designed to tolerate high

imprecision in a few data values.

4 Methodology

The project is in its early stages. Our evaluation will

ultimately require an empirical analysis of timing mar-

gins in actual DRAM chips. In this paper, we simply
show the potential for improvement as DRAM timing pa-

rameters are varied.

For our simulations, we use Windriver Simics [3]
interfaced with the USIMM memory simulator [11].

USIMM is configured to model a DDR4 memory sys-

tem (bank groups, DDR4 timing parameters, etc.). Sim-
ics is used to model eight out-of-order processor cores.

These eight cores share a single memory channel with
two ranks. Simics and USIMM parameters are summa-

rized in Table 1. Our default scheduler prioritizes row

buffer hits, closes a row if there aren’t any pending re-
quests to that row, and uses write queue water marks to

drain many writes at once [12].

Processor

ISA UltraSPARC III ISA

CMP size and Core Freq. 8-core, 3.2 GHz

ROB size per core 64 entry

Fetch, Dispatch, Maximum
Execute, and Retire 4 per cycle

Cache Hierarchy

L1 I-cache 32KB/2-way, private, 1-cycle

L1 D-cache 32KB/2-way, private, 1-cycle

L2 Cache 4MB/64B/8-way, shared, 10-cycle
Coherence Protocol Snooping MESI

DRAM Parameters

DRAM Frequency 1600 Mbps

Channels, ranks, banks 1 channel, 2 ranks/channel,
16 banks/rank

Write queue water marks 40 (high) and 20 (low), for each channel
Read Q Length 32 per channel

DRAM chips 32 Gb capacity

tRC = 39, tRCD = 11
tRAS = 28, tFAW = 20

DRAM tWR = 12, tRP = 11
Timing tRTRS = 2, tCAS = 11

Parameters tRTP = 6, tDATA TRANS = 4
(DRAM cycles) tCCD L = 5, tCCD S = 4

tWTR L = 6, tWTR S = 2
tRRD L = 5, tRRD S = 4

tREFI = 7.8µs, tRFC = 640 ns

Table 1. Simulator and DRAM timing [23]
parameters.

We use a collection of multi-programmed workloads

from SPEC2k6 (astar, libquantum, lbm, mcf, omnetpp,

bzip2, GemsFDTD, leslie3d) and multi-threaded work-
loads from NAS Parallel Benchmarks (NPB) (cg, ep,

mg) and Cloudsuite [19] (cloud9, classification, cassan-

dra). The SPEC workloads are run in rate mode (eight
copies of the same program). SPEC programs are fast-

forwarded for 50 billion instructions and multi-threaded

4



applications are fast-forwarded until the start of the re-

gion of interest, before detailed simulations are started.
Statistics from the first 5 million simulated instructions

are discarded to account for cache warm-up effects. Sim-

ulations are terminated after a million memory reads are
encountered.

5 Results

To estimate the effect of DRAM timing parameters on

performance, we vary the following 13 DRAM timing
parameters: tRCD, tRP, tRC, tRAS, tCAS, tCWD, tWR,

tRTP, tFAW, tRRDL, tRRDS, tCCDL, tCCDS. Each of
these timing parameters is improved in unison by 10%,

20%, 30%, 40%, and 50% (tREFI is increased and the

rest are decreased). Figure 1 shows the impact on nor-
malized execution time for each of these configurations.

We see that a 50% improvement in all parameters results

in a 23% reduction in average execution time. A 30%
improvement in all timing parameters yields a 17% im-

provement in execution time, on average

Figure 1. Cumulative effect of lowering dif-
ferent timing parameters on normalized ex-
ecution time. Results are shown for timing
parameters that are 10%,..., 50% better than
the baseline.
To understand which timing parameters have the high-

est impact on performance, we carry out additional ex-

periments that only modify a subset of these timing pa-
rameters in each experiment. Each experiment modifies

timing parameters that are related to each other. These re-

sults are shown in Figures 2-6. We see that tRFC/tREFI
(refresh timing parameters) and tCAS/tRAS/tRCD (de-

lays to read data into row buffers) have the highest impact

on performance. The effects of tTRANS/tCCDL/tCCDS
(delays to move data to DRAM pins) are moderate.

