
Leveraging Bloom Filters for Smart Search Within NUCA Caches

Robert Ricci, Steve Barrus, Dan Gebhardt, and Rajeev Balasubramonian
School of Computing, University of Utah

{ricci,sbarrus,gebhardt,rajeev}@cs.utah.edu

Abstract

On-chip wire delays are becoming increasingly
problematic in modern microprocessors. To alleviate
the negative effect of wire delays, architects have con-
sidered splitting up large L2/L3 caches into several
banks, with each bank having a different access la-
tency depending on its physical proximity to the core.
In particular, several recent papers have considered
dynamic non-uniform cache architectures (D-NUCA)
for chip multi-processors. These caches are dynamic
in the sense that cache lines may migrate towards the
cores that access them most frequently. In order to re-
alize the benefits of data migration, however, a “smart
search” mechanism for finding the location of a given
cache line is necessary. These papers assume an ora-
cle and leave the smart search for future work. Exist-
ing search mechanisms either entail high performance
overheads or inordinate storage overheads. In this pa-
per, we propose a smart search mechanism, based on
Bloom filters. Our approach is complexity-effective:
it has the potential to reduce the performance and
storage overheads of D-NUCA implementations. Also,
Bloom filters are simple structures that incur little de-
sign complexity. We present the results of our initial
explorations, showing the promise of our novel search
mechanism.

1 Introduction

It is well-known that on-chip wire delays are emerg-
ing as a major bottleneck in the design of high-
performance microprocessor chips. As feature sizes
are reduced, wire delays do not scale down at the same
rate as logic delays [1, 5]. It has been projected that at
35nm technologies, less than 1% of the total chip area
will be reachable in a single cycle [1]. Communication

between distant modules on a chip will therefore cost
tens of cycles and will negatively impact performance.

On-chip cache hierarchies bear the brunt of growing
wire delays as they occupy a large fraction of chip area
in modern microprocessors. For example, more than
two-thirds of the chip area in Intel’s Montecito [11, 12]
can be attributed to L3 caches that have a capacity of
24MB. Such large cache structures are typically orga-
nized as numerous banks to help reduce latency and
power consumption [14]. Given an input address, the
request is routed to a subset of banks that then ser-
vice the request. The latency for any cache access is
a function of the distance between the bank that con-
tains the requested data and the cache controller. This
observation motivated the proposal by Kim et al. [7]
of a non-uniform cache architecture (NUCA). Within
a NUCA organization, the latency for a cache access
may be as little as a handful of cycles if the data is lo-
cated close to the cache controller, or up to 60 cycles if
the data is located in a distant bank. This architecture
is unlike a conventional cache organization where the
cache latency is uniform and determined by the worst-
case delay to access any block. Recent proposals have
extended NUCA designs to also handle chip multipro-
cessors [2, 4, 6].

NUCA organizations have been classified as static
(S-NUCA) and dynamic (D-NUCA) in the litera-
ture [7]. In static-NUCA, an address is mapped to a
unique cache bank. Given an address, the cache con-
troller sends the request to a single bank (typically de-
termined by examining the address index bits). While
such a mechanism is simple, it does not take advan-
tage of locality. The L2 or L3 cache latency for a data
structure is set as soon as it is allocated in the physical
memory address space. Dynamic-NUCA attempts to
improve performance by leveraging locality and mov-
ing recently accessed blocks to banks that are close to

CPU 2

L1D L1I C
P

U
 4

L1D
L1I

CPU 6

L1DL1I

C
P

U
 1

L1
D

L1
I

CPU 3

L1D L1I

C
P

U
 5

L1D
L1I

CPU 7

L1DL1I

C
P

U
 0

L1
D

L1
I

LOCAL BANKS

INTER BANKS

CENTER BANKS

Figure 1. Baseline CMP with 8 cores that share a NUCA L2 cache. The L2 is partitioned into 256 banks and

each block is allowed to reside in one of 16 possible banks.

the cache controller. A block is now allowed to re-
side in different cache banks at different times. Given
an address, the cache controller identifies a number of
candidate banks to which the request can be sent. In
one approach, the banks can be sequentially probed
until the data is located – this can significantly increase
cache access latency. In a second approach, the banks
can be probed in parallel – this can increase contention
cycles because of the increased bandwidth pressure on
the inter-bank network. Hybrids of the two search ap-
proaches have also been proposed [2, 7].

A recent paper explores block migration policies
for a D-NUCA organization in a CMP [2]. The au-
thors show that D-NUCA can improve performance,
relative to an S-NUCA organization, provided there
exists an oracle to identify the bank that stores the
data. If a realistic hybrid data search mechanism is
incorporated, performance is actually worse than that
of S-NUCA. Hence, for D-NUCA to be effective, the
cache controller must identify a small subset of banks
to probe, with high accuracy. Kim et al. [7] propose
one mechanism for such a smart search for a single-
core chip. The cache controller maintains a partial
tag array that stores six bits of the tag for each cache
line. The cache controller then forwards the request
to only those banks that have tags that match the ad-
dress. While this mechanism has high accuracy, Beck-

mann and Wood [2] point out that such partial tag ar-
rays can lead to extremely high storage overheads. In
an 8-core CMP with 16MB of cache and block size
of 64 bytes, the total storage for 6-bit partial tags is
as high as 1.5MB (roughly 72M transistors). The effi-
cient design of a “D-NUCA smart search mechanism”
is considered an open problem and an important factor
in the success of block migration policies [2].

This paper presents a complexity-effective solution
to the smart search problem. It takes advantage of
Bloom filters to identify candidate cache banks with
high accuracy. Compared to partial tag arrays, it re-
duces storage requirements by an order of magnitude.
Power consumption can also be reduced by avoiding
access to large tag arrays and by avoiding transmission
of tags on the inter-bank network. This reduction in
network traffic decreases routing congestion and can
improve latency for all L2 transactions. Bloom filter
updates and look-ups are achieved with simple index-
ing functions.

Section 2 provides background on Bloom filters and
the baseline NUCA organization. Section 3 details
our proposed smart search mechanism. We present a
preliminary analysis of our approach in Section 4 and
draw conclusions in Section 5.

2 Background and Related Work

2.1 Non-Uniform Cache Architectures

The baseline processor organization that we use is
similar to that of Beckmann and Wood [2] and is il-
lustrated in Figure 1. Each processor core (including
L1 data and instruction caches) is placed on the chip
boundary and eight such cores surround a shared L2
cache. The L2 is partitioned into 256 banks and con-
nected with a mesh interconnection network. Each
core has a cache controller that routes the core’s re-
quests to appropriate cache banks.

In a static-NUCA organization, eight bits of the
block’s physical address can be used to identify the
unique bank that the block maps to. Each bank will
have to be set-associative to reduce conflict misses.

In an alternative static-NUCA organization, each
bank can accommodate a single way. If the L2 cache
is 16-way set-associative, a given block can map to
16 possible banks and four bits of the block’s physi-
cal address are used to identify this subset of banks.
When a block is brought into the cache, LRU (or even
the block’s address) can determine where the block is
placed and the block remains there until it is evicted.
This S-NUCA organization is no better than the orga-
nization described in the previous paragraph (in terms
of performance) and requires a “smart search mecha-
nism” to identify the bank that contains the block. We
describe it here because it forms the basis for dynamic-
NUCA organizations.

In dynamic-NUCA, LRU/block address determines
where the block is initially placed. Access counters
associated with each cache line keep track of the pro-
cessor cores that request the block. The block is grad-
ually moved to a bank that best reflects the “center
of gravity of processor requests”. Of the 16 can-
didate cache banks (ways) for a block, eight are in
close proximity to each of the eight cores (referred
to as the local banks), four are in the center region,
and the remaining four are in the intermediate region
(shown in Figure 1 by different colors). These 16
banks are classified as a single bankset and there ex-
ist 16 such banksets. The L2 cache is partitioned into
16 bankclusters. Each bankcluster contains one bank
from every bankset. Block migration causes a block
to move between bankclusters, or stated alternatively,
between banks within a bankset.