Meanwhile, the effects of tRP/tRAS/tRC (bank cycle

time) and tFAW/tRRD (parameters to limit power deliv-
ery) are minor. We also observe that the effects of these

timing parameters tend to be additive. This analysis is
useful in designing a complexity-effective adaptive mem-

ory controller – to reduce memory controller complexity,

it is best to focus on tRFC/tREFI/tCAS/tRAS/tRCD.

6 Conclusions

This paper argues for a brink-of-failure memory sys-

tem that aggressively tries to shave DRAM timing mar-

Figure 2. Effect of tRFC and tREFI.

Figure 3. Effect of tCAS, tRAS, tRCD.

Figure 4. Effect of tRP, tRAS, tRC.

Figure 5. Effect of tTRANS, tCCDL, tCCDS.

gins, thus introducing a trade-off between performance

and precision. Such a memory system can also ex-

ploit the high degree of parameter variation expected
in future technologies. We show that a 30% improve-

ment in a set of DRAM timing parameters can yield a

5



Figure 6. Effect of tRRD, tFAW.

17% improvement in average execution time for a col-

lection of memory-intensive workloads. Much future

work remains, including an empirical analysis of varia-
tion in DRAM chips, and support from the OS, program-

ming language, and application to exploit an approximate

memory system.

References

[1] Advanced Memory Protection for HP ProLiant 300 Series

G4 Servers. http://goo.gl/M2Mqa.

[2] Memcached: A Distributed Memory Object Caching Sys-

tem. http://memcached.org.

[3] Wind River Simics Full System Simulator, 2007. http:

//www.windriver.com/products/simics/.

[4] A. Agarwal, B. Paul, H. Mahmoodi, A. Datta, and

K. Roy. A Process-Tolerant Cache Architecture for Im-

proved Yield in Nanoscale Technologies. IEEE Transac-

tions on VLSI, 2005.

[5] J. Ahn and R. S. S. N. Jouppi. Future Scaling of

Processor-Memory Interfaces. In Proceedings of SC,

2009.

[6] K. Argawal and J. Hayes. Method and Apparatus for

Measuring Statistics of DRAM Parameters with Mini-

mum Perturbation to Cell Layout and Environment, 2010.

United States Patent, Number US 7,768,814 B2.

[7] A. Bacha and R. Teodorescu. Dynamic Reduction of Volt-

age Margins by Leveraging On-chip ECC in Itanium II

Processors. In Proceedings of ISCA, 2013.

[8] W. Baek and T. Chilimbi. Green: A Framework for

Supporting Energy-Conscious Programming using Con-

trolled Approximation. In Proceedings of PLDI, 2010.

[9] J. Bornholt, T. Mytkowicz, and K. McKinley. Uncer-

tain¡T¿: A First-Order Type for Uncertain Data. In Pro-

ceedings of ASPLOS, 2014.

[10] L. Chakrapani, B. Akgul, S. Cheemalavagu, P. Korkmaz,

K. Palem, and B. Seshasayee. Ultra-Efficient (Embed-

ded) SOC Architectures based on Probabilistic CMOS

(PCMOS) Technology. In Proceedings of DATE, 2006.

[11] N. Chatterjee, R. Balasubramonian, M. Shevgoor,

S. Pugsley, A. Udipi, A. Shafiee, K. Sudan, M. Awasthi,

and Z. Chishti. USIMM: the Utah SImulated Memory

Module. Technical report, University of Utah, 2012.

UUCS-12-002.

[12] N. Chatterjee, N. Muralimanohar, R. Balasubramonian,

A. Davis, and N. Jouppi. Staged Reads: Mitigating the

Impact of DRAM Writes on DRAM Reads. In Proceed-

ings of HPCA, 2012.

[13] E. Chun, Z. Chishti, and T. Vijaykumar. Shapeshifter:

Dynamically Changing Pipeline Width and Speed to Ad-

dress Process Variations. In Proceedings of MICRO,

2008.

[14] M. deKruijf, S. Nomura, and K. Sankaralingam. Relax:

An Architectural Framework for Software Recovery of

Hardware Faults. In Proceedings of ISCA, 2010.