Given a block address, the cache controller must po-
tentially forward the request to 16 different banks in
order to locate the block. The smart search mechanism
proposed in this paper will be employed in this context.
Beckmann and Wood adopt the following mechanism:
the core’s local, intermediate, and four center banks
are searched in parallel; if the block is not located,
the other ten candidate banks are searched in paral-
lel. Such a mechanism entails high performance over-
heads and usually negates any performance improve-
ments from block migration. The search mechanism of
Kim et al. [7] maintains partial tag arrays at the cache
controller to identify a small subset of banks that can
be probed in parallel. Such a mechanism, extended to
CMPs, would entail marginal performance overheads,
but incur non-trivial storage overheads. Our proposed
mechanism has the potential to incur marginal perfor-
mance and storage overheads.

Block migration incurs other complexities as well
(regardless of the search mechanism). Firstly, access
counters must be maintained for every cache line (or
blocks can be aggressively migrated on every access).
Block migration cannot happen simultaneously with
block look-up, else there is the potential to signal a
false miss (the request fails to see the block in tran-
sit and triggers an L2 miss). A four-phase protocol is
required to implement migration correctly: (i) cores
are informed of the migration so that accesses to that
block are temporarily disabled, (ii) acknowledgments
are received from the cores, (iii) migration is effected,
(iv) cores are informed after migration so that accesses
can be enabled again. Block migration requires that
the search hints at each core be updated. The search
mechanism may dictate the amount of network traffic
required to update search hints.

2.2 Bloom Filters

We base our smart search algorithm on the concept
of Bloom filters [3]. Here, we describe general Bloom
filters. The particular variant that we use is detailed in
Section 3.3.

A Bloom filter is a structure for maintaining prob-
abilistic set membership. It trades off a small chance
of false positives for a very compact representation. A
general Bloom filter cannot return false negatives.

A Bloom filter consists of an array A of m one-
bit entries and k hash functions, {h1, h2, ...hk}. In an
empty filter, all bits in A are zero. To add item i to

the filter, h1(i) is computed. This value is then used to
index into A, and A[h1(i)] is set to one. This process
is repeated with each hash function, up to hk(i).

Testing for set membership is straightforward. To
test for the presence of i′, we examine A[h1(i

′)]. If
it is zero, then we can tell that i′ is not present in the
set. If it is one, we continue to check A[h2(i

′)] and
so on, up to A[hk(i′)]. If all such bits are one, the set
membership test returns true, but if any are zero, the
membership test returns false.

In set membership tests, false negatives are
impossible—if item i has been added to the filter, then
we are guaranteed that:

∀j{1 <= j <= k : A[hj(i)] = 1}

False positives, however, are possible; any or all of the
bits in A could have been set to one by the insertion
of a different item. Assuming “good” hash functions,
the probability of getting a false positive from a Bloom
filter is approximately 1 − e−kn/m [3], where n is the
number of items inserted into the set, k is the number
of hash functions, and m is the size of array A. For ex-
ample, for k = 5,m = 2048, and n = 256, the proba-
bility of a false positive is 2.1%. Such a filter requires
only 2048 bits of space, while an equivalent table with
256 entries for 32-bit numbers would require 8192 bits
of space.

It is not possible to remove elements from a Bloom
filter. If we were to try to do so, setting any of the
bits in A to zero could interfere with another element
in the set, causing a false negative. Removal requires
a “counting” Bloom filter, in which we keep counts of
how many elements in the set require a particular bit in
A to be set. Such filters, however, have higher storage
requirements, because each entry in A must now hold
a counter rather than a single bit. Thus, we do not use
counting Bloom filters in this paper.

3 Smart Search Design

Our smart search algorithm is based on the idea of
keeping approximate information about the contents
of L2 bankclusters. Kim et al.’s [7] partial tag array
uses a similar strategy, though in the context of single-
core chips. Such arrays would be prohibitively large
for processors with many cores and many bankclus-
ters. Thus, we turn to Bloom filters as a compact ap-
proximation.

3.1 Overall Design

At each core on the CMP, we maintain an approxi-
mation of the cache lines present in each L2 bankclus-
ter. For our baseline processor (Figure 1), each of the
8 cores maintains 16 filters, one for each L2 bankclus-
ter. While the number of filters is large, as we shall see
shortly, each filter is a relatively small structure.

The filters are used to direct L1 misses to the L2
bank or banks that seem likely to contain the requested
cache line. The search proceeds in a similar manner to
Beckmann and Wood’s [2]; when a core’s memory ac-
cess misses in L1, the core’s cache controller looks for
the cache line in the L2 bankclusters. First, it consults
the core’s local L2 bankcluster, the Center, and the In-
ter bankclusters. If migration has had its intended ef-
fect, these are the most likely places to find the line.
If none of those bankclusters hit, the core tries the
other cores’ local bankclusters before going to main
memory. In our search, we filter out request messages
by consulting, in parallel, the Bloom filters for each
bankcluster, and only sending messages to those that
hit. Due to the possibility of false negatives, discussed
in the next section, if no Bloom filters hit, or all of the
bankclusters consulted turn out to be false positives,
we send messages to all bankclusters skipped in the
first pass.

3.2 Managing the Filters

We next deal with content management: when are
items inserted into filter, and when are they removed?
The design principle we follow here is to keep com-
plexity low by minimizing our changes to the baseline
cache design. Thus, rather than adding new messages
for filter management, we use the messages already
sent by the cache. When one of the L2 banks inserts
a new line, we do not broadcast this event to all fil-
ters. Instead, we only insert addresses into our filters
on-demand; that is, when a core receives a line from
some L2 bank. The first time a cache line is accessed
by a given core, therefore, there is a compulsory miss
in the filters. For this reason, our filters can return a
false negative. We also see similar false negatives
when a cache line has migrated from one bankcluster
to another. Because the probability of false positives
returned by a Bloom filter is a function of the number
of items inserted into it, inserting no more items than
necessary will help keep the false positive rate low.

All filters start empty, with the bits in their arrays
cleared. The first time core c accesses line l, it will
have no entry for l in any of its filters. Assuming no
false positives, all filters will miss, and c will fall back
to searching all banks for l. If l is present in bankclus-
ter b, b will send the line to c. Upon receipt of the line,
c inserts l into its filter for bankcluster b. Thus, the
next time that c misses on l, it will know that b has at
some point held line l.

As time goes on, the filters will tend to return more
false positives for two reasons. First, due to the funda-
mental properties of Bloom filters, as more items are
inserted into a filter, its false positive rate rises. Sec-
ond, as time passes, the information in the filters be-
comes stale; some of the entries they have stored will
no longer be accurate because lines may have migrated
or been otherwise evicted from their original bankclus-
ters.

We clearly must have a mechanism in place for re-
moving filter entries to avoid a constantly-rising false
positive rate. Recall that in a simple Bloom filter, en-
tries cannot be removed. In addition, if we were to
track migrations or evictions, this would require new
messages between bankclusters and the filters.

In order to keep the complexity of our design down,
strategy we adopt is to clear an entire filter when its
false positive rate becomes too high. This decision can
be made locally by each filter, without requiring global
co-ordination. Filters can, for example, maintain a
simple n-bit saturating counter that is incremented on
each true positive and decremented on each false pos-
itive. This provides an approximation of the false pos-
itive rate over the last several memory accesses. For
our initial implementation, we clear a filter when its
ratio of false positives to true positives goes above
one—that is, when the false positive rate reaches 50%.
There is clearly a tradeoff between clearing the filters
frequently to reduce false positives and clearing them
infrequently to minimize the number of compulsory
misses thus incurred. This is a tradeoff we will explore
in future work.

3.3 Filter Design

The filter we chose is similar to the partitioned-
address Bloom filter used by Peir et al. [13] for pre-
dicting cache misses.

The bit array, A is divided into k slices,
A1, A2, ...Ak . Each hash function indexes into its cor-

Figure 2. Design of our Bloom filter, showing

hash functions h1 through h3, which are used as

indexes into bit array slices A1 through A3. A hit

is detected when ones are returned from all array

slices.

responding slice. For example, h1 indexes into A1, h2

indexes into A2, and so forth. Each slice can be im-
plemented as a separate structure, keeping the time re-
quired to access it small. All slices can be accessed in
parallel, meaning that the lookup time is independent
of the number of slices.

We use the simplest hash function possible, the
identity function. We split up the address into several
sets of bits, then use each to index into one of the array
slices.