[15] T. J. Dell. A Whitepaper on the Benefits of Chipkill-

Correct ECC for PC Server Main Memory. Technical

report, IBM Microelectronics Division, 1997.

[16] S. Desai. Process Variation Aware DRAM Design Using

Block-Based Adaptive Body Biasing Algorithm. Mas-

ter’s thesis, Utah State University, 2012.

[17] D. Ernst, N. Kim, S. Das, S. Pant, T. Pham, R. Rao,

C. Ziesler, D. Blaauw, T. Austin, T. Mudge, and K. Flaut-

ner. Razor: A Low-Power Pipeline Based on Circuit-

Level Timing Speculation. In Proceedings of MICRO,

2003.

[18] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.

Architecture Support for Disciplined Approximate Pro-

gramming. In Proceedings of ASPLOS, 2012.

[19] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Al-

isafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Aila-

maki, and B. Falsafi. Clearing the Clouds: A Study of

Emerging Scale-out Workloads on Modern Hardware. In

Proceedings of ASPLOS, 2012.

[20] C. Garbella. A Basic Guide to Overclocking and Sys-

tem Building. http://www.overclockers.com/

a-basic-guide-to-overclocking-and-system-building/.

[21] T. Hamamoto, S. Sugiura, and S. Sawada. On the Re-

tention Time Distribution of Dynamic Random Access

Memory (DRAM). IEEE Trans. on Electron Devices,

1998.

[22] ITRS. International Technology Roadmap for Semicon-

ductors, 2007 Edition, Assembly and Packaging, 2007.

[23] JEDEC. JESD79-4: JEDEC Standard DDR4 SDRAM,

2012.

[24] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar.

Low-Power, Low-storage-overhead Chipkill Correct via

Multi-line Error Correction. In Proceedings of SC, 2013.

[25] X. Jian and R. Kumar. Adaptive Reliability Chipkill Cor-

rect (ARCC). In Proceedings of HPCA, 2013.

[26] R. Joseph, D. Brooks, and M. Martonosi. Control Tech-

niques to Eliminate Voltage Emergencies in High Perfor-

mance Processors. In Proceedings of HPCA, 2003.

[27] K. Kim and J. Lee. A New Investigation of Data Reten-

tion Time in Truly Nanoscaled DRAMs. IEEE Electron

Device Letters, 2009.

[28] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-

Balter. Thread Cluster Memory Scheduling: Exploiting

Differences in Memory Access Behavior. In Proceedings

of MICRO, 2010.

[29] H.-W. Lee, K.-H. Kim, Y.-K. Choi, J.-H. Shon, N.-K.

Park, K.-W. Kim, C. Kim, Y.-J. Choi, and B.-T. Chung. A

1.6V 1.4Gb/s/pin Consumer DRAM with Self-Dynamic

Voltage-Scaling Technique in 44nm CMOS Technology.

In Proceedings of ISSCC, 2011.

[30] S. Lee, C. Choi, J. Kong, W. Lee, and J. Yoo. An Efficient

Statistical Analysis Methodology and Its Application to

High-Density DRAMs. In Proceedings of ICCAD, 1997.

[31] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra.

ERSA: Error Resilient System Architecture for Proba-

bilistic Applications. In Proceedings of DATE, 2010.

6



[32] C. Lefurgy, A. Drake, M. Floyd, M. Allen-Ware,

B. Brock, J. Tierno, and J. Carter. Active Management

of Timing Guardband to Save Energy in POWER7. In

Proceedings of MICRO, 2011.

[33] Y. Li, H. Schneider, F. Schnabel, and R. Thewes. DRAM

Yield Analysis and Optimization by a Statistical Design

Approach. IEEE Trans. on Circuits and Systems, 2011.

[34] X. Liang, R. Canal, G. Wei, and D. Brooks. Process Vari-

ation Tolerant 3T1D-Based Cache Architectures. In Pro-

ceedings of MICRO, 2007.

[35] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu. An

Experimental Study of Data Retention Behavior in Mod-

ern DRAM Devices: Implications for Retention Time

Profiling Mechanisms. In Proceedings of ISCA, 2013.

[36] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. RAIDR:

Retention-aware intelligent DRAM refresh. In Proceed-

ings of ISCA, 2012.