The layout of our filter is depicted in Figure 2. We
assume a physical address width of 41 bits—this is one
bit wider than the current AMD Athlon 64 and Sun
Niagara [8] processors, and can accommodate two ter-
abytes of memory. We also assume 64 byte wide cache
lines, giving 6-bit offsets. This leaves us with 35-bit
cache line addresses. We divide these bits into two
groups of 12 and one group of 11, and use each group
to index into an array slice. Our design can easily be
adapted to other address widths by changing the num-
ber and size of the array slices.

Our filters are reasonably sized structures; there are
two arrays of 4096 bits each, and one array of 2048
bits. The total size for one filter is thus 10 Kb. Since

each core needs 16 filters, one for each bankcluster,
each core requires 160 Kb, and all eight cores together
require 1280 Kb, or 160 KB, of storage. Assuming
6-transistor SRAM cells, the total filter size is approx-
imately 7.68 million transistors.

In comparison, if we were to extrapolate the 6-bit
partial tag array used as a filter by Kim et al. [7] to an
8-way CMP with 16 banksets, it would require 1.5MB
of storage (approximately 72 million transistors). The
physical layout for both of these approaches can be or-
ganized as a roughly square memory structure. Our
structure requires proportionally more space for the
decoders and other RAM components, but we estimate
they should not be more than 20% of the storage tran-
sistors. Thus, our design has much lower overhead, at
least eight times smaller, than the existing work in this
area.

Filter sizes and hash functions different from the
ones we use in this paper may result in better perfor-
mance or smaller filters—we leave a careful study of
filter sizes and hash functions to future work.

4 Results

We now present the results of our initial explo-
ration. We have implemented our Bloom filter smart
search using the GEMS 1.2 [10] toolset. The Ruby
cache model of GEMS includes the D-NUCA de-
sign we have described as our baseline. GEMS inter-
faces with the full-system functional simulator, Sim-
ics [9]. For evaluation, we used 12 benchmarks from
the SPLASH-2 [15] parallel multithreaded program
set. We start with a cold cache in order to take into
account compulsory misses in the filters. All programs
ran for at least one billion instructions, and at least 500
thousand L2 accesses.

Our initial implementation tracks the management
of the Bloom filters and records their accuracy, but
does not yet modify the search itself. Thus, the re-
sults we present here reflect the accuracy of the filters,
and not the IPC or power improvements. Overall, we
find that the filter accuracy is high enough to indicate
that we have identified a promising technique for smart
search. Our results merit further examination, includ-
ing quantifying the cycles and power saved. We leave
these evaluations to future work.

 0%

 20%

 40%

 60%

 80%

 100%

av
er

ag
e

w
at

er
_n

sq

vo
lr

en
d

ra
di

x

oc
ea

n_
no

nc
on

t

oc
ea

n_
co

nt

lu
_n

on
co

nt

lu
_c

on
t

fm
mff
t

ch
ol

es
ky

ba
rn

es

ra
yt

ra
ce

N
um

be
r

of
 L

2
lo

ok
−

up
s

sa
ve

d

Benchmark

Figure 3. Percent of messages saved by our

smart search per L2 access.

4.1 Messages Saved

The key metric for evaluating our smart search is
how many messages it saves compared to the baseline
search. A saved message is a block request sent to
an L2 bankcluster by the baseline search, but filtered
out by our search. The effect of fewer messages is
decreased traffic on the L2 routing network, resulting
in lower power and fewer contention cycles. Power is
also saved because fewer bankclusters have to check
their tag arrays.

Figure 3 shows the average messages saved per L2
access. The average savings across all benchmarks is
35%, and two are better than 50%.

4.2 Transistor Efficiency

We now evaluate our work in terms of its complex-
ity effectiveness. To do so, we look at the number of
messages saved on each L2 access per million transis-
tors. We compare our filter with an idealized 6-bit par-
tial tag array, much like the one used in prior work [7].
Each core has one tag array per bankset, just as we
have one bloom filter per core per bankset. We do not
model synchronization messages for the tag arrays, as-
suming that the arrays are perfectly synchronized with
the corresponding bankset. Thus, the tag arrays in this
test performs better than would a real implementation.
As previously calculated, our filters are assumed to re-
quire 7.68 million transistors, and the partial tag arrays
are assumed to require 72 million transistors.

Figure 4 shows the the results of this test. The
number of messages saved for both structures is sim-
ilar. The accuracy of the idealized partial tag array

Bloom Filter
 Partial Tag Array

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

av
er

ag
e

w
at

er
_n

sq

vo
lr

en
d

ra
di

x

oc
ea

n_
no

nc
on

t

oc
ea

n_
co

nt

lu
_n

on
co

nt

lu
_c

on
t

fm
mff
t

ch
ol

es
ky

ba
rn

es

ra
yt

ra
ce

L
oo

ku
ps

 S
av

ed
 P

er
 M

ill
io

n
T

ra
ns

is
to

rs

Benchmark

Figure 4. Average messages saved on each L2

access, per million transistors. We compare our

filters with an idealized 6-bit partial tag array.

 0%

 20%

 40%

 60%

 80%

 100%
av

er
ag

e

w
at

er
_n

sq

vo
lr

en
d

ra
di

x

oc
ea

n_
no

nc
on

t

oc
ea

n_
co

nt

lu
_n

on
co

nt

lu
_c

on
t

fm
mff
t

ch
ol

es
ky

ba
rn

es

ra
yt

ra
ce

C
or

re
ct

 p
re

di
ct

io
ns

Benchmark

Figure 5. Overall filter accuracy.

is slightly higher—it saves on average 1.2 more mes-
sages per lookup. However, the Bloom filters, because
of their much smaller size, make more efficient use of
transistors. On average, they are able to save more than
6 times as many messages per million transistors.

4.3 Filter Accuracy

We now look at filter accuracy in finer detail, shown
in Figure 5. This graph shows the number of true pos-
itives and true negatives over all filter lookups. As we
can see, our filter accuracy is quite good overall.

The dominant cause of inaccuracy is false positives.
This is due, in large part, to migration. When a cache
line migrates, our filters learn the new location, but
still remember the old location. We believe that the
primary way to improve our filter accuracy will be to
handle these migrations, removing line addresses from
their old bankclusters.

To illustrate this point, we consider a modified ver-
sion of D-NUCA that does not migrate blocks—it

Without migration
 With migration

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

av
er

ag
e

w
at

er
_n

sq

vo
lr

en
d

ra
di

x

oc
ea

n_
no

nc
on

t

oc
ea

n_
co

nt

lu
_n

on
co

nt

lu
_c

on
t

fm
mff

t

ch
ol

es
ky

ba
rn

es

ra
yt

ra
ce

Fa
ls

e
po

si
tiv

e
to

 tr
ue

 p
os

iti
ve

s
ra

tio

Benchmark

Figure 6. False positive to true positive ratio for

D-NUCA caches with and without migration.

brings them into the cache according to D-NUCA po-
lices, but does not move them thereafter. We do not
claim that this cache policy is desirable, we use it only
to isolate the effects of migration on our false positive
rate.

The ratio of false positives to true positives with and
without migration are shown in Figure 6. This ratio
serves to isolate the percentage of false positives that
result from migration, and we can see in this figure that
the effect is significant. If we can, in future work, find
a way to address migration, the accuracy of our filters
will improve. Counting Bloom filters, which allow re-
moval of set elements, may be of help, but it remains
to be seen whether their higher storage requirements
would be worth the benefit.

4.4 Per-L2 access Statistics

Finally, we examine the “per-L2 access” character-
istics of the Bloom filters. We consider each L2 access
(resulting from an L1 miss) as a whole. Thus, if any
of a core’s sixteen filters correctly predicts a hit in a
particular bankcluster, we consider the whole access
to have hit, regardless of the predictions from other fil-
ters. If there are no true positives, but one or more
false positives, then the whole access is considered a
false positive. If there are no positives returned, we
classify the access as a true or false negative. Results
are aggregated across all eight cores.