[37] D. Locklear. Chipkill Correct Memory Architecture.

Technical report, Dell, 2000.

[38] S. Narayanan, J. Sartori, R. Kumar, and D. Jones. Scal-

able Stochastic Processors. In Proceedings of DATE,

2010.

[39] S. R. Nassif. Modeling and analysis of manufacturing

variations. In Proceedings of IEEE Conf. Custom Integr.

Circuits, 2001.

[40] R. Nelson. A Newbie’s Guide to Overclocking

Memory. http://www.overclockers.com/

a-newbies-guide-to-overclocking-memory/.

[41] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,

J. Leverich, D. Mazieres, S. Mitra, A. Narayanan,

G. Parulkar, M. Rosenblum, S. Rumble, E. Stratmann,

and R. Stutsman. The Case for RAMClouds: Scalable

High-Performance Storage Entirely in DRAM. SIGOPS

Operating Systems Review, 43(4), 2009.

[42] M. Samadi, D. Jamshidi, J. Lee, and S. Mahlke. Paraprox:

Pattern-Based Approximation for Data Parallel Applica-

tions. In Proceedings of ASPLOS, 2014.

[43] M. Samadi, J. Lee, D. Jamshidi, A. Hormati, and

S. Mahlke. SAGE: Self-Tuning Approximation for

Graphics Engines. In Proceedings of MICRO, 2013.

[44] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,

L. Ceze, and D. Grossman. EnerJ: Approximate Data

Types for Safe and General Low-Power Computation. In

Proceedings of PLDI, 2011.

[45] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approx-

imate Storage in Solid-State Memories. In Proceedings

of MICRO, 2013.

[46] SAP. In-Memory Computing: SAP HANA. http:

//www.sap.com/solutions/technology/

in-memory-computing-platform.

[47] SAS. SAS In-Memory Analytics.

http://www.sas.com/software/

high-performance-analytics/

in-memory-analytics/.

[48] M. Shevgoor, J.-S. Kim, N. Chatterjee, R. Balasubramo-

nian, A. Davis, and A. Udipi. Quantifying the Relation-

ship between the Power Delivery Network and Architec-

tural Policies in a 3D-Stacked Memory Device. In Pro-

ceedings of MICRO, 2013.

[49] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and

M. Rinard. Managing Performance vs. Accuracy Trade-

Offs with Loop Perforation. In Proceedings of FSE, 2011.

[50] S.Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn.

Flikker: Saving DRAM Refresh-power through Critical

Data Partitioning. In In Proceedings of ASPLOS, 2011.
[51] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas.

Mitigating Parameter Variation with Dynamic Fine-Grain

Body Biasing. In Proceedings of MICRO, 2007.
[52] G. Torres. Memory Overclocking. http:

//www.hardwaresecrets.com/article/

Memory-Overclocking/152/.
[53] A. N. Udipi, N. Muralimanohar, R. Balasubramonian,

A. Davis, and N. Jouppi. LOT-ECC: Localized and Tiered

Reliability Mechanisms for Commodity Memory Sys-

tems. In Proceedings of ISCA, 2012.
[54] S. Venkataramani, V. Chippa, S. Chakradhar, K. Roy, and

A. Raghunathan. Quality-Programmable Vector Proces-

sors for Approximate Computing. In Proceedings of MI-

CRO, 2013.
[55] C. Wilkerson, A. Alameldeen, Z. Chishti, W. Wu, D. So-

masekhar, and S.-L. Lu. Reducing Cache Power with

Low-Cost, Multi-Bit Error Correcting Codes. In Proceed-

ings of ISCA, 2010.
[56] D. Yoon and M. Erez. Virtualized and Flexible ECC for

Main Memory. In Proceedings of ASPLOS, 2010.
[57] B. Zhao, Y. Du, Y. Zhang, and J. Yang. Variation-Tolerant

Non-Uniform 3D Cache Management in Die Stacked

Multicore Processor. In Proceedings of MICRO, 2009.
[58] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and

Z. Zhu. Mini-Rank: Adaptive DRAM Architecture For

Improving Memory Power Efficiency. In Proceedings of

MICRO, 2008.

7