Figure 7 shows the Bloom filter accuracy for the
SPLASH-2 benchmarks. This shows the percentage
of L2 accesses for which our filters return the correct
prediction (either a true positive or a true negative) on

 0%

 20%

 40%

 60%

 80%

 100%

av
er

ag
e

w
at

er
_n

sq

vo
lr

en
d

ra
di

x

oc
ea

n_
no

nc
on

t

oc
ea

n_
co

nt

lu
_n

on
co

nt

lu
_c

on
t

fm
mff
t

ch
ol

es
ky

ba
rn

es

ra
yt

ra
ce

C
or

re
ct

 p
re

di
ct

io
ns

Benchmark

Figure 7. Filter accuracy per L2 access.

the first pass. We believe that the primary way to im-
prove this accuracy will be to deal with migrations, as
discussed in Section 4.3.

5 Conclusion

In this paper, we have explored the use of Bloom
filters to create a smart search algorithm for CMPs
with D-NUCA caches. Our results are very promising,
showing that such filters can have very high accuracy,
which results in a reduction of block requests. Our fil-
ters are complexity effective—they make efficient use
of transistors, and do not make changes to the baseline
coherency protocols.

Our initial explorations leave room for future work.
Of most immediate importance, we will move on to
quantify the cycle and power savings that result from
our smart search. As shown in Section 4.3, if we
can address the false positives that linger after block
migration, very large improvements will likely result.
Counting filters may help address this problem, but us-
ing them in this context is not straightforward.

Acknowledgements

We thank Liqun Cheng for helping us with Sim-
ics and benchmark suites. Virtutech AB for provided
us with the Simics licenses necessary for our simula-
tions. We also thank Wisconsin’s Multifacet group, es-
pecially Bradford Beckmann and Mike Marty, for their
help with GEMS.

References

[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger.
Clock Rate versus IPC: The End of the Road for

Conventional Microarchitectures. In Proceedings of
ISCA-27, pages 248–259, June 2000.

[2] B. Beckmann and D. Wood. Managing Wire Delay in
Large Chip-Multiprocessor Caches. In Proceedings
of MICRO-37, December 2004.

[3] B. Bloom. Space/time trade-offs in hash coding with
allowable errors, July 1970.

[4] Z. Chishti, M. Powell, and T. Vijaykumar. Optimiz-
ing Replication, Communication, and Capacity Allo-
cation in CMPs. In Proceedings of ISCA-32, June
2005.

[5] R. Ho, K. Mai, and M. Horowitz. The Future of
Wires. Proceedings of the IEEE, Vol.89, No.4, April
2001.

[6] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. Keckler. A NUCA Substrate for Flexible CMP
Cache Sharing. In Proceedings of ICS-19, June 2005.

[7] C. Kim, D. Burger, and S. Keckler. An Adaptive,
Non-Uniform Cache Structure for Wire-Dominated
On-Chip Caches. In Proceedings of ASPLOS-X, Oc-
tober 2002.

[8] P. Kongetira. A 32-Way Multithreaded SPARC Pro-
cessor. In Proceedings of Hot Chips 16, 2004.
(http://www.hotchips.org/archives/).

[9] P. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moest-
edt, and B. Werner. Simics: A Full System Simula-
tion Platform. IEEE Computer, 35(2):50–58, Febru-
ary 2002.

[10] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, and D. Wood.
Multifacet’s General Execution-Driven Multiproces-
sor Simulator (GEMS) Toolset. Computer Architec-
ture News, 2005.

[11] C. McNairy and R. Bhatia. Montecito: A Dual-Core,
Dual-Thread Itanium Processor. IEEE Micro, 25(2),
March/April 2005.

[12] S. Naffziger, B. Stackhouse, T. Grutkowski,
D. Josephson, J. Desai, E. Alon, and M. Horowitz.
The Implementation of a 2-Core Multi-Threaded Ita-
nium Family Processor. IEEE Journal of Solid-State
Circuits, 41(1), January 2006.

[13] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai.
Bloom filtering cache misses for accurate data specu-
lation and prefetching. In Proceedings of Int’l Confer-
ence on Supercomputing (ICS), pages 189–198, June
2002.

[14] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An Inte-
grated Cache Timing, Power, and Area Model. Tech-
nical Report TN-2001/2, Compaq Western Research
Laboratory, August 2001.

[15] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Proceedings of
ISCA-22, pages 24–36, June 1995.

